
Midterm Review

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcements

• Appealing of Assignment 1
• Check remark request guidelines on Piazza
• Reach out to corresponding TA, IA (Guy), ISC (Sylvie)
• Check sample solutions on Learn

• Milestone 1 of Group Project
• Due on June 19

• Switch-type cut-off for assessment
• Due on June 19

• Assignment 2
• Coverage: Lecture 4 - Lecture 12
• Check online office hours on Piazza
• Due on June 24

2

Midterm Exam

• Logistics
• Time & Date: 4:30 PM – 6:00 PM June 27
• Location: M3 1006 and STC 0040 (check your room)
• All contents in Lectures 1 – 12 (no optional parts)
• Closed book, but a two-page reference sheet will be

provided (already released on Learn)

• How to prepare (in addition to lectures)?
• Sample questions released on Learn
• Partial solutions to be released later on Learn
• A1 (with partial solutions) and A2

3

Relational Model and
Relational Algebra

4

Relational data model

• A database is a collection of relations (or tables)
• Each relation has a set of attributes (or columns)
• Each attribute has a unique name and a domain (or type)
• The domains are required to be atomic

• Each relation contains a set of tuples (or rows)
• Each tuple has a value for each attribute of the relation
• Duplicate tuples are not allowed

5

Single, indivisible
piece of information

Types of integrity constraints

• Tuple-level
• Domain restrictions, attribute comparisons, etc.

• E.g. age cannot be negative
• E.g. for flights table, arrival time > take off time

• Relation-level
• Key constraints

• E.g. uid should be unique in the User relation
• Functional dependencies (Lecture 11)

• Database-level
• Referential integrity – foreign key

• uid in Member must refer to a row in User with the same uid

6

Key (Candidate Key)
A set of attributes 𝐾 for a relation 𝑅 is a key if
• Condition 1: In no instance of 𝑅 will two different

tuples agree on all attributes of 𝐾
• That is, 𝐾 can serve as a “tuple identifier”

• Condition 2: No proper subset of 𝐾 satisfies the
above condition
• That is, 𝐾 is minimal

• Example: User (uid, name, age, pop)
• uid is a key of User
• age is not a key (not an identifier)
• {uid, name} is not a key (not minimal)

• One candidate key is assigned to be primary key

7

Satisfies only
Condition 1

, but a superkey

Relational algebra
• A language for querying relational data based on

“operators”
• Set semantics

8

RelOp

RelOp

Output or
intermediate result
tables are transient

Summary of operators
Core Operators
1. Selection: 𝜎!𝑅
2. Projection: 𝜋"𝑅
3. Cross product: 𝑅×𝑆
4. Union: 𝑅 ∪ 𝑆
5. Difference: 𝑅 − 𝑆
6. Renaming: 𝜌# $!→$!" ,$#→$#" ,… 𝑅

Derived Operators
1. Join: 𝑅 ⋈! 𝑆
2. Natural join: 𝑅 ⋈ 𝑆
3. Intersection: 𝑅 ∩ 𝑆
4. Division: 𝑅 ÷ 𝑆

9

Note: Only use
these operators for

assignments &
exams

Note: Outerjoin is
also allowed.

Non-monotone operators

• If some old output rows may become invalid, and need to
be removed à the operator is non-monotone
• Otherwise (old output rows always remain “correct”) à the

operator is monotone

10

RelOp
Add more rows

to the input...

What happens
to the output?

uid gid

123 gov

857 abc

uid gid

123 gov

901 edf

uid gid

857 abc

857 abc

This old row
becomes invalid
because the new
row added to S

−

Expression tree notation
11

𝜌 !"#→!"#(,&"#→&"#(𝜌 !"#→!"#),&"#→&"#)

𝑀𝑒𝑚𝑏𝑒𝑟 𝑀𝑒𝑚𝑏𝑒𝑟

⋈!"#('!"#)	∧	&"#(*&"#)

𝜋!"#(

• IDs of users who belong to at least two groups

• IDs of groups that contain at least two users

An example

• IDs of groups that Lisa doesn’t belong to

12

Group IDs that Lisa belongs toAll group IDs
−

𝜋&"#

𝐺𝑟𝑜𝑢𝑝

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

𝑀𝑒𝑚𝑏𝑒𝑟
⋈

𝜋&"#

𝑈𝑠𝑒𝑟
𝜎+,-.'"0"1,"

𝜋!"#𝐺𝑟𝑜𝑢𝑝 − 𝜋!"# 𝜎$%&'("*"+%"𝑈𝑠𝑒𝑟 ⋈ 𝑀𝑒𝑚𝑏𝑒𝑟

Most popular user

• Who are the most popular?
• Who do NOT have the highest pop rating?
• Whose pop is lower than somebody else’s?

