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A query’s trip through the DBMS

2

Parser

Validator

Optimizer

Executor

Result

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =
      Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Physical plan
PROJECT (name, gid)

MERGE-JOIN (gid)

SCAN (Member)
SCAN (Group)

SORT (gid)

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×



(Recap) Query optimization

• Why query optimization?
• Search space
• What are the possible equivalent logical plans?
• What are the possible physical plans? (Lecture 16)

• Search strategy
• Rule-based strategy
• Cost-based strategy
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1 second 1 hour1 minute

Any of these will do



(Recap) Logical plan

• Nodes are logical operators (often relational algebra 
operators)
• Apply algebraic equivalences to systematically 

transform a plan to new ones
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𝜋Group.name
𝜎User.name=“Bart” ∧ User.uid = Member.uid ∧ Member.gid = Group.gid
×

Member
Group×

User

An equivalent plan: 𝜋Group.name

⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid= Member.uid

𝜎name = “Bart”



(Recap) Algebraic equivalences
• Join reordering: × and ⋈ are associative and 

commutative (except column ordering)

• Convert 𝜎!-× to/from ⋈!: 𝜎! 𝑅×𝑆 = 𝑅 ⋈! 𝑆
• Merge/split 𝜎’s: 𝜎!! 𝜎!"𝑅 = 𝜎!!∧!"𝑅
• Merge/split 𝜋’s: 𝜋#$ 𝜋#"𝑅 = 𝜋#!∪#"𝑅 
• Push down/pull up 𝜎: (𝑝&  involves only 𝑅; 𝑝' involves 

only 𝑆; 𝑝 and 𝑝( involve 𝑅 and 𝑆) 

 𝜎!∧!#∧!$ 𝑅 ⋈!% 𝑆 = 𝜎!#𝑅 ⋈!∧!% 𝜎!$𝑆  
• Push down 𝜋: 𝜋# 𝜎!𝑅 = 𝜋# 𝜎! 𝜋#∪#%𝑅
• 𝐿" is the set of columns referenced by 𝑝
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More complicated examples
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𝜋Group.name
𝜎User.name=“Bart” ∧ User.uid = Member.uid ∧ Member.gid = Group.gid
×

Member
Group×

User 𝜋Group.name
𝜎Member.gid = Group.gid
×

Member

Group

×

User

𝜎User.uid = Member.uid

𝜎name = “Bart”

Push down 𝝈
𝜋Group.name
⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid = Member.uid

𝜎name = “Bart”

Convert 𝝈𝒑-× to ⋈𝒑



More complicated examples
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𝑅(𝐴, 𝐵) 𝑆(𝐵, 𝐶, 𝐷) 𝑇(𝐴, 𝐵, 𝐶) 𝑊(𝐶, 𝐷)

⋈%.'().'

−
⋈*.+(,.+	

𝑅(𝐴, 𝐵)

𝑆(𝐵, 𝐶, 𝐷)

𝑇(𝐴, 𝐵, 𝐶)

⋈

⋈
−

𝜋+,'

𝑆(𝐵, 𝐶, 𝐷)

∪

𝑆(𝐵, 𝐶, 𝐷)

𝑊(𝐶, 𝐷)

⋈
−

𝜋',/
𝑆(𝐵, 𝐶, 𝐷)

𝑅(𝐴, 𝐵)

⋈



Rule-based query optimization
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• Do we need to examine all the logical plans? 
• No! We can apply rules to find a “cheaper” logical plan

• Start with a logical plan
• Push selections/projections down as much as possible
• Why? Reduce the size of intermediate results

• Join smaller relations first and avoid cross product
• Why? Joins are more optimized and have alternate 

implementations

• Many other rules to be further exploited…



From rule-based to cost-based opt.

• Rule-based optimization
• Apply algebraic equivalence to rewrite plans into 

cheaper ones

• Cost-based optimization
• Rewrite logical plan to combine “blocks” 

as much as possible
• Optimize query block by block

• Enumerate logical plans (already covered)
• Estimate the cost of plans
• Pick a plan with acceptable cost

• Focus: select-project-join blocks
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Patricia Selinger“Selinger”-style query optimization ←



10http://www.learningresources.com/product/estimation+station.do

Cost estimation



Cost estimation

• We have: cost estimation for each operator
• Example: INDEX-NESTED-LOOP-JOIN(uid) takes

O(𝐵 𝑅 + 𝑅 ⋅ index	lookup + record	fetch )
• We need: size of intermediate results
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Physical plan example:

Input to Join(uid):

Lecture 16

What is its input size? 
How many tuples with 

name=‘Bart’?

