
Lecture 19:
Transaction

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Outline

• Transactions
• Motivations
• ACID properties

• Isolation
• Different isolation levels
• The lowest isolation level to set
• Serializability

2

Why we need transactions

• A database is a shared resource accessed by many
users and processes concurrently.
• Both queries and modifications

• Not managing this concurrent access to a shared
resource will cause problems (not unlike in
operating systems)
• Problems due to concurrency
• Problems due to failures

3

Problems caused by concurrency

• Inconsistent reads
• If the applications run concurrently, the total balance

returned may be inaccurate

4

UPDATE Accounts
SET Balance = Balance +100
WHERE AccountNum = 9999

SELECT SUM(Balance)
FROM Account

Another concurrency problem

• Lost Updates
• If the applications run concurrently, one of the updates

may be “lost”, and the database may be inconsistent.

5

UPDATE Accounts
SET Balance = Balance – 50
WHERE AccountNum = 9999

UPDATE Accounts
SET Balance = Balance +100
WHERE AccountNum = 9999

Yet another concurrency problem

• Non-Repeatable Reads
• If there are employees in D11 with surnames that begin

with “A”, Application 2’s queries may see them with
different salaries.

6

UPDATE Employee
SET Salary = Salary +1000
WHERE WorkDept = ‘D11’

SELECT * FROM Employee
WHERE WorkDept = ‘D11’

SELECT * FROM Employee
WHERE Lastname like ‘A%’

Problems caused by failures

• Update all account balances at a bank branch.

• What happens if the system crashes while processing
this update?
• What if the system crashes after this update is

processed but before all changes are made
permanent?

7

UPDATE Accounts
SET Balance = Balance * 1.05
WHERE BranchID = 12345

Another failure-related problem

• Transfer money between accounts:

• Problem: If the system fails between these updates,
money may be withdrawn but not redeposited.

8

UPDATE Accounts
SET Balance = Balance – 100
WHERE AccountNum = 8888

UPDATE Accounts
SET Balance = Balance + 100
WHERE AccountNum = 9999

Transactions

• A transaction is a sequence of
database operations (read or write)
• ACID properties of transactions (TXs)
• Atomicity: TXs are either completely

done or not done at all (next lecture)
• Consistency: TXs should leave the

database in a consistent state
• Isolation: TXs must behave as if they

execute in isolation (this-next lecture)
• Durability: Effects of committed TXs are

resilient against failures (next lecture)

9

Jim Gray, Turing Award 1998,
who coined this term (as
well as data cube and many
other things)

-- Begins implicitly
SELECT …;
UPDATE …;
ROLLBACK | COMMIT;

Outline

• Overview of Transactions
• Motivations
• ACID properties

• Isolation
• Different isolation levels
• The lowest isolation level to set
• Serializability

10

Different Isolation Levels

11

Isolation Levels in SQL
Standard

Read Uncommitted
Read Committed
Repeatable Read

Serializable

Stronger Consistency

Higher Overheads

Less Concurrency

Weaker Consistency

Lower Overheads

More Concurrency

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
BEGIN TRANSACTION;
SELECT * FROM Order;
…
COMMIT TRANSACTION

READ UNCOMMITTED

• Can read “dirty” data
• A data item is dirty if it is written by an uncommitted

transaction

• Problem: What if the transaction that wrote the
dirty data eventually aborts?
• Example: wrong average
• -- T1: -- T2:

UPDATE User
SET pop = 0.99
WHERE uid = 142; SELECT AVG(pop)
 FROM User;
ROLLBACK;
 COMMIT;

12

READ COMMITTED

• No dirty reads, but non-repeatable reads possible
• Reading the same data item twice sees different values

• Example: different averages
• -- T1: -- T2:

 SELECT AVG(pop)
 FROM User;
UPDATE User
SET pop = 0.99
WHERE uid = 142;
COMMIT;
 SELECT AVG(pop)
 FROM User;
 COMMIT;

13

REPEATABLE READ

• Reads are repeatable, but may see phantoms
• Reading the same data item twice still see the same value
• But some new data item may appear

• Example: different average (still!)
• -- T1: -- T2:

 SELECT AVG(pop)
 FROM User;
INSERT INTO User
VALUES(789, ‘Nelson’,10, 0.1);
COMMIT;
 SELECT AVG(pop)
 FROM User;
 COMMIT;