13

𝜋!"#

𝑈𝑠𝑒𝑟

−

𝑈𝑠𝑒𝑟𝑈𝑠𝑒𝑟

𝜌21.3(𝜌21.3)

⋈21.3(.565721.3).565

𝜋21.3(.!"#

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Division

• Who joins all the groups that Lisa joins?
• All groups (ids) that Lisa belongs to Suppose as S(gid)
• Who joins all groups in S?
• Who does not join some group in S?

14

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

S𝜋!"#
𝑀𝑒𝑚𝑏𝑒𝑟

×
−

𝑀𝑒𝑚𝑏𝑒𝑟

𝜋!"#𝜋!"#

𝑀𝑒𝑚𝑏𝑒𝑟

−

SQL

15

Summary of SQL
• Basic topics
• Data-definition language (DDL): define/modify

schemas, drop relations
• Data-manipulation language (DML): query data

• SELECT-FROM-WHERE
• DISTINCT, UNION/EXCEPT/INTERSECT (ALL)
• Table, Scalar, IN, EXISTS, ALL, ANY)
• GROUP BY, HAVING
• ORDER
• NULL and JOIN
and modify data (INSERT/DELETE/UPDATE)

• Constraints (NOT NULL, UNIQUE, PRIMARY/FOREIGN
KEY, CHECK, ASSERTION)

• Advanced topics
• View, Triggers, Recursion, Index, Programming (optional)

16

DDL
• CREATE TABLE table_name (…, name type, …);

• DROP TABLE table_name;

• ALTER TABLE table_name;

17

CREATE TABLE User(uid INT, name VARCHAR(30), age INT, pop
DECIMAL(3,2));
CREATE TABLE Group (gid CHAR(10), name VARCHAR(100));
CREATE TABLE Member (uid INT, gid CHAR(10));

DROP TABLE User;
DROP TABLE Group;
DROP TABLE Member;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Drastic action:
deletes ALL info

about the table, not
just the contents

ALTER TABLE Member ADD date;
ALTER TABLE Member RENAME date TO mdate;
ALTER TABLE Member DROP mdate;

Basic queries for DML: SFW statement

• SELECT (DISTINCT) 𝐴,, 𝐴-, …, 𝐴$
FROM 𝑅,, 𝑅-, …, 𝑅&
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;

• Also called an SPJ (select-project-join) query

• Corresponds to (but not really equivalent to)
relational algebra query:

𝜋.!,.",…,.# 𝜎12$#"3"2$ 𝑅,×𝑅-×⋯×𝑅&

18

SQL set operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra
• Duplicates in input tables, if any, are first eliminated
• Duplicates in result are also eliminated

19

(SELECT * FROM Bucket1)
UNION
(SELECT * FROM Bucket2);

fruit

apple

orange

(SELECT * FROM Bucket1)
EXCEPT
(SELECT * FROM Bucket2);

fruit

(SELECT * FROM Bucket1)
INTERSECT
(SELECT * FROM Bucket2);

fruit

apple

apple

orange

fruit

apple

orange

orange

Bucket1 Bucket2

fruit

apple

orange

SQL bag operations

• Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL
• Think of each row as having an implicit count (the

number of times it appears in the table)

20

(SELECT * FROM Bucket1)
UNION ALL
(SELECT * FROM Bucket2);

apple: 2
orange:1

apple: 1
orange:2

fruit

apple

apple

orange

fruit

apple

orange

orange

Bucket1 Bucket2

(SELECT * FROM Bucket1)
EXCEPT ALL
(SELECT * FROM Bucket2);

sum up the two
counts

proper-subtract
the two counts

(SELECT * FROM Bucket1)
INTERSECT ALL
(SELECT * FROM Bucket2);

take the
minimum of the

two counts

• Query result as a table that can be used in FROM,
set/bag operations, etc.
• Temporarily exist only in the duration of the outer query

