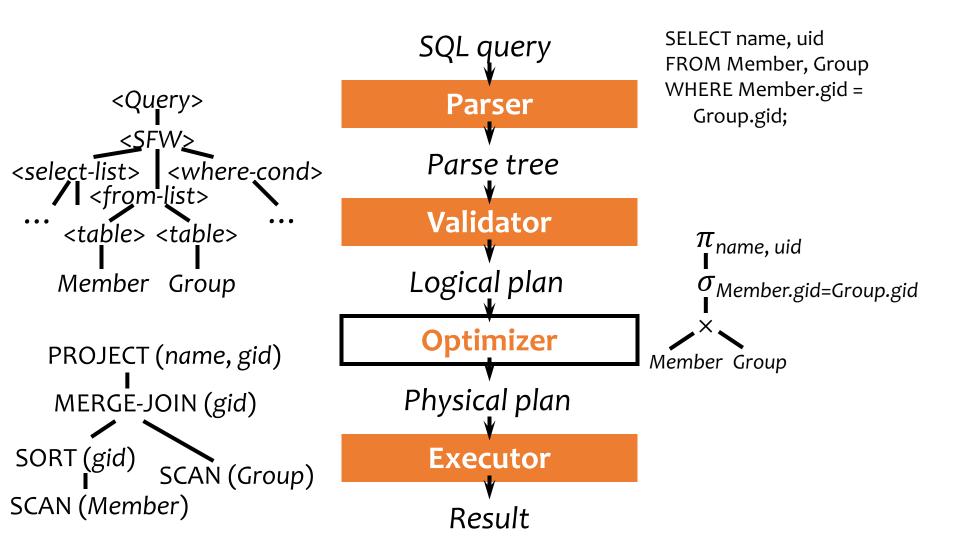
Lecture 17: Query Processing & Optimization

CS348 Spring 2025: Introduction to Database Management

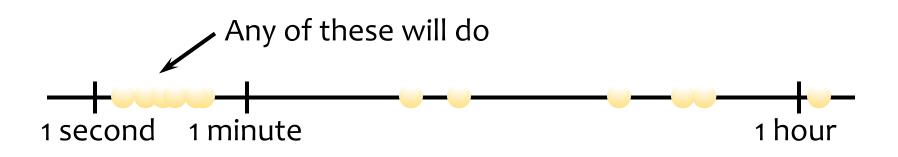
> Instructor: Xiao Hu Sections: 001, 002, 003

A query's trip through the DBMS



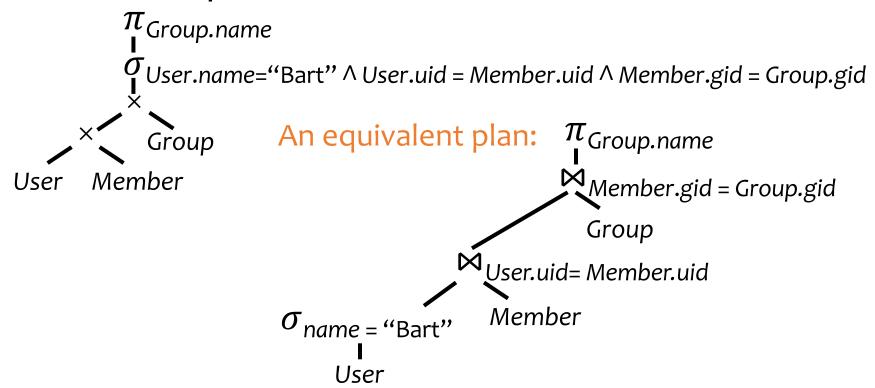
(Recap) Query optimization

- Why query optimization?
- Search space
 - What are the possible equivalent logical plans?
 - What are the possible physical plans? (Lecture 16)
- Search strategy
 - Rule-based strategy
 - Cost-based strategy



(Recap) Logical plan

- Nodes are logical operators (often relational algebra operators)
- Apply algebraic equivalences to systematically transform a plan to new ones