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)



Selections with equality predicates

• 𝑄: 𝜎678𝑅
• DBMSs typically store the following in the catalog
• Size of 𝑅: 𝑅
• Number of distinct 𝐴 values in 𝑅: 𝜋0𝑅

• Assumptions
• Values of 𝐴 are uniformly distributed in 𝑅

• 𝑄 ≈ ,& 9&&
• Selectivity factor of 𝐴 = 𝑣  is H1 2!*
• Selectivity: the probability that any row will satisfy a 

predicate
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Conjunctive predicates

• 𝑄: 𝜎67:	∧	<78𝑅
• Additional assumptions
• 𝐴 = 𝑢  and 𝐵 = 𝑣  are independent

• Counterexample: major and advisor
• No “over”-selection

• Counterexample: 𝐴 is the key

• 𝑄 ≈ ,& =&& ⋅ ='&
• Reduce total size by all selectivity factors
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Negated and disjunctive predicates

• 𝑄: 𝜎6?8𝑅
• 𝑄 ≈ 𝑅 ⋅ 1 − H1 3!*

• Selectivity factor of ¬𝑝 is (1 − selectivity factor of 𝑝)

• 𝑄: 𝜎67:	∨	<78𝑅
• 𝑄 ≈ 𝑅 ⋅ H1 3!* + H1 3"* 	 ?

• No! Tuples satisfying 𝐴 = 𝑢  and 𝐵 = 𝑣  are counted twice

• 𝑄 ≈ 𝑅 ⋅ H1 3!* + H1 3"* − H1 3!* 3"*
• Inclusion-exclusion principle
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Range predicates

• 𝑄: 𝜎6H8𝑅
• Not enough information!
• Just pick, say, 𝑄 ≈ 𝑅 ⋅ ⁄1 4

• With more information
• Largest R.A value: high 𝑅. 𝐴
• Smallest R.A value: low 𝑅. 𝐴
• 𝑄 ≈ 𝑅 ⋅ 5675 *.0 89

5675 *.0 8:;< *.0

• Selectivity factor: 5675 *.0 89
5675 *.0 8:;< *.0

15

low v high

ℎ𝑖𝑔ℎ 𝑅. 𝐴 − 𝑣

ℎ𝑖𝑔ℎ 𝑅. 𝐴 − 𝑙𝑜𝑤(𝑅. 𝐴)



Two-way natural join

• 𝑄 = 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐴, 𝐶
• Assumption: containment of value sets
• Every tuple in the “smaller” relation (one with fewer 

distinct values for the join attribute) joins with some 
tuple in the other relation
• That is, if 𝜋!𝑅 ≤ 𝜋!𝑆  then 𝜋!𝑅 ⊆ 𝜋!𝑆

• Certainly not true in general
• But holds in the common case of foreign key joins

• 𝑄 ≈ & ⋅ '
LMN 9&& , 9&'

• Selectivity factor of 𝑅. 𝐴 = 𝑆. 𝐴 is H1 IJK 2!* , 2!,
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Cost estimation: summary

• Using similar ideas, we can estimate the size of 
projection, duplicate elimination, union, difference, 
aggregation (with grouping)

• Lots of assumptions and very rough estimation
• Accurate estimate is not needed
• Maybe okay if we overestimate or underestimate 

consistently
• May lead to very nasty optimizer “hints”

SELECT * FROM User WHERE pop > 0.9;
SELECT * FROM User WHERE pop > 0.9 AND pop > 0.9;
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Case Study
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PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

Data statistics:
• 𝑈𝑠𝑒𝑟 = 1000
• 𝑀𝑒𝑚𝑏𝑒𝑟 = 50000
• 𝐺𝑟𝑜𝑢𝑝 = 100
• |𝜋"#$%𝑈𝑠𝑒𝑟| = 50
• 𝜋&'(𝑀𝑒𝑚𝑏𝑒𝑟 = 500
• 𝜋)'(𝑀𝑒𝑚𝑏𝑒𝑟 = 100
• |𝜋)'(𝐺𝑟𝑜𝑢𝑝| = 100

 

100 rows

1000 rows

50000 rows



Case Study

• Assume that the values of 𝑛𝑎𝑚𝑒 are uniformly distributed in 𝑈𝑠𝑒𝑟
• What is |𝜎"#$%*",#-."𝑈𝑠𝑒𝑟| =	?	
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Data statistics:
• 𝑈𝑠𝑒𝑟 = 1000
• 𝑀𝑒𝑚𝑏𝑒𝑟 = 50000
• 𝐺𝑟𝑜𝑢𝑝 = 100
• |𝜋"#$%𝑈𝑠𝑒𝑟| = 50
• 𝜋&'(𝑀𝑒𝑚𝑏𝑒𝑟 = 500
• 𝜋)'(𝑀𝑒𝑚𝑏𝑒𝑟 = 100
• |𝜋)'(𝐺𝑟𝑜𝑢𝑝| = 100

 

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid) 100 rows

1000 rows

50000 rows



Case Study

• What is the intermediate join size? 