• Example: names of users belonging to at least two
groups

Table subqueries

21

SELECT name
FROM User,
 (SELECT DISTINCT m1.uid
 FROM Member m1, Member m2
 WHERE m1.uid=m2.uid AND m1.gid != m2.gid) AS temp
WHERE User.uid = temp.uid;

WITH clause

• Another way of defining a temporary table
• Available only to the query in which the WITH clause

occurs

• Example: names of users belonging to at least two
groups

22

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

WITH temp AS (SELECT DISTINCT m1.uid
 FROM Member m1, Member m2
 WHERE m1.uid=m2.uid AND m1.gid != m2.gid)
SELECT name
FROM User, temp
WHERE User.uid = temp.uid;

• A query that returns a single row can be used as a
value in SELECT, WHERE, etc.
• Example: users at the same age as Bart

• When can this query go wrong?
• Return more than 1 row
• Return no rows or NULL values

Scalar subqueries
23

SELECT *
FROM User
WHERE age = (SELECT age
 FROM User
 WHERE name = ‘Bart’);

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

• 𝑥 IN (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if 𝑥 is in the result of
𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦

• Example: users at the same age as (some) Bart

IN subqueries
24

SELECT *
FROM User,
WHERE age IN (SELECT age
 FROM User
 WHERE name = ‘Bart’);

• EXISTS (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦
is non-empty
• True if at least one row is returned by subquery

• Example: users that have the same age as (some)
Bart

• This happens to be a correlated subquery -- a subquery
that references tuple variables in surrounding queries

EXISTS subqueries
25

SELECT *
FROM User u
WHERE EXISTS (SELECT * FROM User
 WHERE name = ‘Bart’
 AND age = u.age);

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Quantified subqueries
• Universal quantification (for all):
• … WHERE 𝑥 𝑜𝑝 ALL(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True if for all 𝑡 in the 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 result such that 𝑥	𝑜𝑝	𝑡 is

true

• Existential quantification (exists):
• … WHERE 𝑥 𝑜𝑝 ANY(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True if there exists some 𝑡 in the 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 result such that
𝑥	𝑜𝑝	𝑡 is true

26

SELECT * FROM User
WHERE NOT (pop < ANY (SELECT pop FROM User));

SELECT * FROM User
WHERE pop >= ALL (SELECT pop FROM User);

Aggregates

• Standard SQL aggregate functions: COUNT, SUM,
AVG, MIN, MAX

• Example: number of users under 18, and their
average popularity

• Aggregate functions do not appear in WHERE clause
• Aggregate with DISTINCT

27

SELECT COUNT(*), AVG(pop)
FROM User
WHERE age <18;

COUNT(*) AVG(pop)

6 0.625

SELECT COUNT(DISTINCT uid) FROM Member;

GROUP BY
28

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Compute GROUP BY: group
rows according to the values
of GROUP BY columns

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

Compute SELECT
for each group

age avg_pop

10 0.55

8 0.50

SELECT age, AVG(pop) FROM User GROUP BY age;

HAVING
• Used to filter groups based on the group properties

(e.g., aggregate values, GROUP BY column values)
• List the average popularity for each age group with

more than a hundred users

29

SELECT age, AVG(pop)
FROM User
GROUP BY age
HAVING COUNT(*)>100;

SELECT T.age, T.apop
FROM (SELECT age, AVG(pop) AS
apop, COUNT(*) AS gsize FROM
User GROUP BY age) AS T
WHERE T.gsize>100;

ORDER BY and LIMIT

• List the top 3 users after sorting them by popularity
(descending) and name (ascending)

• ASC is the default option
• The LIMIT clause specifies the number of rows to return

30

SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC, name
LIMIT 3;

Three-valued logic - NULL
31

TRUE = 1, FALSE = 0, UNKNOWN = 0.5
𝑥 AND 𝑦 = min(𝑥, 𝑦)
𝑥 OR 𝑦 = max(𝑥, 𝑦)

