
Final Review
CS348 Spring 2025:

Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003



Final Exam

• Logistics
• Time & Date: 4:00 PM – 6:30 PM August 5
• Location: PAC GYM
• All contents in Lectures 1 – 20 (no optional parts) 
• Closed book, but a four-page reference sheet will be 

provided (already released on Learn)

• How to prepare (in addition to lectures)?
• A1, A2, A3
• Midterm questions and partial solutions
• More exercise questions (but NOT samples)

2



Final Exam

• Total: 11o points (10 bonus points)
• Midterm topics (around 45 points) 
• Relational model and relational algebra
• SQL
• Database design

• Database internals (around 55 + 10 points)
• Physical data design
• Indexing
• Query processing & optimization
• Transaction

3

See midterm 
review



Physical Data Storage

4



Storage hierarchy

5

Registers

Cache

Memory

Disk

Tapes

Non-volatile
Secondary storage

Tertiary storage



Disk access time

Disk access time (= Seek time + Rotational delay): the
duration from when a read or write request is 
issued until data transfer begins
• Seek time: time for disk heads to move to the 

correct track
• Rotational delay: time for the desired block to 

appear under the disk head
• Transfer time: time to read/write data in the block 

(= time for the disk to rotate over the block)
Data access time = Seek time + Rotational delay + 
Transfer time

6



Random v.s. Sequential disk access

Random disk access: successive requests are for 
blocks that are randomly located on disk
• Average seek time (~ 5 ms)
• Average rotational delay (~ 4.2 ms)

Sequential disk access: successive requests are for 
successive blocks that are on the same track or 
adjacent tracks
• Seek time and rotational delay are 1 time delay
• Easily an order of magnitude faster than random 

disk access!
7



Record layout: fixed-length fields

• All field lengths and offsets are constant
• Computed from schema, stored in the system catalog

• If block size != 36, one record may be split across 
multiple blocks, or moved to the next block (by leaving 
the remaining space empty)

• What about NULL?
• Add a bitmap at the beginning of the record

8

142
0 4

Bart (padded with space)
24

10 0.9
28 36

CREATE TABLE User(uid INT, name CHAR(20), age INT, pop FLOAT);



Record layout: variable-length records
Put all variable-length fields at the end

• Approach 1: use field delimiters (‘\0’ okay?)

• Approach 2: use an offset array

• Scheme update is messy if length of a field changes
9

142
0 4

Bart\010 0.9
8 16

Weird kid!\0

142

0 4

Bart10 0.9

8 16

Weird kid!

18 22 32

22 32

CREATE TABLE User(uid INT, name VARCHAR(20), age INT, 
         pop FLOAT, comment VARCHAR(100)););



BLOB fields

• User records get “de-clustered”
• Bad because most queries do not involve picture

• Decomposition (automatically and internally done 
by DBMS without affecting the user)
• (uid, name, age, pop)
• (uid, picture)

10

CREATE TABLE User(uid INT, name VARCHAR(20), age INT, 
         pop FLOAT, comment VARCHAR(100),          
BLOB(32000));;

Similar to Translating ISA:
Entity-in-all-superclasses



Block layout - (N-ary Storage Model)

• Store records from the beginning of each block
• Use a directory at the end of each block
• To locate records and manage free space
• Necessary for variable-length records

11

142          Bart           10       0.9 123       Milhouse        10    0.2

456.       Ralph            8.   0.3

857            Lisa             8.    0.7

Why store data and directory
at two different ends?

So both can grow easily!



Block layout - Partition Attributes Across
• Most queries only access a few columns
• Cluster values of the same columns in each block
• Better sequential reads for queries that read a single 

column

12

142 123 857 456

1111

Bart Milhouse Lisa Ralph

10 10 8 8

2.3 3.1 4.3 2.3

4 (number of records)

1111

Reorganize after every update
(for variable-length records only)
and delete to keep fields together

(IS NOT NULL bitmap)



Indexes

13



Dense v.s. Sparse indexes

• Dense: one index entry for each search key value
• One entry may “point” to multiple records (e.g., 

two users named Jessica)

14

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5



Dense v.s. Sparse indexes

• Sparse: one index entry for each block
• Records must be clustered according to the search 

key on the disk

15

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5



Dense v.s. Sparse indexes

• Dense: one index entry for each search key value
• Sparse: one index entry for each block
• Records must be clustered according to the search key

16

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

Smaller size

Must be clustered

May not fit 
into memory

Easier to 
update



Clustering v.s. Non-Clustering indexes

• An index on attribute A is a clustering index if 
tuples with similar A-values are stored together in 
the same block, and non-clustering otherwise.

17

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

A clustering index
on uid A non-clustering 

index on name

A relation may have at 
most one clustering 

index, and any number 
of non-clustering indices.



