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Instructor: Xiao Hu
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Outline

• Transactions
• Motivations
• ACID properties

• Isolation
• Different isolation levels
• The lowest isolation level to set
• Serializability 
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Why we need transactions

• A database is a shared resource accessed by many 
users and processes concurrently.
• Both queries and modifications

• Not managing this concurrent access to a shared 
resource will cause problems (not unlike in 
operating systems)
• Problems due to concurrency
• Problems due to failures

3



Problems caused by concurrency

• Inconsistent reads
• If the applications run concurrently, the total balance 

returned may be inaccurate
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UPDATE Accounts
SET Balance = Balance +100
WHERE AccountNum = 9999

SELECT SUM(Balance)
FROM Account



Another concurrency problem

• Lost Updates
• If the applications run concurrently, one of the updates 

may be “lost”, and the database may be inconsistent.
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UPDATE Accounts
SET Balance = Balance – 50
WHERE AccountNum = 9999

UPDATE Accounts
SET Balance = Balance +100
WHERE AccountNum = 9999



Yet another concurrency problem

• Non-Repeatable Reads 
• If there are employees in D11 with surnames that begin 

with “A”, Application 2’s queries may see them with 
different salaries.
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UPDATE Employee
SET Salary = Salary +1000
WHERE WorkDept = ‘D11’

SELECT * FROM Employee
WHERE WorkDept = ‘D11’

SELECT * FROM Employee
WHERE Lastname like ‘A%’



Problems caused by failures

• Update all account balances at a bank branch.

• What happens if the system crashes while processing 
this update?
• What if the system crashes after this update is 

processed but before all changes are made 
permanent? 
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UPDATE Accounts
SET Balance = Balance * 1.05
WHERE BranchID = 12345



Another failure-related problem 

• Transfer money between accounts:

• Problem: If the system fails between these updates, 
money may be withdrawn but not redeposited.
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UPDATE Accounts
SET Balance = Balance – 100
WHERE AccountNum = 8888

UPDATE Accounts
SET Balance = Balance + 100
WHERE AccountNum = 9999



Transactions

• A transaction is a sequence of 
database operations (read or write)
• ACID properties of transactions (TXs)
• Atomicity: TXs are either completely 

done or not done at all (next lecture)
• Consistency: TXs should leave the 

database in a consistent state
• Isolation: TXs must behave as if they 

execute in isolation (this-next lecture)
• Durability: Effects of committed TXs are 

resilient against failures (next lecture)
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Jim Gray, Turing Award 1998, 
who coined this term (as 
well as data cube and many 
other things)

-- Begins implicitly
SELECT …;
UPDATE …;
ROLLBACK | COMMIT;



Outline

• Overview of Transactions
• Motivations
• ACID properties

• Isolation
• Different isolation levels
• The lowest isolation level to set
• Serializability 
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Different Isolation Levels
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Isolation Levels in SQL 
Standard

Read Uncommitted
Read Committed
Repeatable Read

Serializable

Stronger Consistency

Higher Overheads

Less Concurrency

Weaker Consistency

Lower Overheads

More Concurrency

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ; 
BEGIN TRANSACTION; 
SELECT * FROM Order; 
…
COMMIT TRANSACTION



READ UNCOMMITTED

• Can read “dirty” data
• A data item is dirty if it is written by an uncommitted 

transaction

• Problem: What if the transaction that wrote the 
dirty data eventually aborts?
• Example: wrong average
• -- T1:    -- T2:

UPDATE User
SET pop = 0.99
WHERE uid = 142;  SELECT AVG(pop)
     FROM User;
ROLLBACK;
     COMMIT;
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READ COMMITTED

• No dirty reads, but non-repeatable reads possible
• Reading the same data item twice sees different values

• Example: different averages
• -- T1:    -- T2:

     SELECT AVG(pop)
     FROM User;
UPDATE User
SET pop = 0.99
WHERE uid = 142;
COMMIT;
     SELECT AVG(pop) 
                 FROM User;
     COMMIT;
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REPEATABLE READ

• Reads are repeatable, but may see phantoms
• Reading the same data item twice still see the same value
• But some new data item may appear

• Example: different average (still!)
• -- T1:    -- T2:

     SELECT AVG(pop)
     FROM User;
INSERT INTO User
VALUES(789, ‘Nelson’,10, 0.1);
COMMIT;
     SELECT AVG(pop) 
                 FROM User;
     COMMIT;
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SQL: set isolation levels