NOT 𝑥 = 1 − 𝑥

𝑥 𝑦 𝑥 AND 𝑦 𝑥 OR 𝑦 NOT 𝑥
TRUE TRUE

TRUE UNKNOWN

TRUE FALSE

UNKNOWN TRUE

UNKNOWN UNKNOWN

UNKNOWN FALSE

FALSE TRUE

FALSE UNKNOWN

FALSE FALSE

TRUE TRUE FALSE

TRUE FALSE

FALSE TRUE

TRUE

FALSE

TRUE

TRUE

TRUE

FALSE

FALSE

FALSE

FALSE

UNKNOWN

UNKNOWN UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

TRUE

UNKNOWN

FALSE

UNKNOWN

Rules of Dealing with NULL

• Comparing a NULL with another value (including
another NULL) using =,>, etc., the result is NULL

• WHERE and HAVING clauses only select rows for
output if the condition evaluates to TRUE
• FALSE and UNKNOWN are not sufficient

• Aggregate functions ignore NULL, except COUNT(*)
• SUM, AVG, MIN, MAX all ignore NULLs
• COUNT(age) also ignores NULL
• If all inputs are NULL, SUM, AVG, MIN, MAX all return NULL

32

Unfortunate consequences

• Q1a = Q1b?

• Q2a = Q2b?

• Be careful: NULL breaks many equivalences
• Use IS NULL or NOT NULL for NULL comparisons

33

Q1a. SELECT AVG(pop) FROM User;

Q1b. SELECT SUM(pop)/COUNT(*) FROM User;

Q2a. SELECT * FROM User;

Q2b SELECT * FROM User WHERE pop=pop;

uid gid

142 dps

123 gov

857 abc

857 gov

789 foo

Full Outerjoin
34

Group

Member
A full outerjoin between R and S:
• All rows in the result of 𝑅 ⋈ 𝑆, plus
• “Dangling” 𝑅 rows (those that do not join

with any 𝑆 rows) padded with NULL’s for
𝑆’s columns

• “Dangling” 𝑆 rows (those that do not join
with any 𝑅 rows) padded with NULL’s for
𝑅’s columns

gid gname

abc Book Club

gov Student Government

dps Dead Putting Society

spr Sports Club

gid gname uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

spr Sports Club NULL

foo NULL 789

Group⟗Member

Left/Right Outerjoin
35

gid gname

abc Book Club

gov Student Government

dps Dead Putting Society

spr Sports Club

uid gid

142 dps

123 gov

857 abc

857 gov

789 foo

Group

Member

gid gname uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

spr Sports Club NULL

Group⟕Member

gid gname uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

foo NULL 789

Group⟖Member

• A left outerjoin (𝑅⟕𝑆) includes rows in 𝑅 ⋈ 𝑆
plus dangling 𝑅 rows padded with NULL’s

• A right outerjoin (𝑅⟖𝑆) includes rows in 𝑅 ⋈
𝑆 plus dangling 𝑆 rows padded with NULL’s

Outerjoin in SQL
36

SELECT * FROM Group LEFT OUTER JOIN
Member ON Group.gid = Member.gid;

SELECT * FROM Group RIGHT OUTER JOIN
Member ON Group.gid = Member.gid;

SELECT * FROM Group FULL OUTER JOIN
Member ON Group.gid = Member.gid;

SELECT * FROM Group NATURAL JOIN
Member; ≈ 𝐺𝑟𝑜𝑢𝑝 ⋈ 𝑀𝑒𝑚𝑏𝑒𝑟	

SELECT * FROM Group JOIN Member ON
Group.gid = Member.gid;

≈ 𝐺𝑟𝑜𝑢𝑝 ⟕
!"#$%.'()*+,-.,".'()

𝑀𝑒𝑚𝑏𝑒𝑟

≈ 𝐺𝑟𝑜𝑢𝑝 ⟖
!"#$%.'()*+,-.,".'()

𝑀𝑒𝑚𝑏𝑒𝑟

≈ 𝐺𝑟𝑜𝑢𝑝 ⟗
!"#$%.'()*+,-.,".'()

𝑀𝑒𝑚𝑏𝑒𝑟

≈ 𝐺𝑟𝑜𝑢𝑝 ⟕
!"#$%.'()*+,-.,".'()

𝑀𝑒𝑚𝑏𝑒𝑟⋈

Modify Data
• Insert one row or the results of a query

• Delete according to a WHERE condition

• Update: User 142 changes name to “Barney”