14

SQL: set isolation levels

• Syntax: At the beginning of a transaction,
SET TRANSACTION ISOLATION LEVEL isolation_level
[READ ONLY | READ WRITE];
• READ UNCOMMITTED can only be READ ONLY
• Update/Insertion/deletion query cannot have READ

UNCOMMITED

• PostgreSQL defaults to READ COMMITTED
15

Isolation level/anomaly Dirty reads Non-repeatable reads Phantoms

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Impossible Possible Possible

REPEATABLE READ Impossible Impossible Possible

SERIALIZABLE Impossible Impossible Impossible

The lowest isolation level to set?

• Consider other possible concurrent transactions
• Does not do any reads
• No read concern
• Lowest isolation level: read uncommitted

16

INSERT INTO Order
VALUES (o3,10)
COMMIT;

Isolation level Possible anomalies

READ UNCOMMITTED No Dirty reads

READ COMMITTED No unrepeatable reads

REPEATABLE READ No phantoms

SERIALIZABLE No

The lowest isolation level to set?

• Consider other possible concurrent transactions
• Assume each table is an object
• It reads User only once, i.e. read(User), write(User)
• For example, another transaction is updating uid
• Lowest isolation level: read committed

17

UPDATE User
SET pop = 0.99
WHERE uid = 142;
COMMIT;

Isolation level Possible anomalies

READ UNCOMMITTED Dirty reads

READ COMMITTED No unrepeatable reads

REPEATABLE READ No phantoms

SERIALIZABLE No

The lowest isolation level to set?

• Consider other possible concurrent transactions
• Assume each table is an object
• It reads User only once, i.e., Read(User)
• For example, another transaction is updating pop
• Lowest isolation level: read committed

18

Isolation level Possible anomalies

READ UNCOMMITTED Dirty reads

READ COMMITTED No unrepeatable reads

REPEATABLE READ No phantoms

SERIALIZABLE No

SELECT AVG(pop)
FROM User;
COMMIT;

The lowest isolation level to set?

• Consider other possible concurrent transactions
• Assume each table is an object
• It reads User twice: READ(User), READ(User)
• For example, another transaction is inserting/deleting a

row to User
• Lowest isolation level: serializable

19

Isolation level Possible anomalies

READ UNCOMMITTED Dirty reads

READ COMMITTED Unrepeatable reads

REPEATABLE READ Phantoms

SERIALIZABLE No

SELECT AVG(pop)
FROM User;

SELECT MAX(pop)
FROM User;
COMMIT;

Outline

• Transactions
• Motivations
• Properties: ACID

• Isolation
• Different isolation levels
• The lowest isolation level to set
• Serializability:

• Serial executions of T1 and T2 definitely prevent all anomalies.
Can we run T1 and T2 concurrently and achieve the same serial
effect?

20

Execution histories of Transactions

• A transaction is an ordered sequence of read or
write operations on the database, followed by
abort or commit.
• Database is a set of independent data items x, y, z etc.
• T = {read(x), write(y), read(z), write(z), write(x), commit}

• An execution history over a set of transactions
𝑇!…𝑇" is an interleaving of the operations of
𝑇!…𝑇" in which the operation ordering imposed by
each transaction is preserved.
• Transactions interact with each other only via reads and

writes of the same date item
21

Examples for valid execution history

• 𝑇! = {𝑤! 𝑥 , 𝑤! 𝑦 , 𝑐!}, 𝑇# = {𝑟# 𝑥 , 𝑟# 𝑦 , 𝑐#}

• 𝐻$ = 𝑤! 𝑥 𝑟# 𝑥 𝑤! 𝑦 𝑟# 𝑦 𝑐!𝑐#

• 𝐻% = 𝑤! 𝑥 𝑤! 𝑦 𝑐!𝑟# 𝑥 𝑟# 𝑦 𝑐#

• 𝐻& = 𝑤! 𝑥 𝑟# 𝑥 𝑟#[𝑦]𝑤! 𝑦 𝑐!𝑐#

• 𝐻' = 𝑟# 𝑥 𝑟# 𝑦 𝑐# 𝑤! 𝑥 𝑤! 𝑦 𝑐!