• Syntax: At the beginning of a transaction,
SET TRANSACTION ISOLATION LEVEL isolation_level 
[READ ONLY | READ WRITE];
• READ UNCOMMITTED can only be READ ONLY
• Update/Insertion/deletion query cannot have READ 

UNCOMMITED

• PostgreSQL defaults to READ COMMITTED
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Isolation level/anomaly Dirty reads Non-repeatable reads Phantoms

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Impossible Possible Possible

REPEATABLE READ Impossible Impossible Possible

SERIALIZABLE Impossible Impossible Impossible



The lowest isolation level to set?

• Consider other possible concurrent transactions
• Does not do any reads
• No read concern
• Lowest isolation level: read uncommitted
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INSERT INTO Order
VALUES (o3,10) 
COMMIT;

Isolation level Possible anomalies

READ UNCOMMITTED No Dirty reads

READ COMMITTED No unrepeatable reads

REPEATABLE READ No phantoms

SERIALIZABLE No



The lowest isolation level to set?

• Consider other possible concurrent transactions
• Assume each table is an object 
• It reads User only once, i.e. read(User), write(User)
• For example, another transaction is updating uid
• Lowest isolation level: read committed
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UPDATE User
SET pop = 0.99
WHERE uid = 142;
COMMIT;

Isolation level Possible anomalies

READ UNCOMMITTED Dirty reads

READ COMMITTED No unrepeatable reads

REPEATABLE READ No phantoms

SERIALIZABLE No



The lowest isolation level to set?

• Consider other possible concurrent transactions
• Assume each table is an object 
• It reads User only once, i.e., Read(User)
• For example, another transaction is updating pop
• Lowest isolation level: read committed
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Isolation level Possible anomalies

READ UNCOMMITTED Dirty reads

READ COMMITTED No unrepeatable reads

REPEATABLE READ No phantoms

SERIALIZABLE No

SELECT AVG(pop)
FROM User;
COMMIT;



The lowest isolation level to set?

• Consider other possible concurrent transactions
• Assume each table is an object 
• It reads User twice: READ(User), READ(User)
• For example, another transaction is inserting/deleting a 

row to User
• Lowest isolation level: serializable
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Isolation level Possible anomalies

READ UNCOMMITTED Dirty reads

READ COMMITTED Unrepeatable reads

REPEATABLE READ Phantoms

SERIALIZABLE No

SELECT AVG(pop)
FROM User;

SELECT MAX(pop)
FROM User;
COMMIT;



Outline

• Transactions
• Motivations
• Properties: ACID

• Isolation
• Different isolation levels
• The lowest isolation level to set
• Serializability:

• Serial executions of T1 and T2 definitely prevent all anomalies.
Can we run T1 and T2 concurrently and achieve the same serial 
effect?
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Execution histories of Transactions

• A transaction is an ordered sequence of read or
write operations on the database, followed by
abort or commit.
• Database is a set of independent data items x, y, z etc.
• T = {read(x), write(y), read(z), write(z), write(x), commit}

• An execution history over a set of transactions 
𝑇!…𝑇" is an interleaving of the operations of 
𝑇!…𝑇" in which the operation ordering imposed by 
each transaction is preserved.
• Transactions interact with each other only via reads and 

writes of the same date item
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Examples for valid execution history

• 𝑇! = {𝑤! 𝑥 , 𝑤! 𝑦 , 𝑐!}, 𝑇# = {𝑟# 𝑥 , 𝑟# 𝑦 , 𝑐#}

• 𝐻$ = 𝑤! 𝑥 𝑟# 𝑥 𝑤! 𝑦 𝑟# 𝑦 𝑐!𝑐#

• 𝐻% = 𝑤! 𝑥 𝑤! 𝑦 𝑐!𝑟# 𝑥 𝑟# 𝑦 𝑐#

• 𝐻& = 𝑤! 𝑥 𝑟# 𝑥 𝑟#[𝑦]𝑤! 𝑦 𝑐!𝑐#

• 𝐻' = 𝑟# 𝑥 𝑟# 𝑦 𝑐# 𝑤! 𝑥 𝑤! 𝑦 𝑐!
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Examples for valid execution history