4

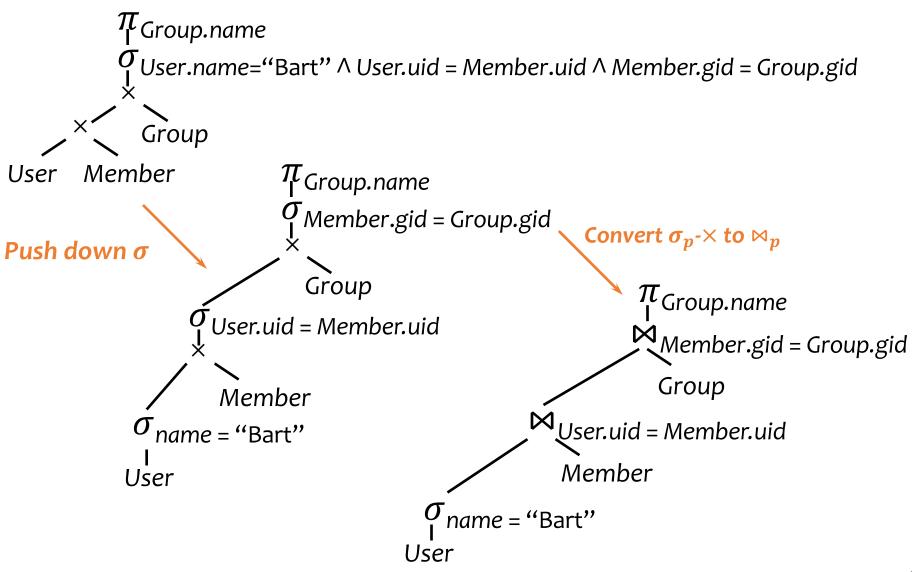
(Recap) Algebraic equivalences

- Join reordering: × and ⋈ are associative and commutative (except column ordering)
- Convert σ_p -× to/from \bowtie_p : $\sigma_p(R \times S) = R \bowtie_p S$
- Merge/split σ 's: $\sigma_{p_1}(\sigma_{p_2}R) = \sigma_{p_1 \wedge p_2}R$
- Merge/split π 's: $\pi_{L_1}(\pi_{L_2}R) = \pi_{L_1 \cup L_2}R$
- Push down/pull up σ: (p_R involves only R; p_S involves only S; p and p' involve R and S)

 $\sigma_{p \wedge p_R \wedge p_S} (R \bowtie_{p'} S) = (\sigma_{p_R} R) \bowtie_{p \wedge p'} (\sigma_{p_S} S)$

- Push down $\pi: \pi_L(\sigma_p R) = \pi_L(\sigma_p(\pi_{L\cup L'} R))$
 - L' is the set of columns referenced by p

More complicated examples



More complicated examples $\bowtie_{R.B=S.B}$ $\bowtie_{T.C=W.C}$ R(A,B) S(B,C,D) T(A,B,C) W(C,D) \mathbf{N} S(B,C,D) = R(A,B) \bowtie T(A, B, C)S(B, C, D)R(A,B) $\pi_{B,C}$ $\pi_{C,D}$ W(C,D)S(B, C, D)S(B, C, D)

Rule-based query optimization

- Do we need to examine all the logical plans?
 - No! We can apply rules to find a "cheaper" logical plan
- Start with a logical plan
- Push selections/projections down as much as possible
 - Why? Reduce the size of intermediate results
- Join smaller relations first and avoid cross product
 - Why? Joins are more optimized and have alternate implementations
- Many other rules to be further exploited...

From rule-based to cost-based opt.