ISAM

• What if an index is still too big?
• Put a another (sparse) index on top of that!
FISAM (Index Sequential Access Method), more or less

18

100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, …    

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…… … …

Data blocks

192, 197,
…

200, 202,
…

Example: look up 197



Updates with ISAM

• Overflow chains and empty data blocks degrade 
performance
• Worst case: most records go into one long chain, so 

lookups require scanning all data!
19

100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, …    

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…… … …

Data blocks

192, 197,
…

200, 202,
…

Example: insert 107

107 Overflow block

Example: delete 129



B+-tree

• A hierarchy of nodes with intervals
• Balanced: good performance guarantee
• Disk-based: one node per block; large fan-out

20

3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4



Sample B+-tree nodes

21

Max fan-out: 4

12
0

15
0

18
0

to keys 
100 ≤ 𝑘 < 120

to keys
120 ≤ 𝑘 < 150

to keys
150 ≤ 𝑘 < 180

to keys
180 ≤ 𝑘

Non-leaf
12
0

13
0

to records with these 𝑘 values;
or, store records directly in leaves

to next leaf node in sequenceLeaf

to keys
100 ≤ 𝑘



Lookups

• SELECT * FROM R WHERE k = 179;
• SELECT * FROM R WHERE k = 32;

22

3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

17
9

Not found



Range query

• SELECT * FROM R WHERE k > 32 AND k < 179;

23

3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

10
0

10
1

11
0

12
0

13
0

15
0

15
6

Look up 32…

And follow next-leaf pointers until you hit upper bound

35



Insertion

• Insert a record with search key value 32

24

3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

Look up where the
inserted key
should go…

32

And insert it right there



Another insertion example

• Insert a record with search key value 152

25

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
2

Oops, node is already full!



Node splitting

26

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
2

10
0

10
1

11
0

15
6

Need to add to parent node a pointer 
to the newly created node

Oops, that node 
becomes full!



More node splitting

27

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

18
0

Max fan-out: 4

15
2

10
0

10
1

11
0

12
0

15
0

15
6

Need to add to parent node a pointer 
to the newly created node

• In the worst case, node splitting can “propagate” all the way up 
to the root of the tree (not illustrated here)
• Splitting the root introduces a new root of fan-out 2 and causes the tree 

to grow “up” by one level



Deletion

• Delete a record with search key value 130

28

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

Look up the key
to be deleted…

And delete it
Oops, node is too empty!

If a sibling has more
than enough keys,
steal one!



Stealing from a sibling

29

10
0

10
1

11
0

12
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
6

Remember to fix the key
in the least common ancestor 
of the affected nodes



Another deletion example

• Delete a record with search key value 179

30

10
0

10
1

11
0

12
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
6

18
0

Max fan-out: 4

Cannot steal from siblings
Then coalesce (merge) with a sibling!



Coalescing

• Deletion can “propagate” all the way up to the root of the 
tree (not illustrated here)
• When the root becomes empty, the tree “shrinks” by one level

31

10
0

10
1

11
0

12
0

15
0

15
6

18
0

20
0

10
0

12
0

15
6

18
0

Max fan-out: 4

Remember to delete the
appropriate key from parent



Extensible hashing example – 1

• Insert 𝑘 with ℎ 𝑘 = 0101
• Bucket too full? Split (next slide)
• Allowing some overflow is also fine (and sometimes 

necessary)

32

0101

0
1

1000

1001
0011

1

1

1
Directory Buckets

Local
depth

Global
depth

(always the max
of local depths)

Showing hashed values here for ease 
of understanding, but in reality, we 
store original key values



Extensible hashing example – 2

33

1000

1001
0101

1

2

0
1

1
Directory BucketsLocal

depth
Global
depth

00112

00
01
10
11

2

Upon split:
• ++local depth, redistribute contents, and ++global 

depth (double the directory size) if necessary

Each half = copy of 
the original directory, 
except one entry in 
the second half points 
to the new bucket



Extensible hashing example – 3

• Insert 1110 
(no split necessary) 

34

1000

1001
0101

1

2Directory

BucketsLocal
depth

Global
depth

00112

00
01
10
11

2

1110



Extensible hashing example – 4

• Insert 0000 
(split, but no
 directory doubling) 

35

1000
1110

1001
0101

1

2Directory

Buckets

Local
depth

Global
depth

00112

00
01
10
11

2

0000

11102

1000
0000

2



11102

Extensible hashing example - 5

36

1001
0101

2Directory

BucketsLocal
depth

Global
depth

00112

1000
0000

2

00
01
10
11

2

• Insert 0001 
(split +
 directory doubling) 

0001

00112

1001
0001

3

01013

000
001
010
011
100
101
110
111

3



Linear hashing

• No extra indirection through a directory
• Fix the splitting/growth order
• Use some extra math to figure out the right bucket

• Grow only when utilization (avg. # entries per bucket  / 
max # entries per block) exceeds a given threshold

37

0000
1010

1111

𝑛: # of primary buckets (not counting overflow blocks)
𝑖 = log! 𝑛 : # of hash bits in use (global depth)
threshold = 85% (a range of the buckets may use 𝑖 − 1 bits)

𝑛 = 2, 𝑖 = 1
bucket 0 bucket 1

Local depth reflected by label, but no 
need to store explicitly



Linear hashing example – 1 

38

0000
1010

1111
0101

𝑛 = 2, 𝑖 = 1
bucket 0 bucket 1

Inserting 0101 exceeds threshold — grow

• Split the first bucket with the lowest depth — it’s 
always the bucket 𝑛 − 2 +,-! .  (0-based index)
• Often not the bucket you are inserting into!