37

INSERT INTO Member VALUES (789, 'dps');

DELETE FROM Member WHERE uid=789 AND gid=‘dps’;

UPDATE User SET name = 'Barney’ WHERE uid = 142;

INSERT INTO Member
 (SELECT uid, ‘dps’ FROM User WHERE uid NOT IN
 (SELECT uid FROM Member WHERE gid = ‘dps’));

UPDATE User SET pop = (SELECT AVG(pop) FROM User);

DELETE m, u FROM Member m NATURAL JOIN User u
WHERE age > 18 AND gid = ‘abc';

Types of SQL constraints

• NOT NULL
• Key
• Referential integrity
• Tuple- and attribute-based CHECK’s
• General assertion

38

Example of NOT NULL
39

CREATE TABLE User
(uid INT NOT NULL,
 name VARCHAR(30) NOT NULL,
 twitterid VARCHAR(15),
 age INT NOT NULL,
 pop DECIMAL(3,2));

CREATE TABLE Group
(gid CHAR(10) NOT NULL,
 name VARCHAR(100) NOT NULL);

CREATE TABLE Member
(uid INT NOT NULL,
 gid CHAR(10) NOT NULL);

INSERT INTO User (uid, age)
VALUES (389, 18);

INSERT INTO User VALUES (789,
‘Nelson’, NULL, NULL, NULL);

Incorrect

Incorrect

Examples of KEY
40

CREATE TABLE User
(uid INT NOT NULL PRIMARY KEY,
 name VARCHAR(30) NOT NULL UNIQUE,
 twitterid VARCHAR(15) UNIQUE,
 age INT NOT NULL, pop DECIMAL(3,2));

CREATE TABLE Group
(gid CHAR(10) NOT NULL,
 name VARCHAR(100) NOT NULL,
 PRIMARY KEY (gid));

CREATE TABLE Member
(uid INT NOT NULL,
 gid CHAR(10) NOT NULL,
 PRIMARY KEY (uid, gid));

Option 2 is
required for multi-

attribute keys

At most one primary
key per table

CREATE TABLE Member
(uid INT NOT NULL PRIMARY KEY,
 gid CHAR(10) NOT NULL PRIMARY KEY,

Incorrect!

option 1

option 2

PRIMARY KEY
should not
contain NULLs

Any number of
UNIQUE keys per

table

Referential integrity in SQL

• Referenced column(s) must be PRIMARY KEY
• Some systems allow both PRIMARY KEY and UNIQUE

• Referencing column(s) form a FOREIGN KEY
• Example

41

CREATE TABLE Member
(uid INT NOT NULL REFERENCES User(uid),
 gid CHAR(10) NOT NULL,
 PRIMARY KEY (uid,gid),
 FOREIGN KEY (gid) REFERENCES Group(gid));

option 1

option 2

CREATE TABLE Group (…
gid CHAR(10) NOT NULL PRIMARY KEY);

CREATE TABLE User (…
uid INT NOT NULL PRIMARY KEY);

Enforcing referential integrity

Example: Member.uid references User.uid
• Insert or update a Member row whose uid refers to

a non-existent uid in User
• Reject

42

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User Member

Reject000 gov

Enforcing referential integrity

Example: Member.uid references User.uid
• Delete or update a User row whose uid is

referenced by some Member row
• Multiple Options (SQL)

43

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… ….

User Member

Option 1: Reject Option 2: Cascade
(ripple changes to all
referring rows)

CREATE TABLE Member
(uid INT NOT NULL
REFERENCES User(uid)
ON DELETE CASCADE,
…..);

Option 3: Set NULL
(set all references to NULL)

Tuple- and attribute-based CHECK
44

• Associated with a single table!
• Only checked when a tuple or an attribute is updated
• Reject if condition evaluates to FALSE
• TRUE and UNKNOWN are fine

• Examples: each user has age above 0 or NULL

CREATE TABLE User(...
 age INTEGER CHECK(age IS NULL OR age > 0), ...);

CREATE TABLE User(...
age INT,
CONSTRAINT minAge CHECK(age IS NULL OR age > 0), ...);

(Recap) WHERE and
HAVING clauses should

evaluate to TRUE

General assertion

• Can involve multiple tables!
• CREATE ASSERTION …CHECK assertion_condition
• Checked for any modification that could potentially

violate it
• Reject if condition evaluates to FALSE or UNKNOWN
• TRUE is required

