Lecture 17:
Query Processing &
Optimization

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

A query’s trip through the DBMS

SELECT name, uid
SO‘L uery FROM Member, Group
<Query> WHERE Member.gid =
| Group.gid;
S2hWa_
<select-list> | <where-cond> Parse tree
/1 <fr/om-@> N\
" <table> <table> Validator T .
| | ¥ | name, uid
Member Group ’-Og"CC‘l(’ plan ?-/\/lember.gidzcroup.gid
- . X
, Optimizer 7\
PROJ EfT (name, gid) ‘ P ¥ Member Group
MERGE-JOIN (gid) Physical plan

7
SORTED) oo croupy I

SCAN (Member) Result

(Recap) Query optimization

* Why query optimization?

* Search space
* What are the possible equivalent logical plans?
* What are the possible physical plans?

* Search strategy
* Rule-based strategy
* Cost-based strategy

/ Any of these will do
| : —_ —

1second 1 minute

1 hour

(Recap) Logical plan

* Nodes are operators (often relational algebra
operators)

* Apply algebraic equivalences to systematically
transform a plan to new ones

7ITGroup.name

?-User.name:“Bart” A User.uid = Member.uid A Member.gid = Group.gid
X

/ \
X T
N Group Group name
User Member I\/Iember gid = Group.gid

/ Group

X User uid= Member.uid

O name = “Bart” l\/lember

I
User

(Recap) Algebraic equivalences

* Join reordering: X and X are associative and
commutative (except column ordering)

* Convert g,,-X toffrom ,;:
* Merge/split o’s:
* Merge/split r’s:

* Push down/pull up a: (pgr involves only R; ps involves
only S; p and p’ involve R and S)

e Push down m:

L' is the set of columns referenced by p

More complicated examples

7FGroup.name

OI-User.name:“Bart” A User.uid = Member.uid A Member.gid = Group.gid
X

N
PN roup
User Member T[Group name
O-Member gid = Group.gid
/ Group T[Group name
OI-User.uxd = Member.uid
X I\/lember gid = Group.gid
N /
Member Group
O name = “Bart” X User uid = Member.uid
U;er IVlember

Io-name = “Bart”

User

More complicated examples

/ - \
XprB=SB Nrcec=w.c
N N

R(A,B) S(B,C,D) T(A,B,C) W(C,D)

PN
PN AN

S(B,C,D) R(A,B X
N/ () () / \
PN SB,C,D)
R(A,B) g c Tlcp

S(B,C,D) S(B,C,D)

Rule-based query optimization

* Do we need to examine all the logical plans?
* No! We can apply rules to find a “cheaper” logical plan

* Start with a logical plan
* Why? Reduce the size of intermediate results

* Why? Joins are more optimized and have alternate
implementations

From rule-based to cost-based opt.

* Rule-based optimization

* Apply algebraic equivalence to rewrite plans into
cheaper ones

* Cost-based optimization

* Rewrite logical plan to combine “blocks”
as much as possible

* Optimize query block by block
* Enumerate logical plans (already covered)
* Estimate the cost of plans
* Pick a plan with acceptable cost

* Focus: select-project-join blocks

“Selinger”-style query optimization « Patricia Selinger

Cost estimation

http://www.learningresources.com/product/estimation+station.do

10

Cost estimation

Physical plan example: PROJECT (Group.name)

INDEX-N ESTED-LC{)P-JOI N (gid)

Index on Group(gid)
Adex on Member(uid)
What is its input size? INDEX-SCAN (name = “Bart”)
How many tuples with :
name=‘Bart’? ~..IndexonUser(name) . .

* We have: cost estimation for each operator

+ Example: INDEX-NESTED-LOOP-JOIN(uid) takes ppmmopmor
O(B(R) + |R| - (index lookup + record fetch))

e We need: size of intermediate results

Selections with equality predicates

° Q:
* DBMSs typically store the following in the catalog

e Size of R:
e Number of distinct 4 values in R:

* Assumptions
* Values of A4 are uniformly distributed in R

* Selectivity factor of (A = v) is

the probability that any row will satisfy a
predicate

Conjunctive predicates

* Additional assumptions
* (A =u)and (B = v) are independent
* Counterexample: major and advisor

* No “over”-selection
* Counterexample: A is the key

* Reduce total size by all selectivity factors

Negated and disjunctive predicates

. Q:

* Selectivity factor of —p is (1 — selectivity factor of p)

° Q:
. ~ (1 1

Q] = |R| (/|5AR| + /|63R|)?