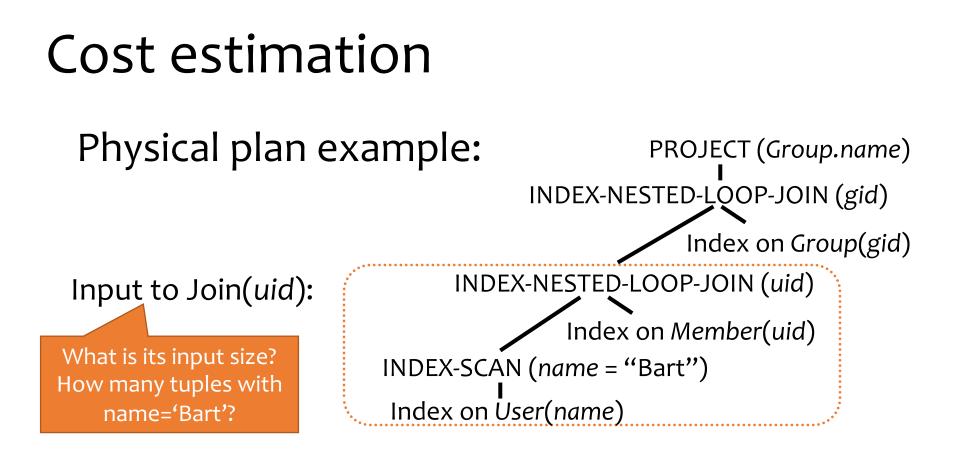
Rule-based optimization

- Apply algebraic equivalence to rewrite plans into cheaper ones
- Cost-based optimization
 - Rewrite logical plan to combine "blocks" as much as possible
 - Optimize query block by block
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost
 - Focus: select-project-join blocks

"Selinger"-style query optimization \leftarrow

Patricia Selinger

Cost estimation



- We have: cost estimation for each operator
 - Example: INDEX-NESTED-LOOP-JOIN(uid) takes
 O(B(R) + |R| · (index lookup + record fetch))
- We need: size of intermediate results

Selections with equality predicates

- $Q: \sigma_{A=\nu}R$
- DBMSs typically store the following in the catalog
 - Size of R: |R|
 - Number of distinct A values in R: $|\pi_A R|$
- Assumptions
 - Values of A are uniformly distributed in R
- $|Q| \approx {|R| \over |\pi_A R|}$
 - Selectivity factor of (A = v) is $\frac{1}{|\pi_A R|}$
 - Selectivity: the probability that any row will satisfy a predicate

Conjunctive predicates

- $Q: \sigma_{A=u \wedge B=v} R$
- Additional assumptions
 - (A = u) and (B = v) are independent
 - Counterexample: major and advisor
 - No "over"-selection
 - Counterexample: *A* is the key
- $|Q| \approx \frac{|R|}{|\delta_A R| \cdot |\delta_B R|}$
 - Reduce total size by all selectivity factors

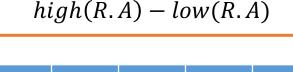
Negated and disjunctive predicates

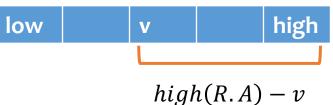
- $Q: \sigma_{A \neq v} R$
 - $|Q| \approx |R| \cdot \left(1 \frac{1}{|\delta_A R|}\right)$
 - Selectivity factor of $\neg p$ is (1 selectivity factor of p)
- $Q: \sigma_{A=u \vee B=v} R$
 - $|Q| \approx |R| \cdot \left(\frac{1}{|\delta_A R|} + \frac{1}{|\delta_B R|}\right)$?
 - No! Tuples satisfying (A = u) and (B = v) are counted twice
 - $|Q| \approx |R| \cdot \left(\frac{1}{|\delta_A R|} + \frac{1}{|\delta_B R|} \frac{1}{|\delta_A R||\delta_B R|}\right)$
 - Inclusion-exclusion principle

Range predicates

- $Q: \sigma_{A > v} R$
- Not enough information!
 - Just pick, say, $|Q| \approx |R| \cdot \frac{1}{3}$

- With more information
 - Largest R.A value: high(R.A)
 - Smallest R.A value: low(R.A)
 - $|Q| \approx |R| \cdot \frac{\operatorname{high}(R.A) v}{\operatorname{high}(R.A) \operatorname{low}(R.A)}$
 - Selectivity factor: $\frac{\operatorname{high}(R.A) v}{\operatorname{high}(R.A) \operatorname{low}(R.A)}$





