
Lecture 17:
Query Processing &

Optimization
CS348 Spring 2025:

Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

A query’s trip through the DBMS

2

Parser

Validator

Optimizer

Executor

Result

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =
 Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Physical plan
PROJECT (name, gid)

MERGE-JOIN (gid)

SCAN (Member)
SCAN (Group)

SORT (gid)

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×

(Recap) Query optimization

• Why query optimization?
• Search space
• What are the possible equivalent logical plans?
• What are the possible physical plans? (Lecture 16)

• Search strategy
• Rule-based strategy
• Cost-based strategy

3

1 second 1 hour1 minute

Any of these will do

(Recap) Logical plan

• Nodes are logical operators (often relational algebra
operators)
• Apply algebraic equivalences to systematically

transform a plan to new ones

4

𝜋Group.name
𝜎User.name=“Bart” ∧ User.uid = Member.uid ∧ Member.gid = Group.gid
×

Member
Group×

User

An equivalent plan: 𝜋Group.name

⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid= Member.uid

𝜎name = “Bart”

(Recap) Algebraic equivalences
• Join reordering: × and ⋈ are associative and

commutative (except column ordering)

• Convert 𝜎!-× to/from ⋈!: 𝜎! 𝑅×𝑆 = 𝑅 ⋈! 𝑆
• Merge/split 𝜎’s: 𝜎!! 𝜎!"𝑅 = 𝜎!!∧!"𝑅
• Merge/split 𝜋’s: 𝜋#$ 𝜋#"𝑅 = 𝜋#!∪#"𝑅
• Push down/pull up 𝜎: (𝑝& involves only 𝑅; 𝑝' involves

only 𝑆; 𝑝 and 𝑝(involve 𝑅 and 𝑆)

 𝜎!∧!#∧!$ 𝑅 ⋈!% 𝑆 = 𝜎!#𝑅 ⋈!∧!% 𝜎!$𝑆
• Push down 𝜋: 𝜋# 𝜎!𝑅 = 𝜋# 𝜎! 𝜋#∪#%𝑅
• 𝐿" is the set of columns referenced by 𝑝

5

More complicated examples

6

𝜋Group.name
𝜎User.name=“Bart” ∧ User.uid = Member.uid ∧ Member.gid = Group.gid
×

Member
Group×

User 𝜋Group.name
𝜎Member.gid = Group.gid
×

Member

Group

×

User

𝜎User.uid = Member.uid

𝜎name = “Bart”

Push down 𝝈
𝜋Group.name
⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid = Member.uid

𝜎name = “Bart”

Convert 𝝈𝒑-× to ⋈𝒑

More complicated examples

7

𝑅(𝐴, 𝐵) 𝑆(𝐵, 𝐶, 𝐷) 𝑇(𝐴, 𝐵, 𝐶) 𝑊(𝐶, 𝐷)

⋈%.'().'

−
⋈*.+(,.+	

𝑅(𝐴, 𝐵)

𝑆(𝐵, 𝐶, 𝐷)

𝑇(𝐴, 𝐵, 𝐶)

⋈

⋈
−

𝜋+,'

𝑆(𝐵, 𝐶, 𝐷)

∪

𝑆(𝐵, 𝐶, 𝐷)

𝑊(𝐶, 𝐷)

⋈
−

𝜋',/
𝑆(𝐵, 𝐶, 𝐷)

𝑅(𝐴, 𝐵)

⋈

Rule-based query optimization

8

• Do we need to examine all the logical plans?
• No! We can apply rules to find a “cheaper” logical plan

• Start with a logical plan
• Push selections/projections down as much as possible
• Why? Reduce the size of intermediate results

• Join smaller relations first and avoid cross product
• Why? Joins are more optimized and have alternate

implementations

• Many other rules to be further exploited…

From rule-based to cost-based opt.

• Rule-based optimization
• Apply algebraic equivalence to rewrite plans into

cheaper ones

• Cost-based optimization
• Rewrite logical plan to combine “blocks”

as much as possible
• Optimize query block by block

• Enumerate logical plans (already covered)
• Estimate the cost of plans
• Pick a plan with acceptable cost

• Focus: select-project-join blocks

9

Patricia Selinger“Selinger”-style query optimization ←

10http://www.learningresources.com/product/estimation+station.do

Cost estimation

Cost estimation

• We have: cost estimation for each operator
• Example: INDEX-NESTED-LOOP-JOIN(uid) takes

O(𝐵 𝑅 + 𝑅 ⋅ index	lookup + record	fetch)
• We need: size of intermediate results

11

Physical plan example:

Input to Join(uid):

Lecture 16

What is its input size?
How many tuples with

name=‘Bart’?