• Example: Member.uid references User.uid

45

CREATE ASSERTION MemberUserRefIntegrity
CHECK (NOT EXISTS
 (SELECT * FROM Member
 WHERE uid NOT IN

(SELECT uid FROM User)));

Checked when
Member or User
is modified

Triggers

• A trigger is an event-condition-action (ECA) rule
• When event occurs, test condition; if condition is

satisfied, execute action

46

CREATE TRIGGER PickyPopGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW
 WHEN (newUser.pop < 0.5)
 AND (newUser.uid IN (SELECT uid
 FROM Member
 WHERE gid = ‘popgroup'))
 DELETE FROM Member
 WHERE uid = newUser.uid AND gid = ‘popgroup';

Event

Condition

Action

Transition variable

Trigger options

• Possible events include:
• INSERT ON table; DELETE ON table; UPDATE [OF column]

ON table

• Timing -- action can be executed:
• AFTER or BEFORE the triggering event
• INSTEAD OF the triggering event on views (lecture 5)

• Granularity -- trigger can be activated:
• FOR EACH ROW modified

• NEW ROW and OLD ROW
• FOR EACH STATEMENT that performs modification

• NEW TABLE and OLD TABLE

• Certain triggers are only at statement-level

47

INSTEAD OF triggers for views

• What does this trigger do?

48

CREATE TRIGGER ModifyAveragePop
INSTEAD OF UPDATE ON AveragePop
REFERENCING OLD ROW AS old, NEW ROW AS new
FOR EACH ROW
 UPDATE User
 SET pop = pop + (new.pop - old.pop);

CREATE VIEW AveragePop(pop) AS
 SELECT AVG(pop) FROM User;

UPDATE AveragePop SET pop = 0.5;

… pop …

0.4

0.4

0.5

0.3

User
0.4

0.5

+0.1

+0.1

+0.1

+0.1

For each row
to be updated
in AveragePop

Views

• A view is like a “virtual” table
• Defined by a query, which describes how to compute

the view contents on the fly
• Stored as a query by DBMS instead of query contents
• Can be used in queries just like a regular table

49

CREATE VIEW PopGroup AS
 SELECT * FROM User
 WHERE uid IN (SELECT uid FROM Member
 WHERE gid = ‘popgroup'); DROP VIEW popGroup;

SELECT AVG(pop)
FROM PopGroup;

Modifying views

• Goal: modify base tables such that the modification
would appear to have been done on the view

• Given any DML that violate the view’s filter
• If WITH CHECK OPTION: reject
• If WITH CHECK OPTION is not specified: it is possible to

“sneak” valid rows into the base table through the view --
these rows simply won't appear in the view

50

CREATE VIEW UserPop AS
SELECT uid, pop FROM User;

DELETE FROM UserPop WHERE uid = 123;

DELETE FROM User WHERE uid = 123;

Recursion Example

• Example: find Bart’s ancestors
• “Ancestor” has a recursive definition
• 𝑋 is 𝑌’s ancestor if

• 𝑋 is 𝑌’s parent, or
• 𝑋 is Z′s ancestor and 𝑍 is 𝑌’s ancestor

51

Parent (parent, child)
parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Orville Abe

Bart Lisa

MargeHomer

Abe

Orville

WITH RECURSIVE
Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)

 UNION

 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc))

SELECT anc
FROM Ancestor
WHERE desc = 'Bart';

base case

Example of Ancestor Query
52

Query using the relation
defined in WITH clause

Define
a relation

recursivelyrecursion step

a1.anc (X) à a1.desc(Z)
a2.anc (Z) à a2.desc (Y)

Database Design

53

E/R basics

• Entity: a “thing,” like an object
• Entity set: a collection of things of the same type,

like a relation of tuples or a class of objects
• Represented as a rectangle

• Relationship: an association among entities
• Relationship set: a set of relationships of the same

type (among same entity sets)
• Represented as a diamond

• Attributes: properties of entities or relationships,
like attributes of tuples or objects
• Represented as ovals

54

General cardinality constraints

• General cardinality constraints determine lower and
upper bounds on the number of relationships of a
given relationship set in which a component entity
may participate

• Example:

• Total v.s. partial participation: (1,*) v.s. (0,*)

55

Entity Relationship

(lower, upper)

(3,5)
Students CoursesTakes

(6,81)

Weak entity sets
• If entity E’s existence depends on entity F, then
• F is a dominant entity
• E is a subordinate entity
• Example: Rooms inside Buildings are partly identified by

Buildings’ name

• Weak entity set: containing subordinate entities
• Drawn as a double rectangle
• The relationship sets are called supporting

relationship sets, drawn as double diamonds
• A weak entity set must have a many-to-one or

one-to-one + total participation relationship
to a distinct entity set

56

Rooms

Buildings

In

(1,1)

ISA relationships

• Similar to the idea of subclasses in object-oriented
programming: subclass = special case, fewer
entities, and possibly more properties
• Represented as a triangle (direction is important)

• Example: paid users are users, but they also get
avatars (yay!)

57

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Automatically “inherits” key,
attributes, relationships and can
participate in other relationships

E/R Translation

• An entity set translates directly to a table
• Attributes → columns
• Key attributes → key columns

58

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

User (uid, name) Group (gid, name)

Translating weak entity sets

• Remember the “borrowed” key attributes
• Watch out for attribute name conflicts

59

Rooms In Buildings
name

year

Rnumber

capacity

In

Seats
Snumber

L/R?
Building (name, year)

Room (building_name, room_number, capacity)
Seat (building_name, room_number, seat_number, left_or_right)

(1,1)

(1,1)

Translating double diamonds?

• No need to translate because the relationship is
implicit in the weak entity set’s translation

60

Rooms In Buildings
name

year

number

capacity

In

Seats
number

L/R?

Relationship
RoomInBuilding
 (room_building_name, room_number,)

is subsumed by entity
Room (building_name, room_number, capacity)

(1,1)

(1,1)

Translating relationship sets

• A relationship set translates to a table
• Keys of connected entity sets → columns
• Attributes of the relationship set (if any) → columns
• Multiplicity of the relationship set determines the key of

the table

61

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

Member (uid, gid, fromDate)
• If we can deduce the general cardinality constraint (0,1) for a component

entity set E, then take the primary key attributes for E
• Otherwise, choose primary key attributes of each component entity

Translating relationship sets

• A relationship set translates to a table
• Keys of connected entity sets → columns
• Attributes of the relationship set (if any) → columns
• Multiplicity of the relationship set determines the key of

the table

62

Users Groups
gid

name
IsOwnerOf

uid

name

fromDate

Owner (uid, gid, fromDate)
• If we can deduce the general cardinality constraint (0,1) for a component

entity set E, then take the primary key attributes for E
• Otherwise, choose primary key attributes of each component entity

(0,1)

Translating subclasses & ISA

• Entity-in-all-superclasses
• User (uid, name), PaidUser (uid, avatar)
• Pro:
• Con:

• Entity-in-most-specific-class
• User (uid, name), PaidUser (uid, name, avatar)
• Pro:
• Con:

• All-entities-in-one-table
• User (uid, [type], name, avatar)
• Pro:
• Con:

63

All users are found in one table
Attributes of paid users are scattered in different tables

All attributes of paid users are found in one table
Users are scattered in different tables

Everything is in one table
Lots of NULL’s; complicated if class hierarchy is complex

Database Design theory

64

Functional dependencies
• A functional dependency (FD) is a constraint

between two sets of attributes in a relation
• FD has the form 𝑋 → 𝑌, where 𝑋 and 𝑌 are sets of

attributes in a relation 𝑅
• whenever two tuples in 𝑅 agree on all the attributes in
𝑋, they must also agree on all attributes in 𝑌

• If	𝑋 is a superkey of 𝑅, then 𝑋 → 𝑅 (all the attributes)

𝑿 𝒀 𝒁
𝑎 𝑏 𝑐
𝑎 ? ?

… … …

𝑿 𝒀 𝒁
𝑎 𝑏 𝑐
𝑎 𝑏 ?