22

Examples for valid execution history

• 𝑇! = {𝑤! 𝑥 , 𝑤! 𝑦 , 𝑐!}, 𝑇# = { 𝑟# 𝑥 , 𝑟# 𝑦 , 𝑐# }

23

𝑇! 𝑇#

w1(x)
 r2(x)
w1(y)
 r2(y)
c1
 c2

𝐻$ 𝐻% 𝐻& 𝐻'

𝑇! 𝑇#

w1(x)
w1(y)
c1
 r2(x)
 r2(y)
 c2

𝑇! 𝑇#

w1(x)
 r2(x)
 r2(y)
w1(y)
c1
 c2

𝑇! 𝑇#

 r2(x)
 r2(y)
 c2
w1(x)
w1(y)
c1

Serial execution histories

• 𝑇! = {𝑤! 𝑥 , 𝑤! 𝑦 , c!}, 𝑇# = { 𝑟# 𝑥 , 𝑟# 𝑦 , 𝑐# }

24

𝑇! 𝑇#

w1(x)
 r2(x)
w1(y)
 r2(y)
c1
 c2

𝐻$ 𝐻% 𝐻& 𝐻'

𝑇! 𝑇#

w1(x)
w1(y)
c1
 r2(x)
 r2(y)
 c2

𝑇! 𝑇#

w1(x)
 r2(x)
 r2(y)
w1(y)
c1
 c2

𝑇! 𝑇#

 r2(x)
 r2(y)
 c2
w1(x)
w1(y)
c1

no interleaving
operations from

different transactions

Equivalent execution histories
• 𝐻$ is “equivalent” to 𝐻% (a serial execution)
• x=3, y=1 before T1 and T2

25

𝑇! 𝑇#

w1(x)
 r2(x)
w1(y)
 r2(y)
c1
 c2

𝐻$ 𝐻%

𝑇! 𝑇#

w1(x)
w1(y)
c1
 r2(x)
 r2(y)
 c2

Write 4 Write 4
Write 5

Write 5

Read 4
Read 5

Read 4

Read 5

𝑇! sees all the updates by 𝑇"
• 𝑇! reads x written by 𝑇"
• 𝑇! reads y written by 𝑇"

Equivalent execution histories
• 𝐻& is not “equivalent” to 𝐻% (a serial execution)
• x=3, y=1 before T1 and T2

26

𝑇! 𝑇#

w1(x)
w1(y)
c1
 r2(x)
 r2(y)
 c2

𝑇! 𝑇#

w1(x)
 r2(x)
 r2(y)
w1(y)
c1
 c2

𝐻% 𝐻&

Write 4
Write 5

Read 1

Read 5

Write 4

Write 5Read 4

Read 4

𝑇! reads different
y in 𝐻# as in 𝐻$

Equivalence of execution histories

• Two operations conflict if
• they belong to different transactions,
• they operate on the same data item, and
• at least one of the operations is write

• two types of conflicts: read-write and write-write

• Two execution histories are (conflict) equivalent if
• they are over the same set of transactions
• the ordering of each pair of conflicting operations is the

same in each history

27

Example

• Are these execution histories conflict equivalent?
• 𝐻! = 𝑤" 𝑥 𝑟# 𝑥 𝑤" 𝑦 𝑟# 𝑦 𝑐"𝑐#
• 𝐻$ = 𝑤" 𝑥 𝑤" 𝑦 𝑟# 𝑥 𝑟#[𝑦]𝑐"𝑐#

• Check if they are over the same set of transactions
• 𝑇" = {𝑤" 𝑥 ,𝑤" 𝑦 , 𝑐"}, 𝑇# = {𝑟# 𝑥 , 𝑟# 𝑦 , 𝑐#}

• Check if all conflicting pairs have the same order

28

Conflicting pairs 𝐻% 𝐻#
𝑤" 𝑥 , 𝑟! 𝑥 < <

𝑤" 𝑦 , 𝑟! 𝑦 < <

In class exercise
Are these execution histories conflict equivalent?
• 𝐻!: 𝑟" 𝑥 𝑟# 𝑥 𝑤$ 𝑦 𝑟% 𝑢 𝑤$ 𝑧 𝑟" 𝑦 𝑟#[𝑢]𝑟% 𝑧 𝑤% 𝑧 𝑟# 𝑧 𝑟" 𝑧 𝑤#[𝑦]
• 𝐻&: 𝑟" 𝑥 𝑤$ 𝑦 𝑟# 𝑥 𝑟% 𝑢 𝑟" 𝑦 𝑟#[𝑢]𝑟% 𝑧 𝑤% 𝑧 𝑤$ 𝑧 𝑟" 𝑧 𝑟# 𝑧 𝑤#[𝑦]

