
Lecture 20:
Transaction

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcements

• Assignment 3
• Check Piazza for online office hours

• Demo of Group Project next week
• Schedule a demo time with TA before 11:59 PM July 17
• In-person or online live demo with TA

• Milestone 3 of Group project
• Due on 11:59 PM July 29

2

(Recap) Transactions

• ACID properties of transactions (TXs)
• Atomicity: TXs are either completely

done or not done at all
• Consistency: TXs should leave the

database in a consistent state
• Isolation: TXs must behave as if they

execute in isolation (serializable)
• Durability: Effects of committed TXs are

resilient against failures

3

Jim Gray, Turing Award 1998,
who coined this term (as
well as data cube and many
other things)

Outline for today

• Concurrency control -- isolation
• Locking-based control

• Recovery – atomicity and durability
• Logging for undo and redo

4

Concurrency control

• Goal: ensure the “I” (isolation) in ACID

5

x y z

𝑇!:
r1(x);
w1(x);
r1(y);
w1(y);
commit;

𝑇":
r2(x);
w2(x);
r2(z);
w2(z);
commit;

Good v.s. bad execution histories

6

𝑇! 𝑇"

r1(x)
w1(x)
r1(y)
w1(y)
 r2(x)
 w2(x)
 r2(z)
 w2(z)

𝑇! 𝑇"

r1(x)
w1(x)
 r2(x)
 w2(x)
r1(y)
 r2(C)
w1(y)
 w2(C)

𝑇! 𝑇"

r1(x)
 r2(x)
w1(x)
 w2(x)
r1(y)
 r2(z)
w1(y)
 w2(z)

Good! Good! Why?Bad!

Read 400
Read 400Write

400 – 100
Write

400 – 50

𝐻# 𝐻$ 𝐻%

𝑇! 𝑇"

r1(x)
w1(x)
 r2(x)
 w2(x)
r1(y)
 r2(C)
w1(y)
 w2(C)

Good v.s. bad execution histories

7

𝐻%

𝑇!

𝑇"

Good!

Serializable
(Lecture 19)

Good v.s. bad execution histories

8

𝑇! 𝑇"

r1(x)
 r2(x)
w1(x)
 w2(x)
r1(y)
 r2(z)
w1(y)
 w2(z)

Bad!

𝐻$

𝑇!

𝑇"

Not serializable
(Lecture 19)

Locking

(Pessimistic) Assume that conflicts will happen and
take preventive action
• If a transaction wants to read x , it must first

request a shared lock (S mode) on x
• If a transaction wants to modify x, it must first

request an exclusive lock (X mode) on x
• Allow one exclusive lock, or multiple shared locks

9

Mode of lock currently held
by other transactions

Mode of the lock requested

Grant the lock?

Compatibility matrix

lockS lockX

lockS Yes No

lockX No No

𝑇! 𝑇"

r1(x)
w1(x)

 r2(x)
 w2(x)

 r2(y)
 w2(y)

r1(y)
w1(y)

Basic locking is not enough

10

lock-X(x)

lock-X(y)

unlock(y)

unlock(x)
lock-X(x)

unlock(x)

unlock(y)
lock-X(y)

Possible schedule
under locking

But still not
conflict-serializable!

𝑇!

𝑇"

𝑇! 𝑇"

r1(x)
w1(x)

 r2(x)
 w2(x)

 r2(y)
 w2(y)

r1(y)
w1(y)

Basic locking is not enough

11

lock-X(x)

lock-X(y)

unlock(y)

unlock(x)
lock-X(x)

unlock(x)

unlock(y)
lock-X(y)

Possible schedule
under locking

But still not
conflict-serializable!

𝑇!

𝑇"

Read 100
Write 100+1

Read 101

Write 101*2

Read 100
Write 100*2

Read 200
Write 200+1

Add 1 to both x and y
(preserve x=y)

Multiply both x and y by 2
(preserves x=y)

x ≠ y !