• 𝑇! = {𝑤! 𝑥 , 𝑤! 𝑦 , 𝑐!}, 𝑇# = { 𝑟# 𝑥 , 𝑟# 𝑦 , 𝑐# }
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𝑇!    𝑇#

w1(x)
 r2(x)
w1(y) 
 r2(y)
c1 
 c2

𝐻$ 𝐻% 𝐻& 𝐻'

𝑇!    𝑇#

w1(x)
w1(y) 
c1
 r2(x)
 r2(y) 
 c2

𝑇!    𝑇#

w1(x)
 r2(x)
 r2(y) 
w1(y) 
c1
 c2

𝑇!    𝑇#

 r2(x)
 r2(y) 
 c2
w1(x)
w1(y) 
c1



Serial execution histories

• 𝑇! = {𝑤! 𝑥 , 𝑤! 𝑦 , c!}, 𝑇# = { 𝑟# 𝑥 , 𝑟# 𝑦 , 𝑐# }

24

𝑇!    𝑇#

w1(x)
 r2(x)
w1(y) 
 r2(y)
c1 
 c2

𝐻$ 𝐻% 𝐻& 𝐻'

𝑇!    𝑇#

w1(x)
w1(y) 
c1
 r2(x)
 r2(y) 
 c2

𝑇!    𝑇#

w1(x)
 r2(x)
 r2(y) 
w1(y) 
c1
 c2

𝑇!    𝑇#

 r2(x)
 r2(y) 
 c2
w1(x)
w1(y) 
c1

no interleaving 
operations from 

different transactions



Equivalent execution histories
• 𝐻$  is “equivalent” to 𝐻% (a serial execution)
• x=3, y=1 before T1 and T2

25

𝑇!    𝑇#

w1(x)
 r2(x)
w1(y) 
 r2(y)
c1 
 c2

𝐻$ 𝐻%

𝑇!    𝑇#

w1(x)
w1(y) 
c1
 r2(x)
 r2(y) 
 c2

Write 4 Write 4
Write 5

Write 5

Read 4
Read 5

Read 4

Read 5

𝑇! sees all the updates by 𝑇"
• 𝑇! reads x written by 𝑇"
• 𝑇! reads y written by 𝑇"



Equivalent execution histories
• 𝐻&  is not “equivalent” to 𝐻% (a serial execution)
• x=3, y=1 before T1 and T2
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𝑇!    𝑇#

w1(x)
w1(y) 
c1
 r2(x)
 r2(y) 
 c2

𝑇!    𝑇#

w1(x)
 r2(x)
 r2(y) 
w1(y) 
c1
 c2

𝐻% 𝐻&

Write 4
Write 5

Read 1

Read 5

Write 4

Write 5Read 4

Read 4

𝑇! reads different 
y in 𝐻# as in 𝐻$



Equivalence of execution histories

• Two operations conflict if
• they belong to different transactions,
• they operate on the same data item, and
• at least one of the operations is write

• two types of conflicts: read-write and write-write

• Two execution histories are (conflict) equivalent if
• they are over the same set of transactions
• the ordering of each pair of conflicting operations is the 

same in each history
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Example

• Are these execution histories conflict equivalent?
• 𝐻! = 𝑤" 𝑥 𝑟# 𝑥 𝑤" 𝑦 𝑟# 𝑦 𝑐"𝑐#
• 𝐻$ = 𝑤" 𝑥 𝑤" 𝑦 𝑟# 𝑥 𝑟#[𝑦]𝑐"𝑐#

• Check if they are over the same set of transactions
• 𝑇" = {𝑤" 𝑥 ,𝑤" 𝑦 , 𝑐"}, 𝑇# = {𝑟# 𝑥 , 𝑟# 𝑦 , 𝑐#}

• Check if all conflicting pairs have the same order
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Conflicting pairs 𝐻% 𝐻#
𝑤" 𝑥 , 𝑟! 𝑥 < <