29

• Check if they are
over the same set of
transactions
{𝑟" 𝑥 𝑟" 𝑦 𝑟" 𝑧 },
{𝑟# 𝑢 𝑟# 𝑧 𝑤# 𝑧 },
{𝑟% 𝑥 𝑟%[𝑢] 𝑟% 𝑧 𝑤%[𝑦]},
{𝑤& 𝑦 𝑤& 𝑧 }

• Check if all conflicting
pairs have the same order

In class exercise
What are the conflicting pairs in𝐻/?
• 𝐻!: 𝑟" 𝑥 𝑟# 𝑥 𝑤$ 𝑦 𝑟% 𝑢 𝑤$ 𝑧 𝑟" 𝑦 𝑟#[𝑢]𝑟% 𝑧 𝑤% 𝑧 𝑟# 𝑧 𝑟" 𝑧 𝑤#[𝑦]

For x: no conflicts
For y: w4[y], r1[y], w3[y]
• 𝑤& 𝑦 < 𝑟" 𝑦
• 𝑤& 𝑦 < w' 𝑦
• 𝑟" 𝑦 < w' 𝑦

30

For z: w4[z], r2[z], w2[z], r3[z], r1[z]
• 𝑤& 𝑧 < 𝑟! 𝑧
• 𝑤& 𝑧 < 𝑤! 𝑧
• 𝑤& 𝑧 < 𝑟' 𝑧
• 𝑤& 𝑧 < 𝑟" 𝑧
• 𝑟! 𝑧 , 𝑤! 𝑧 are not, as they are from the

same transactions
• w! 𝑧 < 𝑟' 𝑧
• w! 𝑧 < 𝑟" 𝑧

In class exercise
Are these execution histories conflict equivalent?
• 𝐻!: 𝑟" 𝑥 𝑟# 𝑥 𝑤$ 𝑦 𝑟% 𝑢 𝑤$ 𝑧 𝑟" 𝑦 𝑟#[𝑢]𝑟% 𝑧 𝑤% 𝑧 𝑟# 𝑧 𝑟" 𝑧 𝑤#[𝑦]
• 𝐻&: 𝑟" 𝑥 𝑤$ 𝑦 𝑟# 𝑥 𝑟% 𝑢 𝑟" 𝑦 𝑟#[𝑢]𝑟% 𝑧 𝑤% 𝑧 𝑤$ 𝑧 𝑟" 𝑧 𝑟# 𝑧 𝑤#[𝑦]

31

Conflicting pairs 𝐻(𝐻)
𝑤& 𝑦 , 𝑟" 𝑦 < <

𝑤& 𝑦 ,w' 𝑦 < <

… < <

𝑤& 𝑧 , 𝑤! 𝑧 < >

• Check if they are
over the same set of
transactions
{𝑟" 𝑥 𝑟" 𝑦 𝑟" 𝑧 },
{𝑟# 𝑢 𝑟# 𝑧 𝑤# 𝑧 },
{𝑟% 𝑥 𝑟%[𝑢] 𝑟% 𝑧 𝑤%[𝑦]},
{𝑤& 𝑦 𝑤& 𝑧 }

• Check if all conflicting
pairs have the same order

Serializable

• A history 𝐻 is said to be (conflict) serializable if there is
some serial history 𝐻′ (conflict) equivalent to 𝐻.