• File grows linearly at the end (hence the name)

0000 1111
0101

𝑛 = 3, 𝑖 = 2
bucket 00 bucket 1

1010
bucket 10



Linear hashing example – 2

39

0000 1111
0101

𝑛 = 3, 𝑖 = 2
bucket 00 bucket 1

1010
bucket 10

Inserting 0001 doesn’t exceed threshold
Overflow is needed

0001

Inserting 1100 exceeds threshold — grow

1

2

1100

0000
1100

0101
0001

𝑛 = 4, 𝑖 = 2
bucket 00 bucket 01

1010
bucket 10

1111
bucket 11



Index-only plan

• For example: 
• SELECT firstname, pop FROM User WHERE pop > ‘0.8’ 

AND firstname = ‘Bob’;
• non-clustering index on (firstname, pop)

• A (non-clustered) index contains all the columns 
needed to answer the query without having to 
access the tuples in the base relation.
• Avoid one disk I/O per tuple 
• The index is much smaller than the base relation 

40



Query Processing &
Optimization

41



A query’s trip through the DBMS

42

Parser

Validator

Optimizer

Executor

Result

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =
      Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Physical plan
PROJECT (name, gid)

MERGE-JOIN (gid)

SCAN (Member)
SCAN (Group)

SORT (gid)

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×



Query execution
• Scan

• Table scan
• Selection, Duplicate-preserving projection 
• Nested-loop join

• Sort 
• External merge sort
• Duplicate elimination, Grouping and Aggregation
• Sort-merge join, Union (set), Difference, 

Intersection
• Hash

• Hash join, union (set), difference, intersection, 
duplicate elimination, grouping and aggregation

• Index
• Selection, index nested-loop join, zig-zag join

43



Notation and Assumption
• Relations: 𝑅, 𝑆
• Tuples: 𝑟, 𝑠
• Number of tuples: 𝑅 , 𝑆
• Number of disk blocks: 𝐵 𝑅 , 𝐵 𝑆
• Number of memory blocks available: 𝑀
• Cost metric
• Number of I/O’s (blocks transferred between memory 

and disk)
• Memory requirement

• Not counting the cost of writing the result out
• Same for any algorithm
• Maybe not needed – results may be pipelined into 

downstream operator
44



Table scan

• Scan table R and process the query
• Selection over R
• Projection of R without duplicate elimination

• I/O’s: 𝐵 𝑅
• Stop early if it is a lookup by key

• Memory requirement: 𝑀 ≥ 2 (blocks)
• 1 for input, 1 for buffer output
• Increase 𝑀	does not improve I/O

45

Disk

r1 r2 R

Memory

r3 r4

….

r1 r2

r1 r2

Buffer output

input 



Tuple-based Nested-loop join

𝑅 ⋈/ 𝑆
• For each block of 𝑅, and for each 𝑟 in the block:

   For each block of 𝑆, and for each 𝑠 in the block:
  Output 𝑟𝑠	if 𝑝 evaluates to true over 𝑟 and 𝑠

• 𝑅 is called the outer table; 𝑆 is called the inner table
• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ 𝐵 𝑆

• Memory requirement: 3
46

Blocks of 𝑅 are moved 
into memory only once

Blocks of 𝑆 are moved into 
memory 𝑅  times



Block-based nested-loop join

𝑅 ⋈/ 𝑆
• For each block of 𝑅

For each block of 𝑆
    For each 𝑟 in the 𝑅 block
 For each 𝑠 in the 𝑆 block
  Output 𝑟𝑠	if 𝑝 evaluates to true over 𝑟 and 𝑠

• I/O’s: 𝐵 𝑅 + 𝐵 𝑅 ⋅ 𝐵 𝑆

• Memory requirement: same as before

47

Blocks of R are moved 
into memory only once

Blocks of S are moved into 
memory B(R) times



More improvements

• Stop early if the key of the inner table is being 
matched
• Make use of available memory
• Stuff memory with as much of 𝑅 as possible, stream 𝑆 

by, and join every 𝑆 tuple with all 𝑅 tuples in memory

• I/O’s: 𝐵 𝑅 + + ,
-.! ⋅ 𝐵 𝑆

• Or, roughly: 𝐵(𝑅) ⋅ 𝐵(𝑆)/𝑀
• Memory requirement: 𝑀 (as much as possible)