𝑤" 𝑦 , 𝑟! 𝑦 < <



In class exercise
Are these execution histories conflict equivalent?
• 𝐻!: 𝑟" 𝑥 𝑟# 𝑥 𝑤$ 𝑦 𝑟% 𝑢 𝑤$ 𝑧 𝑟" 𝑦 𝑟#[𝑢]𝑟% 𝑧 𝑤% 𝑧 𝑟# 𝑧 𝑟" 𝑧 𝑤#[𝑦]
• 𝐻&: 𝑟" 𝑥 𝑤$ 𝑦 𝑟# 𝑥 𝑟% 𝑢 𝑟" 𝑦 𝑟#[𝑢]𝑟% 𝑧 𝑤% 𝑧 𝑤$ 𝑧 𝑟" 𝑧 𝑟# 𝑧 𝑤#[𝑦]
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• Check if they are 
over the same set of 
transactions
{𝑟" 𝑥 𝑟" 𝑦 𝑟" 𝑧 }, 
{𝑟# 𝑢 𝑟# 𝑧 𝑤# 𝑧 }, 
{𝑟% 𝑥 𝑟%[𝑢] 𝑟% 𝑧 𝑤%[𝑦]}, 
{𝑤& 𝑦 𝑤& 𝑧 }

• Check if all conflicting 
pairs have the same order



In class exercise
What are the conflicting pairs in𝐻/?
• 𝐻!: 𝑟" 𝑥 𝑟# 𝑥 𝑤$ 𝑦 𝑟% 𝑢 𝑤$ 𝑧 𝑟" 𝑦 𝑟#[𝑢]𝑟% 𝑧 𝑤% 𝑧 𝑟# 𝑧 𝑟" 𝑧 𝑤#[𝑦]

For x: no conflicts
For y: w4[y], r1[y], w3[y]
• 𝑤& 𝑦 < 𝑟" 𝑦
• 𝑤& 𝑦 < w' 𝑦
• 𝑟" 𝑦 < w' 𝑦
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For z: w4[z], r2[z], w2[z], r3[z], r1[z]
• 𝑤& 𝑧 < 𝑟! 𝑧
• 𝑤& 𝑧 < 𝑤! 𝑧
• 𝑤& 𝑧 < 𝑟' 𝑧
• 𝑤& 𝑧 < 𝑟" 𝑧
• 𝑟! 𝑧 ,  𝑤! 𝑧 are not, as they are from the 

same transactions
• w! 𝑧 < 𝑟' 𝑧
• w! 𝑧 < 𝑟" 𝑧



In class exercise
Are these execution histories conflict equivalent?
• 𝐻!: 𝑟" 𝑥 𝑟# 𝑥 𝑤$ 𝑦 𝑟% 𝑢 𝑤$ 𝑧 𝑟" 𝑦 𝑟#[𝑢]𝑟% 𝑧 𝑤% 𝑧 𝑟# 𝑧 𝑟" 𝑧 𝑤#[𝑦]
• 𝐻&: 𝑟" 𝑥 𝑤$ 𝑦 𝑟# 𝑥 𝑟% 𝑢 𝑟" 𝑦 𝑟#[𝑢]𝑟% 𝑧 𝑤% 𝑧 𝑤$ 𝑧 𝑟" 𝑧 𝑟# 𝑧 𝑤#[𝑦]
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Conflicting pairs 𝐻( 𝐻)
𝑤& 𝑦 , 𝑟" 𝑦 < <

𝑤& 𝑦 ,w' 𝑦 < <

… < <

𝑤& 𝑧 , 𝑤! 𝑧 < >

• Check if they are 
over the same set of 
transactions
{𝑟" 𝑥 𝑟" 𝑦 𝑟" 𝑧 }, 
{𝑟# 𝑢 𝑟# 𝑧 𝑤# 𝑧 }, 
{𝑟% 𝑥 𝑟%[𝑢] 𝑟% 𝑧 𝑤%[𝑦]}, 
{𝑤& 𝑦 𝑤& 𝑧 }

• Check if all conflicting 
pairs have the same order



Serializable

• A history 𝐻 is said to be (conflict) serializable if there is 
some serial history 𝐻′ (conflict) equivalent to 𝐻.
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𝑇!    𝑇#

w1(x)
 r2(x)
w1(y) 
 r2(y)
c1 
 c2

𝑇!    𝑇#

w1(x)
 r2(x)
 r2(y) 
w1(y) 
c1
 c2

𝐻$ = 𝐻% 𝐻&



Serializable

• Serialization graph (𝑉, 𝐸) for history 𝐻:
• 𝑉 = {𝑇: 	𝑇 is a committed transaction in 𝐻}
• 𝐸 = {𝑇' → 𝑇(: ∃	𝑜' ∈ 𝑇' and	𝑜( ∈ 𝑇( conflict; and 𝑜' < 𝑜(}