32

𝑇! 𝑇#

w1(x)
 r2(x)
w1(y)
 r2(y)
c1
 c2

𝑇! 𝑇#

w1(x)
 r2(x)
 r2(y)
w1(y)
c1
 c2

𝐻$ = 𝐻% 𝐻&

Serializable

• Serialization graph (𝑉, 𝐸) for history 𝐻:
• 𝑉 = {𝑇: 	𝑇 is a committed transaction in 𝐻}
• 𝐸 = {𝑇' → 𝑇(: ∃	𝑜' ∈ 𝑇' and	𝑜(∈ 𝑇(conflict; and 𝑜' < 𝑜(}

• A history is serializable if and only if its serialization
graph is acyclic (i.e., no cycles)

33

Two operations conflict if
• they belong to different transactions;
• they operate on the same data item;
• at least one of the operations is write

Example

• Example:𝐻$ = 𝑤! 𝑥 𝑟# 𝑥 𝑤! 𝑦 𝑟#[𝑦]𝑐!𝑐#

34

𝑇" 𝑇#

𝑇! 𝑇#

w1(x)
 r2(x)
w1(y)
 r2(y)
c1
 c2

𝐻$

𝑤" 𝑥 and 𝑟# 𝑥 conflict, and 𝑤" 𝑥 < 𝑟# 𝑥
𝑤" 𝑦 and 𝑟#[𝑦] conflict, and 𝑤" 𝑦 < 𝑟# 𝑦

no cycles,
so serializable

Example

• Example: 𝐻& = 𝑤! 𝑥 𝑟# 𝑥 𝑟#[𝑦]𝑤! 𝑦 c!c#

35

𝑇" 𝑇# Not serializable

𝐻&

𝑇! 𝑇#

w1(x)
 r2(x)
 r2(y)
w1(y)
c1
 c2

𝑤" 𝑥 and 𝑟# 𝑥 conflict, and 𝑤" 𝑥 < 𝑟# 𝑥 ;
𝑤" 𝑦 and 𝑟#[𝑦] conflict, and 𝑟#[𝑦] < 𝑤" 𝑦

In class exercise
Is the following execution history serializable?
• 𝑟! 𝑥 𝑟" 𝑥 𝑤# 𝑦 𝑟$ 𝑢 𝑤# 𝑧 𝑟! 𝑦 𝑟"[𝑢]𝑟$ 𝑧 𝑤$ 𝑧 𝑟" 𝑧 𝑟! 𝑧 𝑤"[𝑦]

• Conflicting pairs:
• Related to x: no conflicting pairs, as all are reads
• Related to y: w4[y], r1[y], w3[y]

• 𝑤& 𝑦 < 𝑟" 𝑦 T4 à T1
• 𝑤& 𝑦 < w' 𝑦 T4 à T3
• 𝑟" 𝑦 < w' 𝑦 T1 à T3

• Related to z: w4[z], r2[z], w2[z], r3[z], r1[z]
• 𝑤& 𝑧 < 𝑟! 𝑧 T4 à T2
• 𝑤& 𝑧 < 𝑤! 𝑧 T4 à T2
• 𝑤& 𝑧 < 𝑟' 𝑧 T4 à T3
• 𝑤& 𝑧 < 𝑟" 𝑧 T4 à T1
• 𝑟! 𝑧 , 𝑤! 𝑧 are not, as they are from the same transactions
• w! 𝑧 < 𝑟' 𝑧 T2 à T3
• w! 𝑧 < 𝑟" 𝑧 T2 à T1

36

𝑇! 𝑇"

𝑇# 𝑇$

In class exercise

Is the following execution history serializable?
𝑟" 𝑥 𝑟% 𝑥 𝑤& 𝑦 𝑟# 𝑢 𝑤& 𝑧 𝑟" 𝑦 𝑟%[𝑢]𝑟# 𝑧 𝑤# 𝑧 𝑟% 𝑧 𝑟" 𝑧 𝑤%[𝑦]

• No cycles in this serialization graph
• Topological sort: T4 -> T2 -> T1->T3

• The history above is (conflict) equivalent to
𝑤& 𝑦 𝑤& 𝑧 𝑟# 𝑢 𝑟# 𝑧 𝑤# 𝑧 𝑟" 𝑥 𝑟" 𝑦 𝑟" 𝑧 𝑟% 𝑥 𝑟%[𝑢]𝑟% 𝑧 𝑤%[𝑦]

37

𝑇! 𝑇"

𝑇# 𝑇$

Summary

• Transactions
• Properties: ACID

• Isolation
• Different isolation levels
• The lowest isolation level to set
• Serializability

38

Isolation level/anomaly Dirty reads Non-repeatable
reads

Phantoms

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Impossible Possible Possible

REPEATABLE READ Impossible Impossible Possible

SERIALIZABLE Impossible Impossible Impossible