• Which table would you pick as the outer? (exercise)

48



External merge sort
Remember (internal-memory) merge sort?
Problem: sort 𝑅, but 𝑅 does not fit in memory
• Pass 0: read 𝑀 blocks 

of 𝑅 at a time, sort them, 
and write out a level-0 run

• Pass 1: merge 𝑀 − 1  
level-0 runs at a time, 
and write out a level-1 run

• Pass 2: merge 𝑀 − 1  level-1 runs at a time, 
and write out a level-2 run

…
• Final pass produces one sorted run

49

Memory
𝑅

Level-0

…

…

… Level-1

Disk



Sort-merge join

𝑅 ⋈8.:;<.= 𝑆
• Sort 𝑅 and 𝑆 by their join attributes
• 𝑟, 𝑠 ← the first tuples in sorted 𝑅 and 𝑆 
• Repeat until one of 𝑅 and 𝑆 is exhausted:
• If 𝑟. 𝐴 > 𝑠. 𝐵, then 𝑠 ← next tuple in 𝑆
• Else if 𝑟. 𝐴 < 𝑠. 𝐵, then 𝑟 ← next tuple in 𝑅
• Else (𝑟. 𝐴 = 𝑠. 𝐵) 

output all matching tuples;
𝑟, 𝑠 ← next tuples in 𝑅 and 𝑆 respectively

• If 𝑅 is not exhausted, output remaining tuples in 𝑅
• If 𝑆 is not exhausted, output remaining tuples in 𝑆

50



Hash join

𝑅 ⋈8.:;<.= 𝑆
• Main idea
• Partition 𝑅 and 𝑆 by hashing their join attributes, and 

then consider corresponding partitions of 𝑅 and 𝑆
• If 𝑟. 𝐴 and 𝑠. 𝐵 get hashed to different partitions, they 

don’t join

51

Nested-loop join 
considers all slots

1

2

1 2 3 4 5𝑅

𝑆
3

4

5

Hash join considers only
those along the diagonal!



Partitioning phase

• Partition 𝑅 and 𝑆 according to the same hash 
function on their join attributes

52

𝑀 − 1 partitions of 𝑅

DiskMemory

𝑅

Same for 𝑆

… …
Each partition has a size of 

B(R)/(M-1) 



Probing phase

• Read in each partition of 𝑅, stream in the 
corresponding partition of 𝑆, join
• Typically build a hash table for the partition of 𝑅

• Not the same hash function used for partition, of course!

53

Disk Memory

𝑅
partitions

𝑆
partitions

…
…

…load

stream For each 𝑆 tuple,
probe and join



Indexes: Selection using index

• Equality predicate: 𝜎:;> 𝑅
• Use an ISAM, B+-tree, or hash index on 𝑅 𝐴

• Range predicate: 𝜎:?> 𝑅
• Use an ordered index (e.g., ISAM or B+-tree) on 𝑅(𝐴)
• Hash index is not applicable

• Index-only queries which do not require retrieving 
actual tuples
• Example: 𝜋2 𝜎234 𝑅

• Primary index clustered according to search key
• One lookup leads to all result tuples in their entirety

54



Index nested-loop join

𝑅 ⋈8.:;<.= 𝑆
• Idea: use a value of 𝑅. 𝐴 to probe the index on 𝑆 𝐵
• For each block of 𝑅, and for each 𝑟 in the block:

    Use the index on 𝑆 𝐵  to retrieve 𝑠 with 𝑠. 𝐵 = 𝑟. 𝐴
         Output 𝑟𝑠
• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ lookup + fetching cost
• Typically, the cost of an index lookup is 2-4 I/O’s
• Beats other join methods if 𝑅  is not too big
• Better pick 𝑅 to be the smaller relation

• Memory requirement: 𝑀 ≥ 3 (blocks)

55



Zig-zag join using ordered indexes
𝑅 ⋈!.#$%.& 𝑆
• Idea: use the ordering provided by the indexes on 𝑅 𝐴  

and 𝑆 𝐵  to eliminate the sorting step of sort-merge join
• Use the larger key to probe the other index

• Possibly skipping many keys that don’t match

56

B+-tree on 𝑅 𝐴

B+-tree on 𝑆 𝐵

1 2 3 4 7 9 18

1 7 9 11 12 17 19

(1)

(1) (2)

(2) (3)

(4)

(4) (5)

(5) (6)



Back to the trip

57

Parser

Validator

Optimizer

Executor

Result

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =
      Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Physical plan
PROJECT (name, gid)

MERGE-JOIN (gid)

SCAN (Member)
SCAN (Group)

SORT (gid)

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×



Query optimization

• Why query optimization?
• Search space
• What are the possible equivalent logical plans?
• What are the possible physical plans? (Lecture 16)

• Search strategy
• Rule-based strategy
• Cost-based strategy

58

1 second 1 hour1 minute

Any of these will do



Algebraic equivalences
• Join reordering: × and ⋈ are associative and 

commutative (except column ordering)