Two-way natural join

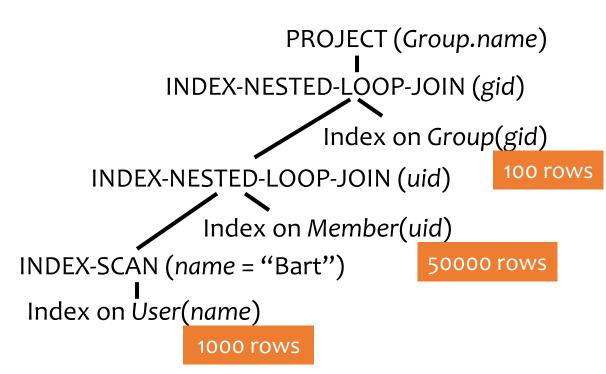
- $Q = R(A, B) \bowtie S(A, C)$
- Assumption: containment of value sets
 - Every tuple in the "smaller" relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if $|\pi_A R| \le |\pi_A S|$ then $\pi_A R \subseteq \pi_A S$
 - Certainly not true in general
 - But holds in the common case of foreign key joins
- $|Q| \approx \frac{|R| \cdot |S|}{\max(|\pi_A R|, |\pi_A S|)}$
 - Selectivity factor of R.A = S.A is $\frac{1}{\max(|\pi_A R|, |\pi_A S|)}$

Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer "hints" SELECT * FROM User WHERE pop > 0.9; SELECT * FROM User WHERE pop > 0.9 AND pop > 0.9;

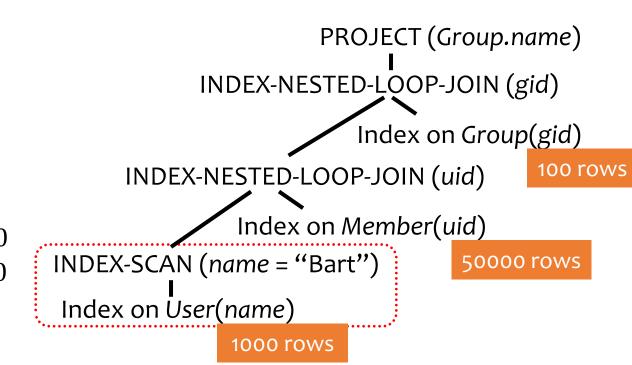
Data statistics:

- |User| = 1000
- |Member| = 50000
- |Group| = 100
- $|\pi_{name}User| = 50$
- $|\pi_{uid}Member| = 500$
- $|\pi_{gid} Member| = 100$
- $|\pi_{gid}Group| = 100$



Data statistics:

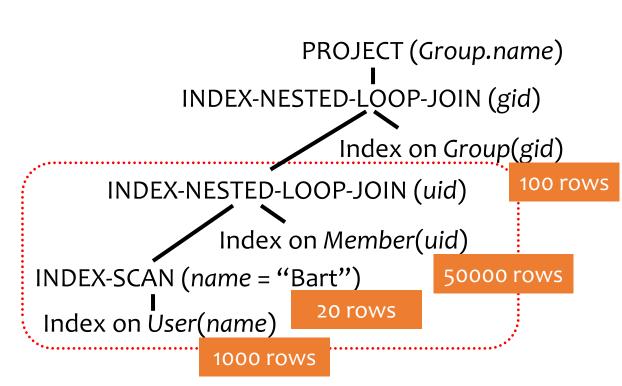
- |User| = 1000
- |Member| = 50000
- |Group| = 100
- $|\pi_{name}User| = 50$
- $|\pi_{uid}Member| = 500$
- $\left|\pi_{gid}Member\right| = 100$
- $|\pi_{gid}Group| = 100$



- Assume that the values of *name* are uniformly distributed in *User*
- What is $|\sigma_{name="Bart"}User| = ?$

Data statistics:

- |User| = 1000
- |Member| = 50000
- |Group| = 100
- $|\pi_{name}User| = 50$
- $|\pi_{uid}Member| = 500$
- $\left|\pi_{gid}Member\right| = 100$
- $|\pi_{gid}Group| = 100$

