
Lecture 20:
Transaction 

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003



Announcements

• Assignment 3
• Check Piazza for online office hours

• Demo of Group Project next week
• Schedule a demo time with TA before 11:59 PM July 17
• In-person or online live demo with TA

• Milestone 3 of Group project
• Due on 11:59 PM July 29
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(Recap) Transactions

• ACID properties of transactions (TXs)
• Atomicity: TXs are either completely 

done or not done at all
• Consistency: TXs should leave the 

database in a consistent state
• Isolation: TXs must behave as if they 

execute in isolation (serializable)
• Durability: Effects of committed TXs are 

resilient against failures
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Jim Gray, Turing Award 1998, 
who coined this term (as 
well as data cube and many 
other things)



Outline for today

• Concurrency control -- isolation
• Locking-based control 

• Recovery – atomicity and durability
• Logging for undo and redo
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Concurrency control

• Goal: ensure the “I” (isolation) in ACID
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x    y    z

𝑇!:
r1(x);
w1(x);
r1(y);
w1(y);
commit;

𝑇":
r2(x);
w2(x);
r2(z);
w2(z);
commit;



Good v.s. bad execution histories
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𝑇!    𝑇"

r1(x)
w1(x)
r1(y)
w1(y)
 r2(x)
 w2(x)
 r2(z)
 w2(z)

𝑇!    𝑇"

r1(x)
w1(x)
 r2(x)
 w2(x)
r1(y)
 r2(C)
w1(y)
 w2(C)

𝑇!    𝑇"

r1(x)
 r2(x)
w1(x) 
 w2(x)
r1(y)
 r2(z)
w1(y)
 w2(z)

Good! Good!  Why?Bad!

Read 400
Read 400Write

400 – 100
Write

400 – 50

𝐻# 𝐻$ 𝐻%



𝑇!    𝑇"

r1(x)
w1(x)
 r2(x)
 w2(x)
r1(y)
 r2(C)
w1(y)
 w2(C)

Good v.s. bad execution histories
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𝐻%

𝑇!

𝑇"

Good! 

Serializable 
(Lecture 19)



Good v.s. bad execution histories
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𝑇!    𝑇"

r1(x)
 r2(x)
w1(x) 
 w2(x)
r1(y)
 r2(z)
w1(y)
 w2(z)

Bad!

𝐻$

𝑇!

𝑇"

Not serializable 
(Lecture 19)



Locking

(Pessimistic) Assume that conflicts will happen and 
take preventive action
• If a transaction wants to read x , it must first 

request a shared lock (S mode) on x
• If a transaction wants to modify x, it must first 

request an exclusive lock (X mode) on x
• Allow one exclusive lock, or multiple shared locks
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Mode of lock currently held
by other transactions

Mode of the lock requested

Grant the lock?

Compatibility matrix

lockS lockX

lockS Yes No

lockX No No



𝑇!    𝑇"

r1(x)
w1(x)

 r2(x)
 w2(x)

 r2(y)
 w2(y)

r1(y)
w1(y)

Basic locking is not enough
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lock-X(x)

lock-X(y)

unlock(y)

unlock(x)
lock-X(x)

unlock(x)

unlock(y)
lock-X(y)

Possible schedule
under locking

But still not
conflict-serializable!

𝑇!

𝑇"



𝑇!    𝑇"

r1(x)
w1(x)

 r2(x)
 w2(x)

 r2(y)
 w2(y)

r1(y)
w1(y)

Basic locking is not enough
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lock-X(x)

lock-X(y)

unlock(y)

unlock(x)
lock-X(x)

unlock(x)

unlock(y)
lock-X(y)

Possible schedule
under locking

But still not
conflict-serializable!

𝑇!

𝑇"

Read 100
Write 100+1

Read 101

Write 101*2

Read 100
Write 100*2

Read 200
Write 200+1

Add 1 to both x and y
(preserve x=y)

Multiply both x and y by 2
(preserves x=y)

x ≠ y !