• A history is serializable if and only if its serialization 
graph is acyclic (i.e., no cycles)
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Two operations conflict if
• they belong to different transactions;
• they operate on the same data item;
• at least one of the operations is write



Example

• Example:𝐻$ = 𝑤! 𝑥 𝑟# 𝑥 𝑤! 𝑦 𝑟#[𝑦]𝑐!𝑐#
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𝑇" 𝑇#

𝑇!    𝑇#

w1(x)
 r2(x)
w1(y) 
 r2(y)
c1 
 c2

𝐻$

𝑤" 𝑥 and 𝑟# 𝑥 conflict, and 𝑤" 𝑥 < 𝑟# 𝑥
𝑤" 𝑦 and 𝑟#[𝑦] conflict, and 𝑤" 𝑦 < 𝑟# 𝑦

no cycles,
so serializable



Example

• Example: 𝐻& = 𝑤! 𝑥 𝑟# 𝑥 𝑟#[𝑦]𝑤! 𝑦 c!c#
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𝑇" 𝑇# Not serializable

𝐻&

𝑇!    𝑇#

w1(x)
 r2(x)
 r2(y) 
w1(y) 
c1
 c2

𝑤" 𝑥 and 𝑟# 𝑥 conflict, and 𝑤" 𝑥 < 𝑟# 𝑥 ; 
𝑤" 𝑦 and 𝑟#[𝑦] conflict, and 𝑟#[𝑦] < 𝑤" 𝑦



In class exercise
Is the following execution history serializable?
• 𝑟! 𝑥 𝑟" 𝑥 𝑤# 𝑦 𝑟$ 𝑢 𝑤# 𝑧 𝑟! 𝑦 𝑟"[𝑢]𝑟$ 𝑧 𝑤$ 𝑧 𝑟" 𝑧 𝑟! 𝑧 𝑤"[𝑦]

• Conflicting pairs: 
• Related to x: no conflicting pairs, as all are reads
• Related to y: w4[y], r1[y], w3[y]

• 𝑤& 𝑦 < 𝑟" 𝑦 T4 à T1
• 𝑤& 𝑦 < w' 𝑦 T4 à T3                                    
• 𝑟" 𝑦 < w' 𝑦 T1 à T3

• Related to z: w4[z], r2[z], w2[z], r3[z], r1[z]
• 𝑤& 𝑧 < 𝑟! 𝑧 T4 à T2
• 𝑤& 𝑧 < 𝑤! 𝑧 T4 à T2 
• 𝑤& 𝑧 < 𝑟' 𝑧 T4 à T3
• 𝑤& 𝑧 < 𝑟" 𝑧 T4 à T1
• 𝑟! 𝑧 ,  𝑤! 𝑧 are not, as they are from the same transactions
• w! 𝑧 < 𝑟' 𝑧 T2 à T3
• w! 𝑧 < 𝑟" 𝑧 T2 à T1
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𝑇! 𝑇"

𝑇# 𝑇$



In class exercise

Is the following execution history serializable?
𝑟" 𝑥 𝑟% 𝑥 𝑤& 𝑦 𝑟# 𝑢 𝑤& 𝑧 𝑟" 𝑦 𝑟%[𝑢]𝑟# 𝑧 𝑤# 𝑧 𝑟% 𝑧 𝑟" 𝑧 𝑤%[𝑦]

• No cycles in this serialization graph 
• Topological sort: T4 -> T2 -> T1->T3

• The history above is (conflict) equivalent to 
𝑤& 𝑦 𝑤& 𝑧 𝑟# 𝑢 𝑟# 𝑧 𝑤# 𝑧 𝑟" 𝑥 𝑟" 𝑦 𝑟" 𝑧 𝑟% 𝑥 𝑟%[𝑢]𝑟% 𝑧 𝑤%[𝑦]
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𝑇! 𝑇"

𝑇# 𝑇$



Summary

• Transactions
• Properties: ACID

• Isolation
• Different isolation levels
• The lowest isolation level to set
• Serializability 
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Isolation level/anomaly Dirty reads Non-repeatable 
reads

Phantoms

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Impossible Possible Possible

REPEATABLE READ Impossible Impossible Possible

SERIALIZABLE Impossible Impossible Impossible