• Convert 𝜎/-× to/from ⋈/: 𝜎/ 𝑅×𝑆 = 𝑅 ⋈/ 𝑆
• Merge/split 𝜎’s: 𝜎/" 𝜎/!𝑅 = 𝜎/"∧/!𝑅
• Merge/split 𝜋’s: 𝜋AB 𝜋A!𝑅 = 𝜋A"∧A!𝑅 
• Push down 𝜎: (𝑝8  involves only 𝑅; 𝑝< involves only 𝑆; 𝑝 

and 𝑝C involve 𝑅 and 𝑆) 

 𝜎/∧/#∧/$ 𝑅 ⋈/% 𝑆 = 𝜎/#𝑅 ⋈/∧/% 𝜎/$𝑆  
• Push down 𝜋: 𝜋A 𝜎/𝑅 = 𝜋A 𝜎/ 𝜋A∪A%𝑅
• 𝐿7 is the set of columns referenced by 𝑝

59



Algebraic equivalences

• Push down 𝜋 : (𝐿8  is the set of columns referenced
by 𝑝 and 𝐿 for 𝑅; 𝐿< is the set of columns referenced
by 𝑝 and 𝐿 for 𝑆)

  𝜋A 𝑅 ⋈/ 𝑆 = 𝜋A 𝜋A8𝑅 ⋈/ 𝜋A$𝑆

• Push down − : 
• Suppose 𝑅 and 𝑇 have the same schema: 

𝑅 ⋈ 𝑆 − 𝑇 ⋈ 𝑆 = 𝑅 − 𝑇 ⋈ 𝑆
• Suppose 𝑆 and𝑊 also have the same schema

𝑅 ⋈ 𝑆 − 𝑇 ⋈ 𝑊
= R − T ⋈ S ∪ R ⋈ S − W

60



Rule-based query optimization

61

Reduce the size of 
intermediate results

𝜋Group.name
𝜎User.age=18 ∧ User.uid = Member.uid ∧ Member.gid = Group.gid
×

Member
Group×

User 𝜋Group.name
𝜎Member.gid = Group.gid
×

Member

Group

×

User

𝜎User.uid = Member.uid

𝜎age=18

Push down 𝝈
𝜋Group.name
⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid = Member.uid

𝜎age=18

Convert 𝝈𝒑-× to ⋈𝒑



Selections with equality predicates

Consider 𝜎:;>𝑅

• DBMSs typically store the following in the catalog
• Size of 𝑅: 𝑅
• Number of distinct 𝐴 values in 𝑅: 𝜋2𝑅

• Assumption of uniformity: A-values are uniformly 
distributed in tuples from 𝑅
• 𝜎:;>𝑅 ≈ B8 F&8
• Selectivity factor of 𝐴 = 𝑣  is <: ;!,
• Selectivity: the probability that any row will satisfy a 

predicate
62



Conjunctive predicates

Consider 𝜎:;G	∧	=;>𝑅

• Assumption of selection independence: 𝐴 = 𝑢  
and 𝐵 = 𝑣  independently select tuple in 𝑅
• Counterexample: major and advisor, or 𝐴 is the key

• 𝜎:;G	∧	=;>𝑅 ≈ B8 F&8 ⋅ F'8
• Selectivity factor of 𝐴 = 𝑢  is <: ;!,
• Selectivity factor of 𝐵 = 𝑣  is <: ;",
• Selectivity factor of (𝐴 = 𝑢) 	∧ (𝐵 = 𝑣) is <: ;!, ⋅ ;",
• Reduce total size by all selectivity factors

63



Negated and disjunctive predicates

Consider 𝜎:I>𝑅
• 𝜎:I>𝑅 ≈ 𝑅 ⋅ 1 − BB F&8
• Selectivity factor of ¬𝑝 is (1 − selectivity factor of 𝑝)

Consider 𝜎:;G	∨	=;>𝑅
• 𝜎:;G	∨	=;>𝑅 ≈ 𝑅 ⋅ BB F&8 + BB F'8 	 ?
• Tuples satisfying 𝐴 = 𝑢  and 𝐵 = 𝑣  are counted twice!