≈
𝑅 ⋅ 𝑆

max 𝜋!𝑅 , 𝜋!𝑆
=

20 ⋅ 50000
max 20, 500

= 2000
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Data statistics:
• 𝑈𝑠𝑒𝑟 = 1000
• 𝑀𝑒𝑚𝑏𝑒𝑟 = 50000
• 𝐺𝑟𝑜𝑢𝑝 = 100
• |𝜋"#$%𝑈𝑠𝑒𝑟| = 50
• 𝜋&'(𝑀𝑒𝑚𝑏𝑒𝑟 = 500
• 𝜋)'(𝑀𝑒𝑚𝑏𝑒𝑟 = 100
• |𝜋)'(𝐺𝑟𝑜𝑢𝑝| = 100

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

1000 rows

50000 rows

100 rows

20 rows



Case Study

• What is the intermediate join size? 

≈
𝑅 ⋅ 𝑆

max 𝜋!𝑅 , 𝜋!𝑆
=

2000 ⋅ 100
max 100, 100

= 2000
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Data statistics:
• 𝑈𝑠𝑒𝑟 = 1000
• 𝑀𝑒𝑚𝑏𝑒𝑟 = 50000
• 𝐺𝑟𝑜𝑢𝑝 = 100
• |𝜋"#$%𝑈𝑠𝑒𝑟| = 50
• 𝜋&'(𝑀𝑒𝑚𝑏𝑒𝑟 = 500
• 𝜋)'(𝑀𝑒𝑚𝑏𝑒𝑟 = 100
• |𝜋)'(𝐺𝑟𝑜𝑢𝑝| = 100

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

1000 rows

50000 rows

100 rows

20 rows

2000 rows

2000 rows



Cost-based optimization for 
Multi-way equi-joins
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Search space is huge

• Huge!
• “Bushy” plan example:

• Just considering different join orders, there are 
defd !
ef$ !

 bushy plans for 𝑅$ ⋈ ⋯ ⋈ 𝑅e
• 30240 for 𝑛 = 6

• And there are more if we consider:
• Multi-way joins
• Different join methods
• Placement of selection and projection operators
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⋈

𝑅L 𝑅1 𝑅4
𝑅M 𝑅N

⋈ ⋈
⋈



Left-deep plans

• Heuristic: consider only “left-deep” plans, in which 
only the left child can be a join
• Tend to be better than plans of other shapes, because many 

join algorithms scan inner (right) relation multiple times—
you will not want it to be a complex subtree

• How many left-deep plans are there for 𝑅$ ⋈ ⋯ ⋈ 𝑅e?
• Significantly fewer, but still lots— 𝑛! (720 for 𝑛 = 6)
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⋈

𝑅L 𝑅1
𝑅4

𝑅M

𝑅N⋈
⋈

⋈



It is a matter of intermediate join size

• Suppose the natural join operator is computed by 
the sort-merge join algorithm 
• So, the cost is proportional to the input size and join size

• How to minimize the intermediate join size?
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A greedy algorithm
• 𝑆", … , 𝑆#

• Say selections have been pushed down; i.e., 𝑆! = 𝜎" 𝑅!
• Start with the pair 𝑆$ , 𝑆%  with the smallest estimated 

size for 𝑆$ ⋈ 𝑆%
• Repeat until no relation is left:

Pick 𝑆& from the remaining relations such that the join 
of 𝑆&	and the current result yields an intermediate 
result of the smallest size
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Current subplan

… , 𝑆h , 𝑆i , 𝑆j , …
Remaining

relations
to be joined

Pick most efficient join method

⋈
𝑆h

Minimize expected size



A dynamic programming approach

• Generate optimal plans bottom-up
• Pass 1: Find the best single-table plans (for each table)
• Pass 2: Find the best two-table plans (for each pair of 

tables) by combining best single-table plans
• …
• Pass 𝑘: Find the best 𝑘-table plans (for each combination 

of 𝑘 tables) by combining two smaller best plans found 
in previous passes
• …

• Rationale: Any subplan of an optimal plan must also 
be optimal (otherwise, just replace the subplan to 
get a better overall plan)
FWell, not quite — we will see later
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Example of a DP algorithm