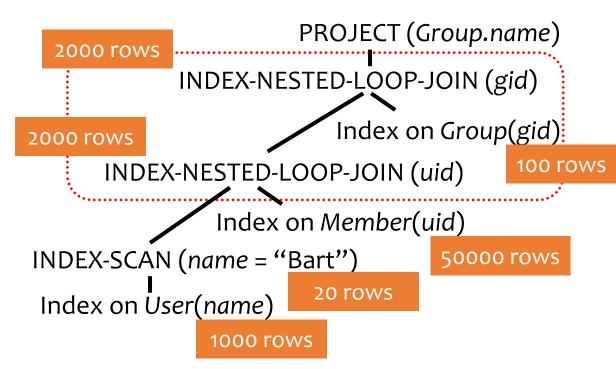


• What is the intermediate join size?

$$\approx \frac{|R| \cdot |S|}{\max(|\pi_A R|, |\pi_A S|)} = \frac{20 \cdot 50000}{\max(20, 500)} = 2000$$

Data statistics:

- |User| = 1000
- |Member| = 50000
- |Group| = 100
- $|\pi_{name}User| = 50$
- $|\pi_{uid}Member| = 500$
- $\left|\pi_{gid}Member\right| = 100$
- $|\pi_{gid}Group| = 100$



• What is the intermediate join size?

$$\approx \frac{|R| \cdot |S|}{\max(|\pi_A R|, |\pi_A S|)} = \frac{2000 \cdot 100}{\max(100, 100)} = 2000$$

Cost-based optimization for Multi-way equi-joins

Search space is huge

- Huge!
- "Bushy" plan example:

- Just considering different join orders, there are $\frac{(2n-2)!}{(n-1)!}$ bushy plans for $R_1 \bowtie \cdots \bowtie R_n$
 - 30240 for n = 6
- And there are more if we consider:
 - Multi-way joins
 - Different join methods
 - Placement of selection and projection operators

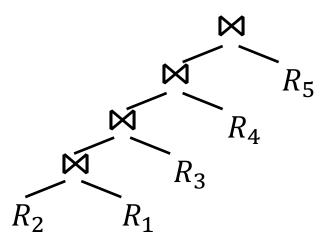
 \bowtie

 R_1

 R_{z}

 R_2

Left-deep plans



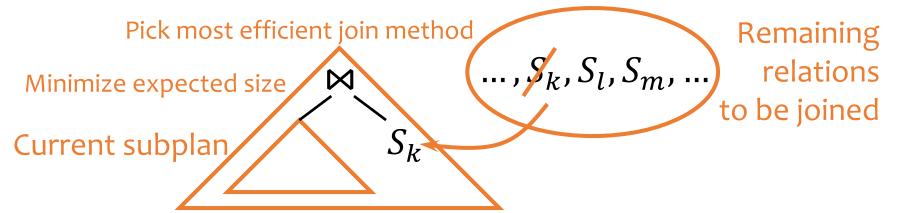
- Heuristic: consider only "left-deep" plans, in which only the left child can be a join
 - Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple times you will not want it to be a complex subtree
- How many left-deep plans are there for $R_1 \bowtie \cdots \bowtie R_n$?
 - Significantly fewer, but still lots—n! (720 for n = 6)

It is a matter of intermediate join size

- Suppose the natural join operator is computed by the sort-merge join algorithm
 - So, the cost is proportional to the input size and join size
- How to minimize the intermediate join size?

A greedy algorithm

- S_1, \ldots, S_n
 - Say selections have been pushed down; i.e., $S_i = \sigma_p(R_i)$
- Start with the pair S_i , S_j with the smallest estimated size for $S_i \bowtie S_j$
- Repeat until no relation is left: Pick S_k from the remaining relations such that the join of S_k and the current result yields an intermediate result of the smallest size