• 𝜎:;G	∨	=;>𝑅 ≈ 𝑅 ⋅ BB F&8 + BB F'8 − BB F&8 F'8
• Inclusion-exclusion principle

64



Range predicates

Consider 𝜎:?>𝑅

• DBMSs typically store the following in the catalog
• Largest R.A value: high 𝑅. 𝐴
• Smallest R.A value: low 𝑅. 𝐴

• 𝜎:?>𝑅 ≈ 𝑅 ⋅ KL-K 8.: M>
KL-K 8.: M+,N 8.: OB

• Selectivity factor is =>?= ,.2 .4
=>?= ,.2 .ABC ,.2

65

low v high

ℎ𝑖𝑔ℎ 𝑅. 𝐴 − 𝑣

ℎ𝑖𝑔ℎ 𝑅. 𝐴 − 𝑙𝑜𝑤(𝑅. 𝐴)



Two-way natural join

• 𝑄 = 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐴, 𝐶
• Assumption of containment of value sets: every 

tuple in the “smaller” relation (one with fewer 
distinct values for the join attribute) joins with some 
tuple in the other relation
• That is, if 𝜋2𝑅 ≤ 𝜋2𝑆  then 𝜋2𝑅 ⊆ 𝜋2𝑆
• Certainly not true in general
• But holds many practical cases 

• 𝑄 ≈ 8 ⋅ <
PQR F&8 , F&<

• Selectivity factor of 𝑅. 𝐴 = 𝑆. 𝐴 is <: MNO ;!, , ;!P

66



Multiway natural join

• 𝑄: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝐷
• What is the number of distinct 𝐶 values in the join 

of 𝑅 and 𝑆?
• Assumption of preservation of value sets
• A non-join attribute does not lose values from its set of 

possible values
• That is, if 𝐶 is in 𝑆 but not 𝑅, then 𝜋Q 𝑅 ⋈ 𝑆 = 𝜋Q𝑆
• Certainly not true in general
• But holds many practical cases

67



Multiway natural join (cont’d)

• 𝑄: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝐷
• Reduce the total size by the selectivity factor of each 

join predicate
• 𝑅. 𝐵 = 𝑆. 𝐵: <: MNO ;", , ;"P

• 𝑅 ⋈ 𝑆 = <, ⋅|P|
MNO ;", , ;"P

• (𝑅 ⋈ 𝑆). 𝐶 = 𝑇. 𝐶: <: MNO ;#(,⋈P) , ;#S = <: MNO ;#P , ;#S

• 𝑄 ≈ , ⋅ P ⋅|S|
MNO ;", , ;"P ⋅MNO ;#P , ;#S

68



Summary of Cardinality Estimation
• Lots of assumptions and very rough estimation
• An accurate estimator is not needed
• Maybe okay if we overestimate or underestimate,

since it may not change the query plan selection

• Pay attention to the assumptions!

69



Transaction

70



Transactions

• A transaction is a sequence of 
database operations (read or write)
• ACID properties of transactions (TXs)
• Atomicity: TXs are either completely 

done or not done at all (next lecture)
• Consistency: TXs should leave the 

database in a consistent state
• Isolation: TXs must behave as if they 

execute in isolation (this-next lecture)
• Durability: Effects of committed TXs are 

resilient against failures (next lecture)

71

Jim Gray, Turing Award 1998, 
who coined this term (as 
well as data cube and many 
other things)

-- Begins implicitly
SELECT …;
UPDATE …;
ROLLBACK | COMMIT;



Different Isolation Levels

72

Isolation Levels in SQL 
Standard

Read Uncommitted
Read Committed
Repeatable Read

Serializable

Stronger Consistency

Higher Overheads

Less Concurrency

Weaker Consistency

Lower Overheads

More Concurrency

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ; 
BEGIN TRANSACTION; 
SELECT * FROM Order; 
…
COMMIT TRANSACTION



READ UNCOMMITTED

• Can read “dirty” data
• A data item is dirty if it is written by an uncommitted 

transaction

• Problem: What if the transaction that wrote the 
dirty data eventually aborts?
• Example: wrong average
• -- T1:    -- T2:

UPDATE User
SET pop = 0.99
WHERE uid = 142;  SELECT AVG(pop)
     FROM User;
ROLLBACK;
     COMMIT;

73



READ COMMITTED

• No dirty reads, but non-repeatable reads possible
• Reading the same data item twice can produce different 

results

• Example: different averages
• -- T1:    -- T2:

     SELECT AVG(pop)
     FROM User;
UPDATE User
SET pop = 0.99
WHERE uid = 142;
COMMIT;
     SELECT AVG(pop) 
                 FROM User;
     COMMIT;

74



REPEATABLE READ

• Reads are repeatable, but may see phantoms
• Reading the same data item twice still see the same 

value
• But some new data item may appear

• Example: different average (still!)
• -- T1:    -- T2:

     SELECT AVG(pop)
     FROM User;
INSERT INTO User
VALUES(789, ‘Nelson’,10, 0.1);
COMMIT;
     SELECT AVG(pop) 
                 FROM User;
     COMMIT;

75



SERIALIZABLE

• All three anomalies can be avoided:
• No dirty reads
• No non-repeatable reads
• No phantoms

• For any two transactions T1 and T2:
• T1 followed by T2 or T2 followed by T1

76



Execution histories of Transactions

• A transaction is an ordered sequence of read or
write operations on the database, followed by
abort or commit.
• Database is a set of independent data items x, y, z etc.
• T = {read(x), write(y), read(z), write(z), write(x), commit}