• 𝑄:𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝐷 ⋈ 𝑈 𝐷, 𝐴
• 𝑅 = 𝑆 = 𝑇 = 𝑈 = 1000
• 𝛿0𝑅 = 100, 𝛿+𝑅 = 200
• 𝛿+𝑆 = 100, 𝛿'𝑆 = 500
• 𝛿'𝑇 = 20, 𝛿/𝑇 = 50
• 𝛿/𝑈 = 50, 𝛿0𝑈 = 1000
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• Pass 1:

• Pass 2:

• Pass 3:

• Pass 4: 
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{𝑅, 𝑆, 𝑇}
10K

(𝑆 ⋈ 𝑇) ⋈ 𝑅

{𝑅, 𝑆, 𝑈}
50K

(𝑅 ⋈ 𝑆) ⋈ 𝑈

{𝑅, 𝑇, 𝑈}
10K

(𝑇 ⋈ 𝑈) ⋈ 𝑅

{𝑆, 𝑇, 𝑈}
2K

(𝑆 ⋈ 𝑇) ⋈ 𝑈

{𝑅}
1K

{𝑆}
1K

{𝑇}
1K

𝑈
1K

{𝑅, 𝑆}
5K

(𝑅 ⋈ 𝑆)

{𝑅, 𝑇}
1M

(𝑅 ⋈ 𝑇)

{𝑅, 𝑈}
10K

(𝑅 ⋈ 𝑈)

𝑆, 𝑇
2K

(𝑆 ⋈ 𝑇)

𝑆, 𝑈
1M

𝑆 ⋈ 𝑈 

{𝑇, 𝑈}
1K

(𝑇 ⋈ 𝑈)

For example: 𝑅 ⋈ 𝑆 = " ⋅|%|
&'({ *!" , *!% }

= -...⋅-...
/..

For example: best for {𝑅, 𝑆, 𝑇} =
best among: {

 (best for 𝑅, 𝑆 ) ⋈ 𝑇,
 (best for 𝑅, 𝑇 ) ⋈ 𝑆,
 (best for 𝑆, 𝑇 ) ⋈ 𝑅}

{𝑅, 𝑆, 𝑇, 𝑈}
??
??

The best among: {
 {𝑅, 𝑆, 𝑇} ⋈ 𝑈, {𝑅, 𝑆, 𝑈} ⋈ 𝑇, {𝑅, 𝑇, 𝑈} ⋈ 𝑆, {𝑆, 𝑇, 𝑈} ⋈ 𝑅, 

𝑅, 𝑆 ⋈ 𝑇, 𝑈 , 𝑅, 𝑇 ⋈ 𝑆, 𝑈 , 𝑅, 𝑈 ⋈ 𝑆, 𝑇
}

𝑄: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝐷 ⋈ 𝑈 𝐷, 𝐴



The need for “interesting order”

Example: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐴, 𝐶 ⋈ 𝑇 𝐴, 𝐷
• Let’s say the best plan for 𝑅 ⋈ 𝑆 is hash join (beats 

sort-merge join)
• But the best overall plan may be sort-merge join 𝑅 

and 𝑆, and then sort-merge join with 𝑇
• Subplan of the optimal plan is not optimal!

• How could this happen?
• The result of the sort-merge join of 𝑅 and 𝑆 is sorted on 𝐴
• This is an interesting order that can be exploited by later 

processing (e.g., join, dup elimination, GROUP BY, ORDER 
BY, etc.)!
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Dealing with interesting orders

When picking the best plan
• Comparing their costs is not enough
• Plans are not totally ordered by cost anymore

• Comparing interesting orders is also needed
• Plans are now partially ordered
• Plan 𝑋 is better than plan 𝑌 if

• Cost of 𝑋 is lower than 𝑌, and
• Interesting orders produced by 𝑋 “subsume” those produced by 𝑌

• E.g., 𝑌 sorts output by column 𝐴, while 𝑋 sorts by 𝐴 or 𝐴, 𝐵  

• Need to keep a set of optimal plans for joining every 
combination of 𝑘 tables
• At most one for each interesting order
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Summary

• Search space
• What are the possible equivalent logical plans?
• What are the possible physical plans? (Lecture 16)

• Search strategy
• Rule-based strategy
• Cost-based strategy
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1 second 1 hour1 minute

Any of these will do



A query’s trip through the DBMS
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Parser

Validator

Optimizer

Executor

Result

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =
      Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Physical plan
PROJECT (name, gid)

MERGE-JOIN (gid)

SCAN (Member)
SCAN (Group)

SORT (gid)

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×