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

Selections with equality predicates

• 𝑄: 𝜎678𝑅
• DBMSs typically store the following in the catalog
• Size of 𝑅: 𝑅
• Number of distinct 𝐴 values in 𝑅: 𝜋0𝑅

• Assumptions
• Values of 𝐴 are uniformly distributed in 𝑅

• 𝑄 ≈ ,& 9&&
• Selectivity factor of 𝐴 = 𝑣 is H1 2!*
• Selectivity: the probability that any row will satisfy a

predicate

12

Conjunctive predicates

• 𝑄: 𝜎67:	∧	<78𝑅
• Additional assumptions
• 𝐴 = 𝑢 and 𝐵 = 𝑣 are independent

• Counterexample: major and advisor
• No “over”-selection

• Counterexample: 𝐴 is the key

• 𝑄 ≈ ,& =&& ⋅ ='&
• Reduce total size by all selectivity factors

13

Negated and disjunctive predicates

• 𝑄: 𝜎6?8𝑅
• 𝑄 ≈ 𝑅 ⋅ 1 − H1 3!*

• Selectivity factor of ¬𝑝 is (1 − selectivity factor of 𝑝)

• 𝑄: 𝜎67:	∨	<78𝑅
• 𝑄 ≈ 𝑅 ⋅ H1 3!* + H1 3"* 	 ?

• No! Tuples satisfying 𝐴 = 𝑢 and 𝐵 = 𝑣 are counted twice

• 𝑄 ≈ 𝑅 ⋅ H1 3!* + H1 3"* − H1 3!* 3"*
• Inclusion-exclusion principle

14

Range predicates

• 𝑄: 𝜎6H8𝑅
• Not enough information!
• Just pick, say, 𝑄 ≈ 𝑅 ⋅ ⁄1 4

• With more information
• Largest R.A value: high 𝑅. 𝐴
• Smallest R.A value: low 𝑅. 𝐴
• 𝑄 ≈ 𝑅 ⋅ 5675 *.0 89

5675 *.0 8:;< *.0

• Selectivity factor: 5675 *.0 89
5675 *.0 8:;< *.0

15

low v high

ℎ𝑖𝑔ℎ 𝑅. 𝐴 − 𝑣

ℎ𝑖𝑔ℎ 𝑅. 𝐴 − 𝑙𝑜𝑤(𝑅. 𝐴)

Two-way natural join

• 𝑄 = 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐴, 𝐶
• Assumption: containment of value sets
• Every tuple in the “smaller” relation (one with fewer

distinct values for the join attribute) joins with some
tuple in the other relation
• That is, if 𝜋!𝑅 ≤ 𝜋!𝑆 then 𝜋!𝑅 ⊆ 𝜋!𝑆

• Certainly not true in general
• But holds in the common case of foreign key joins

• 𝑄 ≈ & ⋅ '
LMN 9&& , 9&'

• Selectivity factor of 𝑅. 𝐴 = 𝑆. 𝐴 is H1 IJK 2!* , 2!,

16

Cost estimation: summary

• Using similar ideas, we can estimate the size of
projection, duplicate elimination, union, difference,
aggregation (with grouping)

• Lots of assumptions and very rough estimation
• Accurate estimate is not needed
• Maybe okay if we overestimate or underestimate

consistently
• May lead to very nasty optimizer “hints”

SELECT * FROM User WHERE pop > 0.9;
SELECT * FROM User WHERE pop > 0.9 AND pop > 0.9;

17

Case Study

18

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

Data statistics:
• 𝑈𝑠𝑒𝑟 = 1000
• 𝑀𝑒𝑚𝑏𝑒𝑟 = 50000
• 𝐺𝑟𝑜𝑢𝑝 = 100
• |𝜋"#$%𝑈𝑠𝑒𝑟| = 50
• 𝜋&'(𝑀𝑒𝑚𝑏𝑒𝑟 = 500
• 𝜋)'(𝑀𝑒𝑚𝑏𝑒𝑟 = 100
• |𝜋)'(𝐺𝑟𝑜𝑢𝑝| = 100

100 rows

1000 rows

50000 rows

Case Study

• Assume that the values of 𝑛𝑎𝑚𝑒 are uniformly distributed in 𝑈𝑠𝑒𝑟
• What is |𝜎"#$%*",#-."𝑈𝑠𝑒𝑟| =	?	