* No! Tuples satisfying (A = u) and (B = v) are counted twice

* Inclusion-exclusion principle

Range predicates

° Q: UA>UR
* Not enough information!
* Just pick, say, |0] = |R[- '/3

high(R.A) — low(R. A)

l |
* With more information ow | |v | |high
* Largest R.A value: high(R.A) l |
e Smallest R.A value: low(R. A) high(R.A) — v
high(R.A)—
Q] ~ |R| - B

" high(R.A)—low(R.A)

high(R.A)—v
high(R.A)—low(R.A)

* Selectivity factor:

15

Two-way natural join

o Q f—
* Assumption:

* Every tuple in the “smaller” relation (one with fewer
distinct values for the join attribute) joins with some
tuple in the other relation

* Thatis, if [T4R| < |m4S| thenmyR S m,4S
* Certainly not true in general
* But holds in the common case of foreign key joins

* Selectivity factorof R.A=S5.4is

Cost estimation: summary

* Using similar ideas, we can estimate the size of
projection, duplicate elimination, union, difference,
aggregation (with grouping)

* Lots of assumptions and very rough estimation
* Accurate estimate is not needed

* Maybe okay if we overestimate or underestimate
consistently

* May lead to very nasty optimizer “hints”

SELECT * FROM User WHERE pop > 0.9;
SELECT * FROM User WHERE pop > 0.9

Case Study

Data statistics:

« |User| = 1000

« |Member| = 50000

* |Group| = 100

* |mpameUser| =50

e |mygMember| = 500
. ngidMember| = 100
* |mgiaGroup| = 100

PROJECT (Group.name)
|
INDEX-N ESTED-L%)P-JOI N (gid)

Index on Group(gid)

INDEX-N ESTED\-LOOP-JOIN (uid)

Index on Member(uid)
INDEX-SCAN (name = “Bart”’)

|
Index on User(name)

Case Study

PROJECT (Group.name)

L |
Data statistics: INDEX-NESTED-LQOP-JOIN (gid)

* |Member| = 50000 Index on Group(gid)
* |Group| =100 INDEX-NESTED-LOOP-JOIN (uid)

N

TyiqMember| = 500 oo Index on Member(uid)

T[gidMemberl =100 INDEX-SCAN (name = “Bart”)

TgiaGroup| =100 Index on User(name)

Assume that the values of name are uniformly distributed in User

Case Study

PROJECT (Group.name)
|

Data statistics: INDEX-NESTED-LOOP-JOIN (gid)

. |User| = 1000 N

« |Member| = 50000 S —— !QQ'.??S.Q.‘?.Q!TQHPW
 |Group| = 100 INDEX—NESTED LOOP-JOIN (uid) :

* |mpameUser| = 50

e |myuMember| = 500 Index on Member(uid
ut -
. T[gidMemberl =100 INDEX—SCAN (name = “Bart” 50000 rows

* |mgiaGroup| = 100

What is the intermediate join size?

IR| - |S] _ _20-50000 _
" max(|maR], [msS)) max(20,500)

20

Case Study

- PROJ ECT (Group. name)
2000 rows [T Dyl

Data statistics: INDEX-NESTED-LOOP-JOIN (gid)
 |User| = 1000 N :

+ |Member| = 50000 Index on Gr OUP%
* |Group| =100 INDEX—NESTED LOOP-JOIN (uid)

TgmeUser| = 50 TSR <A PP
myigMember| = 500

: — Index on Member(uxdi
ﬂgidMember| =100 INDEX—SCAN (hame = “Bart” 50000 rows

T giqgGroup| = 100 Index on User name
1000 rows

What is the intermediate join size?

IR| - |S] __2000-100 _
" max(|maR], |msS)) max(100,100)

21

Cost-based optimization for
Multi-way equi-joins

Search space is huge

* Huge! / \
* “Bushy” plan example: / \ / \
R, R1 R3 / \

* Just considering different join orders, there are
bushy plans for R; ™ --- ¥ R,

* 30240 forn = 6

* And there are more if we consider:
* Multi-way joins
* Different join methods
* Placement of selection and projection operators

Left-deep plans

|
T
| R:
~
4| R,
v
T R3
R, R4
* Heuristic: consider only “ ”? plans, in which

only the left child can be a join

* Tend to be better than plans of other shapes, because many
join algorithms scan inner (right) relation multiple times—
you will not want it to be a complex subtree

* How many left-deep plans are there for R; ™ - X R,;?