• An execution history over a set of transactions 
𝑇B…𝑇. is an interleaving of the operations of 
𝑇B…𝑇. in which the operation ordering imposed by 
each transaction is preserved.
• Transactions interact with each other only via reads and 

writes of the same date item
77



Examples for valid execution history

• 𝑇B = {𝑤B 𝑥 , 𝑤B 𝑦 , 𝑐B}, 𝑇T = { 𝑟T 𝑥 , 𝑟T 𝑦 , 𝑐T }

78

𝑇B    𝑇T

w1(x)
 r2(x)
w1(y) 
 r2(y)
c1 
 c2

𝐻U 𝐻V 𝐻W 𝐻X

𝑇B    𝑇T

w1(x)
w1(y) 
c1
 r2(x)
 r2(y) 
 c2

𝑇B    𝑇T

w1(x)
 r2(x)
 r2(y) 
w1(y) 
c1
 c2

𝑇B    𝑇T

 r2(x)
 r2(y) 
 c2
w1(x)
w1(y) 
c1



Serial execution histories

• 𝑇B = {𝑤B 𝑥 , 𝑤B 𝑦 , cB}, 𝑇T = { 𝑟T 𝑥 , 𝑟T 𝑦 , 𝑐T }

79

𝑇B    𝑇T

w1(x)
 r2(x)
w1(y) 
 r2(y)
c1 
 c2

𝐻U 𝐻V 𝐻W 𝐻X

𝑇B    𝑇T

w1(x)
w1(y) 
c1
 r2(x)
 r2(y) 
 c2

𝑇B    𝑇T

w1(x)
 r2(x)
 r2(y) 
w1(y) 
c1
 c2

𝑇B    𝑇T

 r2(x)
 r2(y) 
 c2
w1(x)
w1(y) 
c1

no interleaving 
operations from 

different transactions



Equivalence of execution histories

• Two operations conflict if
• they belong to different transactions,
• they operate on the same data item, and
• at least one of the operations is write

• two types of conflicts: read-write and write-write

• Two execution histories are (conflict) equivalent if
• they are over the same set of transactions
• the ordering of each pair of conflicting operations is the 

same in each history

80



Serializable

• A history 𝐻 is said to be (conflict) serializable if there is 
some serial history 𝐻′ (conflict) equivalent to 𝐻.

81

𝑇B    𝑇T

w1(x)
       r2(x)
w1(y) 
       r2(y)
c1 
 c2

𝐻U = 𝐻V

𝑇B    𝑇T

w1(x)
w1(y) 
c1
       r2(x)
       r2(y) 
       c2

𝑇B    𝑇T

w1(x)
       r2(x)
       r2(y) 
w1(y) 
c1
 c2



Serializable

• Serialization graph (𝑉, 𝐸) for history 𝐻:
• 𝑉 = {𝑇: 	𝑇 is a committed transaction in 𝐻}
• 𝐸 = {𝑇T → 𝑇U: ∃	𝑜T ∈ 𝑇T and	𝑜U ∈ 𝑇U conflict; and 𝑜T < 𝑜U}

• A history is serializable if and only if its serialization 
graph is acyclic (i.e., no cycles)

82

Two operations conflict if
• they belong to different transactions;
• they operate on the same data item;
• at least one of the operations is write



Example

• Example:𝐻U = 𝑤B 𝑥 𝑟T 𝑥 𝑤B 𝑦 𝑟T[𝑦]𝑐B𝑐T

83

𝑇: 𝑇!

𝑇B    𝑇T

w1(x)
 r2(x)
w1(y) 
 r2(y)
c1 
 c2

𝐻U

𝑤: 𝑥 and 𝑟! 𝑥 conflict, and 𝑤: 𝑥 < 𝑟! 𝑥
𝑤: 𝑦 and 𝑟![𝑦] conflict, and 𝑤: 𝑦 < 𝑟! 𝑦

no cycles,
so serializable



Example

• Example: 𝐻W = 𝑤B 𝑥 𝑟T 𝑥 𝑟T[𝑦]𝑤B 𝑦 cBcT

84

𝑇: 𝑇! Not serializable

𝐻W

𝑇B    𝑇T

w1(x)
 r2(x)
 r2(y) 
w1(y) 
c1
 c2

𝑤: 𝑥 and 𝑟! 𝑥 conflict, and 𝑤: 𝑥 < 𝑟! 𝑥 ; 
𝑤: 𝑦 and 𝑟![𝑦] conflict, and 𝑟![𝑦] < 𝑤: 𝑦



Locking

(Pessimistic) Assume that conflicts will happen and 
take preventive action
• If a transaction wants to read x , it must first 

request a shared lock (S mode) on x
• If a transaction wants to modify x, it must first 

request an exclusive lock (X mode) on x
• Allow one exclusive lock, or multiple shared locks

85

Mode of lock currently held
by other transactions

Mode of the lock requested

Grant the lock?