A dynamic programming approach

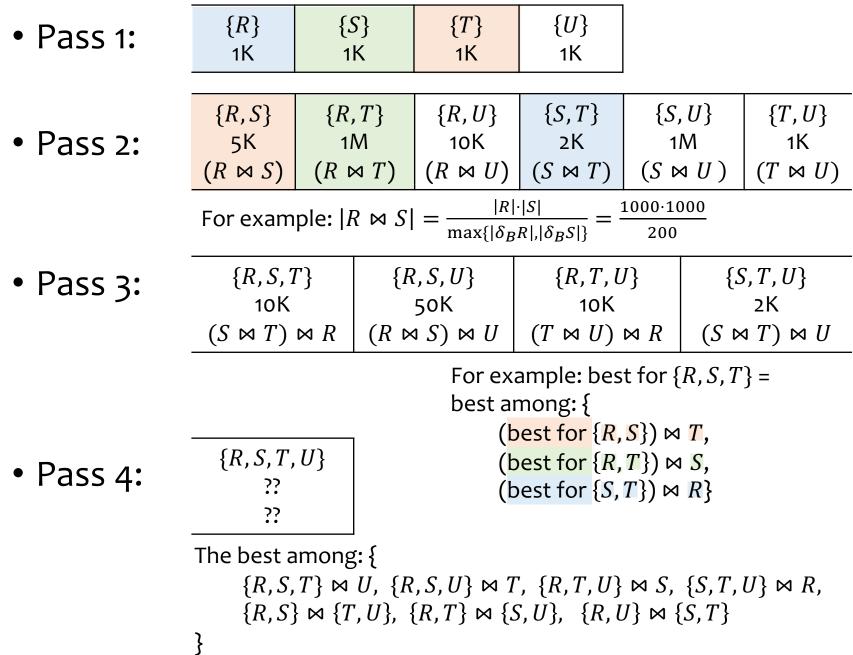
- Generate optimal plans bottom-up
 - Pass 1: Find the best single-table plans (for each table)
 - Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 - ...
 - Pass k: Find the best k-table plans (for each combination of k tables) by combining two smaller best plans found in previous passes
 - •
- Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)

[©]Well, not quite — we will see later

Example of a DP algorithm

- $Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \bowtie U(D, A)$
 - |R| = |S| = |T| = |U| = 1000
 - $|\delta_A R| = 100$, $|\delta_B R| = 200$
 - $|\delta_B S| = 100, |\delta_C S| = 500$
 - $|\delta_C T| = 20$, $|\delta_D T| = 50$
 - $|\delta_D U| = 50$, $|\delta_A U| = 1000$

 $Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \bowtie U(D, A)$



The need for "interesting order"

Example: $R(A, B) \bowtie S(A, C) \bowtie T(A, D)$

- Let's say the best plan for $R \bowtie S$ is hash join (beats sort-merge join)
- But the best overall plan may be sort-merge join *R* and *S*, and then sort-merge join with *T*
 - Subplan of the optimal plan is not optimal!
- How could this happen?
 - The result of the sort-merge join of *R* and *S* is sorted on *A*
 - This is an interesting order that can be exploited by later processing (e.g., join, dup elimination, GROUP BY, ORDER BY, etc.)!

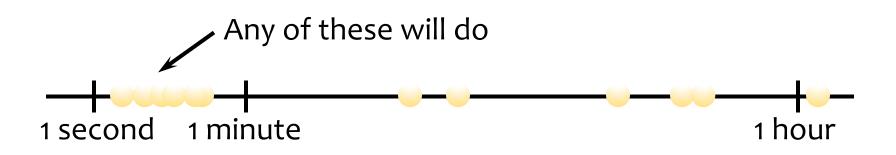
Dealing with interesting orders

When picking the best plan

- Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
- Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan X is better than plan Y if
 - Cost of *X* is lower than *Y*, and
 - Interesting orders produced by *X* "subsume" those produced by *Y*
 - E.g., *Y* sorts output by column *A*, while *X* sorts by *A* or (*A*, *B*)
- Need to keep a set of optimal plans for joining every combination of *k* tables
 - At most one for each interesting order

Summary

- Search space
 - What are the possible equivalent logical plans?
 - What are the possible physical plans? (Lecture 16)
- Search strategy
 - Rule-based strategy
 - Cost-based strategy



A query's trip through the DBMS