19

Data statistics:
• 𝑈𝑠𝑒𝑟 = 1000
• 𝑀𝑒𝑚𝑏𝑒𝑟 = 50000
• 𝐺𝑟𝑜𝑢𝑝 = 100
• |𝜋"#$%𝑈𝑠𝑒𝑟| = 50
• 𝜋&'(𝑀𝑒𝑚𝑏𝑒𝑟 = 500
• 𝜋)'(𝑀𝑒𝑚𝑏𝑒𝑟 = 100
• |𝜋)'(𝐺𝑟𝑜𝑢𝑝| = 100

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid) 100 rows

1000 rows

50000 rows

Case Study

• What is the intermediate join size?

≈
𝑅 ⋅ 𝑆

max 𝜋!𝑅 , 𝜋!𝑆
=

20 ⋅ 50000
max 20, 500

= 2000

20

Data statistics:
• 𝑈𝑠𝑒𝑟 = 1000
• 𝑀𝑒𝑚𝑏𝑒𝑟 = 50000
• 𝐺𝑟𝑜𝑢𝑝 = 100
• |𝜋"#$%𝑈𝑠𝑒𝑟| = 50
• 𝜋&'(𝑀𝑒𝑚𝑏𝑒𝑟 = 500
• 𝜋)'(𝑀𝑒𝑚𝑏𝑒𝑟 = 100
• |𝜋)'(𝐺𝑟𝑜𝑢𝑝| = 100

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

1000 rows

50000 rows

100 rows

20 rows

Case Study

• What is the intermediate join size?

≈
𝑅 ⋅ 𝑆

max 𝜋!𝑅 , 𝜋!𝑆
=

2000 ⋅ 100
max 100, 100

= 2000

21

Data statistics:
• 𝑈𝑠𝑒𝑟 = 1000
• 𝑀𝑒𝑚𝑏𝑒𝑟 = 50000
• 𝐺𝑟𝑜𝑢𝑝 = 100
• |𝜋"#$%𝑈𝑠𝑒𝑟| = 50
• 𝜋&'(𝑀𝑒𝑚𝑏𝑒𝑟 = 500
• 𝜋)'(𝑀𝑒𝑚𝑏𝑒𝑟 = 100
• |𝜋)'(𝐺𝑟𝑜𝑢𝑝| = 100

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

1000 rows

50000 rows

100 rows

20 rows

2000 rows

2000 rows

Cost-based optimization for
Multi-way equi-joins

22

Search space is huge

• Huge!
• “Bushy” plan example:

• Just considering different join orders, there are
defd !
ef$!

 bushy plans for 𝑅$ ⋈ ⋯ ⋈ 𝑅e
• 30240 for 𝑛 = 6

• And there are more if we consider:
• Multi-way joins
• Different join methods
• Placement of selection and projection operators

23

⋈

𝑅L 𝑅1 𝑅4
𝑅M 𝑅N

⋈ ⋈
⋈

Left-deep plans

• Heuristic: consider only “left-deep” plans, in which
only the left child can be a join
• Tend to be better than plans of other shapes, because many

join algorithms scan inner (right) relation multiple times—
you will not want it to be a complex subtree

• How many left-deep plans are there for 𝑅$ ⋈ ⋯ ⋈ 𝑅e?
• Significantly fewer, but still lots— 𝑛! (720 for 𝑛 = 6)

24

⋈

𝑅L 𝑅1
𝑅4

𝑅M

𝑅N⋈
⋈

⋈

It is a matter of intermediate join size

• Suppose the natural join operator is computed by
the sort-merge join algorithm
• So, the cost is proportional to the input size and join size

• How to minimize the intermediate join size?

25

A greedy algorithm
• 𝑆", … , 𝑆#

• Say selections have been pushed down; i.e., 𝑆! = 𝜎" 𝑅!
• Start with the pair 𝑆$, 𝑆% with the smallest estimated

size for 𝑆$ ⋈ 𝑆%
• Repeat until no relation is left:

Pick 𝑆& from the remaining relations such that the join
of 𝑆&	and the current result yields an intermediate
result of the smallest size

26

Current subplan

… , 𝑆h , 𝑆i , 𝑆j , …
Remaining

relations
to be joined

Pick most efficient join method

⋈
𝑆h

Minimize expected size

A dynamic programming approach

• Generate optimal plans bottom-up
• Pass 1: Find the best single-table plans (for each table)
• Pass 2: Find the best two-table plans (for each pair of

tables) by combining best single-table plans
• …
• Pass 𝑘: Find the best 𝑘-table plans (for each combination

of 𝑘 tables) by combining two smaller best plans found
in previous passes
• …

• Rationale: Any subplan of an optimal plan must also
be optimal (otherwise, just replace the subplan to
get a better overall plan)
FWell, not quite — we will see later