Two-phase locking (2PL)

• All lock requests precede all unlock requests
• Phase 1: obtain locks; Phase 2: release locks
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𝑇!   𝑇"

r1(x)
w1(x)

 r2(x)
 w2(x)

 r2(y)
 w2(y)
 r1(y)
w1(y)

lock-X(x)

lock-X(y)

unlock(y)

unlock(x) lock-X(x)

lock-X(y)

Cannot obtain the lock on y
until 𝑇! unlocks

𝑇!   𝑇"

r1(x)
w1(x)
 r2(x)
 w2(x)
 r1(y)
w1(y)
 r2(y)
 w2(y)

2PL guarantees a
conflict-serializable

schedule



Remaining problems of 2PL

• 𝑇" has read uncommitted 
data written by 𝑇!
• If 𝑇! aborts, then 𝑇" must 

abort as well
• Cascading aborts possible if 

other transactions have 
read data written by 𝑇"
• Even worse, what if 𝑇" 

commits before 𝑇!?
• Schedule is not recoverable 

if the system crashes right 
after 𝑇" commits
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𝑇!   𝑇"

r1(x)
w1(x)
 

 r2(x)
 w2(x)
 r1(y)
w1(y)
 
 r2(y)
 w2(y)
                

Abort!

lock-X(x)

lock-X(y)

unlock(y)

unlock(x) lock-X(x)

lock-X(y)

unlock(x)
unlock(y)
Commit!



Remaining problems of 2PL

• Deadlock: A transaction 
remains blocked until 
there is an intervention.
• 2PL may cause 

deadlocks, requiring the 
abort of one of the 
transactions

14

𝑇!   𝑇"

r1(x)
w1(x)
 r2(y)
 
 r2(x)

 r1(y)
w1(y)
…           
                 w2(x)
  w2(y)

lock-X(x)

lock-X(y)

lock-S(y)

lock-S(x)

Cannot obtain 
the lock on x
until 𝑇! unlocks

Cannot obtain 
the lock on y
until 𝑇" unlocks unlock-X(x)

unlock-S(y)



Strict 2PL

• Only release X-locks when 
commit/abort
• A write will block all other reads 

until the write commits or aborts

• Used in many practical DBMSs
• No cascading rollbacks
• But can still lead to deadlocks!

(see previous slide)

• Also, less concurrency than 2PL
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𝑇!   𝑇"

r1(x)
w1(x)
 

 r2(x)
 w2(x)
 r1(y)
w1(y)
 
 r2(y)
 w2(y)
                

Abort

lock-X(x)

lock-X(y)

unlock(y)
unlock(x)

lock-X(x)

lock-X(y)

unlock(x)
unlock(y)



Conservative 2PL

• Only acquire at the beginning
of the transaction and release 
X-locks when commit/abort

• Not practical due to the very
limited concurrency
• No cascading rollbacks
• No deadlocks
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𝑇!   𝑇"

r1(x)
w1(x)
 r2(y)
 
 r2(x)
 r1(y)
w1(y)
commit         
                 w2(x)
  w2(y)

lock-X(x)
lock-X(y)

lock-S(y)

lock-S(x)

unlock-X(x)

unlock-S(y)unlock-S(y)



Outline for today 

• Concurrency control -- isolation
• Concurrency: conservative 2PL < strict 2PL < 2PL
• Serializability: all
• No cascading aborts: conservative 2PL, strict 2PL
• No deadlocks: conservative 2PL

• Recovery – atomicity and durability
• Logging for undo and redo
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Conservative
2PL

Strict 2PL

2PL



Failures

• System crashes right after a transaction T1 commits; 
but not all effects of T1 were written to disk
• How do we complete/redo T1 (durability)?

• System crashes in the middle of a transaction T2; 
partial effects of T2 were written to disk
• How do we undo T2 (atomicity)?
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T1start end

time

T2start end



Naïve approach: Force -- durability
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read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

T1 (balance transfer of $100 from A to B) Memory buffer

A = 800
B = 400

Disk

700

commit;

500
Force: all writes must be reflected on disk 
when a transaction commits



Naïve approach: Force -- durability
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read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

T1 (balance transfer of $100 from A to B) Memory buffer

A = 800
B = 400

Disk
commit;

Force: all writes must be reflected on disk 
when a transaction commits

If system crashes right after T1 commits, effects of T1 will be lost
Without Force: not all writes are on disk when T1 commits Bad!



Naïve approach: No steal -- atomicity
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read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

T1 (balance transfer of $100 from A to B) Memory buffer

A = 800
B = 400

Disk

700

No steal:  Writes of a transaction can only 
be flushed to disk at commit time: 
• e.g. A=700 cannot be flushed to disk 

before commit.

commit;

If system crashes before T1 commits, there is no way to undo the 
changes

With steal: some writes are on disk before T commits Bad!