» Significantly fewer, but still lots— 1! (720 forn = 6)

It is @ matter of intermediate join size

* Suppose the natural join operator is computed by
the sort-merge join algorithm

* So, the cost is proportional to the input size and join size

* How to minimize the intermediate join size?

A greedy algorithm

S, S,

* Say selections have been pushed down;i.e., S; = 0, (R;)

* Start with the pair §;, §; with the smallest estimated
size for §; ™ S;

* Repeat until no relation is left:
Pick Sj, from the remaining relations such that the join
of S; and the current result yields an intermediate
result of the smallest size

X ...,Sk,Sl,Sm,
7 N\
Sk

A dynamic programming approach

* Generate optimal plans
* Pass 1: Find the best single-table plans (for each table)

* Pass 2: Find the best two-table plans (for each pair of
tables) by combining best single-table plans

* Pass k: Find the best k-table plans (for each combination
of k tables) by combining two smaller best plans found
In previous passes

 Rationale: Any subplan of an optimal plan must also
be optimal (otherwise, just replace the subplan to
get a better overall plan)
“Well, not quite — we will see later

Example of a DP algorithm

Q R(A,B) x S(B,C) = T(C,D) x U(D, A)
Rl =S| =1T| = |U| = 1000

. |64R| = 100, |65R| = 200

. |165S| = 100, |5:S| = 500

. |6-T| = 20, |5,T| = 50

. |6,U| = 50, |5,U] = 1000

Q:R(A,B) x S(B,C) x T(C,D) x U(D,A)

 Pass 1:

e Pass 2:

* Pass 3:

* Pass 4:

{R} {5} {T} {U}
1K 1K 1K 1K
{R,S} RT}y | (RU} | {ST} {S,U} {T,U}
5K 1M 10K 2K 1M 1K
(R®xS)| (RXT) |[R®xU)|(SNT)| S=xU) | (TxU)
. _ IR|-|S| _1000-1000
For example: |[R x S| = maxSsRLIBAST — 200
(R,S,T} {R,S,U} (R, T, U} (S, T, U}
10K 50K 10K 2K
SXT)XMR | (RXxS) XU | TRU)XR | SXT)xU

{R,S,T,U}
7

279

The best among: {

For example: best for {R,S, T} =
best among: {
(best for{R,S}) = T,
(best for {R,T}) x S,
(best for {S,T}) = R}

(R,S,TY™ U, {R,SUYXT, {RT, Uy xS, {S,T,U} xR,
{R,S} x {T, U}, {R,T} x{S, U}, {R,U}=x{S,T}

The need for “interesting order”

Example: R(A,B) x S(A,C) x T(A4,D)

* Let’s say the best plan for R ™ S is hash join (beats
sort-merge join)
* But the best overall plan may be sort-merge join R

and S, and then sort-merge join with T
* Subplan of the optimal plan is not optimal!

* How could this happen?
* The result of the sort-merge join of R and S is sorted on A

* Thisis an that can be exploited by later

processing (e.g., join, dup elimination, GROUP BY, ORDER
BY, etc.)!

Dealing with interesting orders

When picking the best plan

* Comparing their costs is not enough
* Plans are not totally ordered by cost anymore

* Comparing interesting orders is also needed
* Plans are now partially ordered

* Plan X is better than plan Y if
 Costof XislowerthanV, and

* Interesting orders produced by X “subsume” those produced by Y
* E.g., Y sorts output by column 4, while X sorts by A or (4, B)

* Need to keep a set of optimal plans for joining every
combination of k tables

* At most one for each interesting order

Summary

* Search space
* What are the possible equivalent logical plans?
* What are the possible physical plans?

* Search strategy
* Rule-based strategy
* Cost-based strategy

/ Any of these will do

—+ A - — —

1second 1 minute 1 hour

A query’s trip through the DBMS

SELECT name, uid

SO‘L uery FROM Member, Group
WHERE Member.gid =
<Qu|ery> Group.gid;
S2hWa_

<select-list> | <where-cond> Parse tree

/1 <from-@:> N\ :

) <tabﬁ> <table> Validator

I I ¥ 7i’:name, uid
Member Group Logical plan ?‘Member_g,-dzcmup,g,-d
" X
. Imizer N
PROJECT (ame, g LS
MERGE-JOIN (gid) Physical plan

7
SORTED) oo croupy I

SCAN (Member) Result

33