27

Example of a DP algorithm

• 𝑄:𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝐷 ⋈ 𝑈 𝐷, 𝐴
• 𝑅 = 𝑆 = 𝑇 = 𝑈 = 1000
• 𝛿0𝑅 = 100, 𝛿+𝑅 = 200
• 𝛿+𝑆 = 100, 𝛿'𝑆 = 500
• 𝛿'𝑇 = 20, 𝛿/𝑇 = 50
• 𝛿/𝑈 = 50, 𝛿0𝑈 = 1000

28

• Pass 1:

• Pass 2:

• Pass 3:

• Pass 4:

29

{𝑅, 𝑆, 𝑇}
10K

(𝑆 ⋈ 𝑇) ⋈ 𝑅

{𝑅, 𝑆, 𝑈}
50K

(𝑅 ⋈ 𝑆) ⋈ 𝑈

{𝑅, 𝑇, 𝑈}
10K

(𝑇 ⋈ 𝑈) ⋈ 𝑅

{𝑆, 𝑇, 𝑈}
2K

(𝑆 ⋈ 𝑇) ⋈ 𝑈

{𝑅}
1K

{𝑆}
1K

{𝑇}
1K

𝑈
1K

{𝑅, 𝑆}
5K

(𝑅 ⋈ 𝑆)

{𝑅, 𝑇}
1M

(𝑅 ⋈ 𝑇)

{𝑅, 𝑈}
10K

(𝑅 ⋈ 𝑈)

𝑆, 𝑇
2K

(𝑆 ⋈ 𝑇)

𝑆, 𝑈
1M

𝑆 ⋈ 𝑈

{𝑇, 𝑈}
1K

(𝑇 ⋈ 𝑈)

For example: 𝑅 ⋈ 𝑆 = " ⋅|%|
&'({ *!" , *!% }

= -...⋅-...
/..

For example: best for {𝑅, 𝑆, 𝑇} =
best among: {

 (best for 𝑅, 𝑆) ⋈ 𝑇,
 (best for 𝑅, 𝑇) ⋈ 𝑆,
 (best for 𝑆, 𝑇) ⋈ 𝑅}

{𝑅, 𝑆, 𝑇, 𝑈}
??
??

The best among: {
 {𝑅, 𝑆, 𝑇} ⋈ 𝑈, {𝑅, 𝑆, 𝑈} ⋈ 𝑇, {𝑅, 𝑇, 𝑈} ⋈ 𝑆, {𝑆, 𝑇, 𝑈} ⋈ 𝑅,

𝑅, 𝑆 ⋈ 𝑇, 𝑈 , 𝑅, 𝑇 ⋈ 𝑆, 𝑈 , 𝑅, 𝑈 ⋈ 𝑆, 𝑇
}

𝑄: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝐷 ⋈ 𝑈 𝐷, 𝐴

The need for “interesting order”

Example: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐴, 𝐶 ⋈ 𝑇 𝐴, 𝐷
• Let’s say the best plan for 𝑅 ⋈ 𝑆 is hash join (beats

sort-merge join)
• But the best overall plan may be sort-merge join 𝑅

and 𝑆, and then sort-merge join with 𝑇
• Subplan of the optimal plan is not optimal!

• How could this happen?
• The result of the sort-merge join of 𝑅 and 𝑆 is sorted on 𝐴
• This is an interesting order that can be exploited by later

processing (e.g., join, dup elimination, GROUP BY, ORDER
BY, etc.)!

30

Dealing with interesting orders

When picking the best plan
• Comparing their costs is not enough
• Plans are not totally ordered by cost anymore

• Comparing interesting orders is also needed
• Plans are now partially ordered
• Plan 𝑋 is better than plan 𝑌 if

• Cost of 𝑋 is lower than 𝑌, and
• Interesting orders produced by 𝑋 “subsume” those produced by 𝑌

• E.g., 𝑌 sorts output by column 𝐴, while 𝑋 sorts by 𝐴 or 𝐴, 𝐵

• Need to keep a set of optimal plans for joining every
combination of 𝑘 tables
• At most one for each interesting order

31

Summary

• Search space
• What are the possible equivalent logical plans?
• What are the possible physical plans? (Lecture 16)

• Search strategy
• Rule-based strategy
• Cost-based strategy

32

1 second 1 hour1 minute

Any of these will do

A query’s trip through the DBMS

33

Parser

Validator

Optimizer

Executor

Result

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =
 Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Physical plan
PROJECT (name, gid)

MERGE-JOIN (gid)

SCAN (Member)
SCAN (Group)

SORT (gid)

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×