Compatibility matrix

lockS lockX

lockS

lockX

Yes No

No No



Two-phase locking (2PL)

• All lock requests precede all unlock requests
• Phase 1: obtain locks; Phase 2: release locks

86

𝑇!   𝑇"

r1(x)
w1(x)

 r2(x)
 w2(x)

 r2(y)
 w2(y)
 r1(y)
w1(y)

lock-X(x)

lock-X(y)

unlock(y)

unlock(x) lock-X(x)

lock-X(y)

Cannot obtain the lock on y
until 𝑇! unlocks

𝑇!   𝑇"

r1(x)
w1(x)
 r2(x)
 w2(x)
 r1(y)
w1(y)
 r2(y)
 w2(y)

2PL guarantees
serializable

history



Remaining problems of 2PL

• 𝑇T has read uncommitted 
data written by 𝑇B
• If 𝑇B aborts, then 𝑇T must 

abort as well
• Cascading aborts possible if 

other transactions have 
read data written by 𝑇T
• Even worse, schedule is not 

recoverable if 𝑇T commits 
before 𝑇B

87

𝑇!   𝑇"

r1(x)
w1(x)
 

 r2(x)
 w2(x)
 r1(y)
w1(y)
 
 r2(y)
 w2(y)
                

abort

lock-X(x)

lock-X(y)

unlock(y)

unlock(x) lock-X(x)

lock-X(y)

unlock(x)
unlock(y)
commit



Remaining problems of 2PL

• Deadlock: A transaction 
remains blocked until 
there is an intervention.
• 2PL may cause 

deadlocks, requiring the 
abort of one of the 
transactions

88

𝑇!   𝑇"

r1(x)
w1(x)
 r2(y)
 
 r2(x)

 r1(y)
w1(y)
…           
                 w2(x)
  w2(y)

lock-X(x)

lock-X(y)

lock-S(y)

lock-S(x)

Cannot obtain 
the lock on x
until 𝑇! unlocks

Cannot obtain 
the lock on y
until 𝑇" unlocks unlock-X(x)

unlock-S(y)



Strict 2PL

• Only release X-locks when 
commit/abort
• A write will block all other 

reads until the write 
commits or aborts

• Used in many practical
DBMSs
• No cascading aborts
• But it can still lead to 

deadlocks! (see slide 14)

• Less concurrency than 2PL

89

𝑇!   𝑇"

r1(x)
w1(x)
 

 r2(x)
 w2(x)
 r1(y)
w1(y)
 
 r2(y)
 w2(y)
                

abort

lock-X(x)

lock-X(y)

unlock(y)
unlock(x)

lock-X(x)

lock-X(y)

Cannot obtain 
the lock on x
until 𝑇! unlocks

Cannot obtain 
the lock on y
until 𝑇! unlocks



Conservative 2PL

• Only acquire locks at the
beginning of the transaction
and release X-locks when 
commit/abort

• Not practical due to the very
limited concurrency
• No cascading aborts
• No deadlocks

90

𝑇!   𝑇"

r1(x)
w1(x)
 r2(y)
 
 r2(x)
 r1(y)
w1(y)
commit         
                 w2(x)
  w2(y)

lock-X(x)
lock-X(y)

lock-S(y)

lock-S(x)

unlock(x)
unlock(y)

Cannot obtain 
locks on x or y
until 𝑇! unlocks



Failures

• System crashes right after a transaction T1 commits; 
but not all effects of T1 were written to disk
• How do we complete/redo T1 (durability)?

• System crashes in the middle of a transaction T2; 
partial effects of T2 were written to disk
• How do we undo T2 (atomicity)?

91

T1start end

time

T2start end



Log

• When a transaction 𝑇 starts: 〈𝑇, start〉
• Record values before and after each modification of 

data item 𝑋: 〈𝑇, 𝑋, old_value_of_X, new_value_of_X〉
• When a transaction 𝑇 commits: 〈𝑇, commit〉
• When a transaction 𝑇 aborts: 〈𝑇, abort〉

92

〈	T1, start 〉
〈	T1, A, 800, 700 〉
〈	T1, B, 400, 500 〉
〈	T1, commit 〉

Log

Write-ahead logging (WAL): Before 
X is modified on disk, the log record 
pertaining to X must be flushed



Undo/redo logging - repeat history!
• U: track the set of active transactions at crash
• Redo phase: scan forward to the end of the log
• For a log record 〈 T, start 〉, add T to U
• For a log record 〈 T, X, old, new 〉, issue write(X, new)
• For a log record 〈 T, commit | abort 〉, remove T from U

• If abort, undo changes of T i.e., for a log record 〈 T, X, old, new 〉, 
issue write(X, old)

• Undo phase: scan backward to the start of the log
• Undo the effects of transactions in U
• For a log record 〈 T, X, old, new 〉 where T is in U, issue 

write(X, old), and log this operation too, i.e., add 〈 T, X, 
old 〉
• Log 〈T, abort 〉 when all effects of T have been undone

93



94