Naïve approach

• Force: When a transaction commits, all writes of 
this transaction must be reflected on disk
• Ensures durability
FProblem of force: Lots of random writes hurt 

performance

• No steal: Writes of a transaction can only be flushed 
to disk at commit time
• Ensures atomicity
FProblem of no steal: Holding on to all dirty blocks 

requires lots of memory
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Logging

• Database log: sequence of log records, recording all 
changes made to the database, written to stable 
storage (e.g., disk) during normal operation

• One change turns into two -- bad for performance?
• But writes to log are sequential (append to the end of log)

23

Update 
operation

Old stable 
database state

New stable 
database state

Database 
log



Log

• When a transaction 𝑇 starts: 〈𝑇, start〉
• Record values before and after each modification of 

data item X: 〈𝑇, 𝑋, old_value_of_X, new_value_of_X〉
• When a transaction Ti is committed: 〈𝑇, commit〉
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〈	T1, start 〉
〈	T1, A, 800, 700 〉
〈	T1, B, 400, 500 〉
〈	T1, commit 〉

Log



When to write log records?

• Before X is modified or after?

• Write-ahead logging (WAL): Before X is modified on 
disk, the log record pertaining to X must be flushed

• Without WAL, system might crash after X is modified 
on disk but before its log record is written to disk—
no way to undo
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Undo/redo logging example
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read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

〈	T1, start 〉
〈	T1, A, 800, 700 〉
〈	T1, B, 400, 500 〉

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log

WAL: Before A,B are modified on disk, their log info must be flushed



Undo/redo logging example cont.
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read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

〈	T1, start 〉
〈	T1, A, 800, 700 〉
〈	T1, B, 400, 500 〉

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log

700Steal: can flush
before commit

If system crashes before T1 commits, we have 
the old value of A stored on the log to undo T1



Undo/redo logging example cont.
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read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

〈	T1, start 〉
〈	T1, A, 800, 700 〉
〈	T1, B, 400, 500 〉
〈	T1, commit 〉

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log

commit;

No force: can flush
after commit

If system crashes before we flush the changes 
of A, B to the disk, we have their new 
committed values on the log to redo T1



Log example - redo
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T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log
Start of log

End of log

• Redo phase:

x: 99 
y: 199
z: 51
w: 1000 

100

redo
redo
redo

200

redo
redo

50 redo

10 redo

List of active transactions at crash:
T1 T2T3



Log example
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T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99 
y: 199
z: 51
w: 1000 

100

redo
redo
redo

200

redo
redo

50 redo

10 redo

List of active transactions at crash:
T1 T2T3

redo

Start of log



Log example
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T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

• Redo phase:

x: 99 
y: 199
z: 51
w: 1000 

100

redo
redo
redo

200

redo
redo

50 redo

10
redo

List of active transactions at crash:
T1 T2T3

redo
redo

T4

Start of log

End of log



Log example
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T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99 
y: 199
z: 51 
w: 1000 

100

redo
redo
redo

200

redo
redo
redo

10
redo

List of active transactions at crash:
T1 T2T3

redo
redo
redo

Start of log

5150

T4



Log example
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T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99 
y: 199
z: 51 
w: 1000 

100

redo
redo
redo

200

redo
redo
redo

10
redo

List of active transactions at crash:
T1 T2T3

redo
redo
redo

Start of log

5150

T4 redo



Log example
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T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99 
y: 199
z: 51 
w: 1000 

100

redo
redo
redo

200

redo
redo
redo

10
redo

List of active transactions at crash:
T1 T2T3

redo
redo
redo
redo

50

Start of log

5150

T4



Log example - Undo
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T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Undo phase: T1, T4

x: 99 
y: 199
z: 51
w: 1000 

100

undo

200

10

List of active transactions at crash:
T1 T2T3 T4 undo

50

Start of log

99
200

50 51

T4, abort

T1, abort

*

*

T4, y, 200

T1, x, 99



Undo/redo logging
• U: used to track the set of active transactions at crash
• Redo phase: scan forward to end of the log
• For a log record 〈 T, start 〉, add T to U
• For a log record 〈 T, X, old, new 〉, issue write(X, new)
• For a log record 〈 T, commit | abort 〉, remove T from U

• If abort, undo changes of T i.e., add 〈 T, X, old 〉 before logging abort
FBasically repeats history!

• Undo phase: scan log backward
• Undo the effects of transactions in U
• For each log record 〈 T, X, old, new 〉 where T is in U, issue 

write(X, old), and log this operation too, i.e., add 〈 T, X, old 〉
• Log 〈 T, abort 〉 when all effects of T have been undone
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Summary of Transactions

• ACID properties of transactions (TXs)
• Atomicity: TXs are either completely 

done or not done at all (logging)
• Consistency: TXs should leave the 

database in a consistent state
• Isolation: TXs must behave as if they 

execute in isolation (serializable; 
concurrency control)
• Durability: Effects of committed TXs are 

resilient against failures (logging)
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Jim Gray, Turing Award 1998, 
who coined this term (as 
well as data cube and many 
other things)



What’s next?

• No lectures next week
• Final review on July 29!
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