Two-phase locking (2PL)

• All lock requests precede all unlock requests
• Phase 1: obtain locks; Phase 2: release locks

12

𝑇! 𝑇"

r1(x)
w1(x)

 r2(x)
 w2(x)

 r2(y)
 w2(y)
 r1(y)
w1(y)

lock-X(x)

lock-X(y)

unlock(y)

unlock(x) lock-X(x)

lock-X(y)

Cannot obtain the lock on y
until 𝑇! unlocks

𝑇! 𝑇"

r1(x)
w1(x)
 r2(x)
 w2(x)
 r1(y)
w1(y)
 r2(y)
 w2(y)

2PL guarantees a
conflict-serializable

schedule

Remaining problems of 2PL

• 𝑇" has read uncommitted
data written by 𝑇!
• If 𝑇! aborts, then 𝑇" must

abort as well
• Cascading aborts possible if

other transactions have
read data written by 𝑇"
• Even worse, what if 𝑇"

commits before 𝑇!?
• Schedule is not recoverable

if the system crashes right
after 𝑇" commits

13

𝑇! 𝑇"

r1(x)
w1(x)

 r2(x)
 w2(x)
 r1(y)
w1(y)

 r2(y)
 w2(y)

Abort!

lock-X(x)

lock-X(y)

unlock(y)

unlock(x) lock-X(x)

lock-X(y)

unlock(x)
unlock(y)
Commit!

Remaining problems of 2PL

• Deadlock: A transaction
remains blocked until
there is an intervention.
• 2PL may cause

deadlocks, requiring the
abort of one of the
transactions

14

𝑇! 𝑇"

r1(x)
w1(x)
 r2(y)

 r2(x)

 r1(y)
w1(y)
…
 w2(x)
 w2(y)

lock-X(x)

lock-X(y)

lock-S(y)

lock-S(x)

Cannot obtain
the lock on x
until 𝑇! unlocks

Cannot obtain
the lock on y
until 𝑇" unlocks unlock-X(x)

unlock-S(y)

Strict 2PL

• Only release X-locks when
commit/abort
• A write will block all other reads

until the write commits or aborts

• Used in many practical DBMSs
• No cascading rollbacks
• But can still lead to deadlocks!

(see previous slide)

• Also, less concurrency than 2PL

15

𝑇! 𝑇"

r1(x)
w1(x)

 r2(x)
 w2(x)
 r1(y)
w1(y)

 r2(y)
 w2(y)

Abort

lock-X(x)

lock-X(y)

unlock(y)
unlock(x)

lock-X(x)

lock-X(y)

unlock(x)
unlock(y)

Conservative 2PL

• Only acquire at the beginning
of the transaction and release
X-locks when commit/abort

• Not practical due to the very
limited concurrency
• No cascading rollbacks
• No deadlocks

16

𝑇! 𝑇"

r1(x)
w1(x)
 r2(y)

 r2(x)
 r1(y)
w1(y)
commit
 w2(x)
 w2(y)

lock-X(x)
lock-X(y)

lock-S(y)

lock-S(x)

unlock-X(x)

unlock-S(y)unlock-S(y)

Outline for today

• Concurrency control -- isolation
• Concurrency: conservative 2PL < strict 2PL < 2PL
• Serializability: all
• No cascading aborts: conservative 2PL, strict 2PL
• No deadlocks: conservative 2PL

• Recovery – atomicity and durability
• Logging for undo and redo

17

Conservative
2PL

Strict 2PL

2PL

Failures

• System crashes right after a transaction T1 commits;
but not all effects of T1 were written to disk
• How do we complete/redo T1 (durability)?

• System crashes in the middle of a transaction T2;
partial effects of T2 were written to disk
• How do we undo T2 (atomicity)?

18

T1start end

time

T2start end

Naïve approach: Force -- durability

19

read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

T1 (balance transfer of $100 from A to B) Memory buffer

A = 800
B = 400

Disk

700

commit;

500
Force: all writes must be reflected on disk
when a transaction commits

Naïve approach: Force -- durability

20

read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

T1 (balance transfer of $100 from A to B) Memory buffer

A = 800
B = 400

Disk
commit;

Force: all writes must be reflected on disk
when a transaction commits

If system crashes right after T1 commits, effects of T1 will be lost
Without Force: not all writes are on disk when T1 commits Bad!

Naïve approach: No steal -- atomicity

21

read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

T1 (balance transfer of $100 from A to B) Memory buffer

A = 800
B = 400

Disk

700

No steal: Writes of a transaction can only
be flushed to disk at commit time:
• e.g. A=700 cannot be flushed to disk

before commit.

commit;

If system crashes before T1 commits, there is no way to undo the
changes

With steal: some writes are on disk before T commits Bad!

Naïve approach

• Force: When a transaction commits, all writes of
this transaction must be reflected on disk
• Ensures durability
FProblem of force: Lots of random writes hurt

performance

• No steal: Writes of a transaction can only be flushed
to disk at commit time
• Ensures atomicity
FProblem of no steal: Holding on to all dirty blocks

requires lots of memory

22

Logging

• Database log: sequence of log records, recording all
changes made to the database, written to stable
storage (e.g., disk) during normal operation

• One change turns into two -- bad for performance?
• But writes to log are sequential (append to the end of log)

23

Update
operation

Old stable
database state

New stable
database state

Database
log

Log

• When a transaction 𝑇 starts: 〈𝑇, start〉
• Record values before and after each modification of

data item X: 〈𝑇, 𝑋, old_value_of_X, new_value_of_X〉
• When a transaction Ti is committed: 〈𝑇, commit〉

24

〈	T1, start 〉
〈	T1, A, 800, 700 〉
〈	T1, B, 400, 500 〉
〈	T1, commit 〉

Log

When to write log records?

• Before X is modified or after?

• Write-ahead logging (WAL): Before X is modified on
disk, the log record pertaining to X must be flushed

• Without WAL, system might crash after X is modified
on disk but before its log record is written to disk—
no way to undo

25

Undo/redo logging example

26

read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

〈	T1, start 〉
〈	T1, A, 800, 700 〉
〈	T1, B, 400, 500 〉

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log

WAL: Before A,B are modified on disk, their log info must be flushed

Undo/redo logging example cont.

27

read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

〈	T1, start 〉
〈	T1, A, 800, 700 〉
〈	T1, B, 400, 500 〉

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log

700Steal: can flush
before commit

If system crashes before T1 commits, we have
the old value of A stored on the log to undo T1

Undo/redo logging example cont.

28

read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

〈	T1, start 〉
〈	T1, A, 800, 700 〉
〈	T1, B, 400, 500 〉
〈	T1, commit 〉

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log

commit;

No force: can flush
after commit

If system crashes before we flush the changes
of A, B to the disk, we have their new
committed values on the log to redo T1

Log example - redo

29

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log
Start of log

End of log

• Redo phase:

x: 99
y: 199
z: 51
w: 1000

100

redo
redo
redo

200

redo
redo

50 redo

10 redo

List of active transactions at crash:
T1 T2T3

Log example

30

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99
y: 199
z: 51
w: 1000

100

redo
redo
redo

200

redo
redo

50 redo

10 redo

List of active transactions at crash:
T1 T2T3

redo

Start of log

Log example

31

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

• Redo phase:

x: 99
y: 199
z: 51
w: 1000

100

redo
redo
redo

200

redo
redo

50 redo

10
redo

List of active transactions at crash:
T1 T2T3

redo
redo

T4

Start of log

End of log

Log example

32

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99
y: 199
z: 51
w: 1000

100

redo
redo
redo

200

redo
redo
redo

10
redo

List of active transactions at crash:
T1 T2T3

redo
redo
redo

Start of log

5150

T4

Log example

33

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99
y: 199
z: 51
w: 1000

100

redo
redo
redo

200

redo
redo
redo

10
redo

List of active transactions at crash:
T1 T2T3

redo
redo
redo

Start of log

5150

T4 redo

Log example

34

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99
y: 199
z: 51
w: 1000

100

redo
redo
redo

200

redo
redo
redo

10
redo

List of active transactions at crash:
T1 T2T3

redo
redo
redo
redo

50

Start of log

5150

T4

Log example - Undo

35

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Undo phase: T1, T4

x: 99
y: 199
z: 51
w: 1000

100

undo

200

10

List of active transactions at crash:
T1 T2T3 T4 undo

50

Start of log

99
200

50 51

T4, abort

T1, abort

*

*

T4, y, 200

T1, x, 99

Undo/redo logging
• U: used to track the set of active transactions at crash
• Redo phase: scan forward to end of the log
• For a log record 〈 T, start 〉, add T to U
• For a log record 〈 T, X, old, new 〉, issue write(X, new)
• For a log record 〈 T, commit | abort 〉, remove T from U

• If abort, undo changes of T i.e., add 〈 T, X, old 〉 before logging abort
FBasically repeats history!

• Undo phase: scan log backward
• Undo the effects of transactions in U
• For each log record 〈 T, X, old, new 〉 where T is in U, issue

write(X, old), and log this operation too, i.e., add 〈 T, X, old 〉
• Log 〈 T, abort 〉 when all effects of T have been undone

36

Summary of Transactions

• ACID properties of transactions (TXs)
• Atomicity: TXs are either completely

done or not done at all (logging)
• Consistency: TXs should leave the

database in a consistent state
• Isolation: TXs must behave as if they

execute in isolation (serializable;
concurrency control)
• Durability: Effects of committed TXs are

resilient against failures (logging)

37

Jim Gray, Turing Award 1998,
who coined this term (as
well as data cube and many
other things)

What’s next?

• No lectures next week
• Final review on July 29!

38