… … …Must be 𝑏 Could be anything

65

Armstrong’s Axioms

• Reflexivity: if Y⊆ X, then X → Y

• Augmentation: if X → Y, then XZ → YZ

• Transitivity: if X → Y and Y → Z, then X → Z

66

66

Implications of Armstrong’s Axioms

• Decomposition: If X → YZ, then X → Y and X → Z

• Union: If X → Y and X → Z then X → YZ

• Pseudo-transitivity: If X → Y and YZ → T then XZ→ T

• Using Armstrong’s Axioms, you can prove or disprove
a (derived) FD given a set of (base) FDs

67

67

Closure of FD sets: ℱ2

• How do we know what additional FDs hold in a
schema?

• A set of FDs ℱ logically implies a FD 𝑋 → 𝑌 if 𝑋 → 𝑌
holds in all instances of 𝑅 that satisfy ℱ

• The closure of a FD set ℱ (denoted ℱJ):
• The set of all FDs that are logically implied by ℱ
• Informally, ℱ!includes all of the FDs in ℱ, i.e., ℱ ⊆ 𝐹!,

plus any dependencies they imply.

68

ℱ ℱ!

68

Attribute closure

• The closure of attributes 𝑍 in a relation 𝑅	(denoted
𝑍J) with respect to a set of FDs, ℱ, is the set of all
attributes 𝐴,, 𝐴-, … functionally determined by 𝑍
(that is, Z → 𝐴,𝐴-…)

• Algorithm for computing the closure
Compute𝑍J(𝑍, ℱ):
• Start with closure = 𝑍
• If 𝑋 → 𝑌 is in ℱ and 𝑋 is already in the closure, then also

add 𝑌 to the closure
• Repeat until no new attributes can be added

69

69

Using attribute closure

Given a relation 𝑅 and set of FD’s ℱ
• Does another FD 𝑋 → 𝑌 follow from ℱ?
• Compute 𝑋! with respect to ℱ
• If 𝑌 ⊆ 𝑋!, then 𝑋 → 𝑌 follows from ℱ

• Is 𝐾 a key of 𝑅?
• Compute 𝐾! with respect to ℱ
• If 𝐾! contains all the attributes of 𝑅, 𝐾 is a super key
• Still need to verify that 𝐾 is minimal (how?)

• Hint: check the attribute closure of its proper subset.
• i.e., Check that for no set X formed by removing attributes from
𝐾	is 𝐾/the set of all attributes

70

70

Lossless decomposition

• We should be able to reconstruct the instance of
the original table from the instances of the tables in
the decomposition

71

A decomposition {𝑅,, 𝑅-} of 𝑅 is lossless if and only if
the common attributes of 𝑅, and 𝑅- form a superkey
for either schema, i.e.,	𝑅,∩ 𝑅- → 𝑅, or 𝑅, ∩ 𝑅- → 𝑅-

Dependency-preserving decomposition

• We should be able to (explicitly and implicitly) test
all dependencies in each base table of the
decomposition

72

Given a schema 𝑅 and a set ℱ	of FDs,
decomposition of 𝑅 is dependency preserving

if there is an equivalent set ℱ′of FDs to ℱ,
none FD in ℱ′	is cross-table in the decomposition.

Boyce-Codd Normal Form (BCNF)

• A relation 𝑅 is in BCNF under ℱ	if each FD 𝑋 → 𝑌
∈ ℱJ with 𝑋𝑌 ⊆ 𝑅 satisfies:
• either 𝑋 → 𝑌 is trivial, i.e., 𝑌 ⊆ 𝑋
• or 𝑋 is a super key of 𝑅, i.e., 𝑋 → 𝑅

• Is 𝑅 = {A, B, C} under ℱ in BCNF? NO!
• C → B is a violation since C is not a super key of 𝑅

73

ℱ	includes:
A, B → C
C → B

Compute BCNF decomposition

Repeat the following until all relations are in BCNF
• Step 1: Find a BCNF violation
• A relation 𝑅
• A non-trivial FD 𝑋 → 𝑌 in ℱ! with 𝑋𝑌 ⊆ 𝑅, where 𝑋 is not a

super key of 𝑅
• Step 2: Decompose 𝑅 into 𝑅, and 𝑅-
• 𝑅# has attributes 𝑋 ∪ 𝑌;
• 𝑅$ has attributes 𝑋 ∪ 𝑍, where 𝑍 contains all attributes of 𝑅

that are in neither 𝑋 nor 𝑌

• BCNF is lossless!

74

Is BCNF dependency-preserving?

• NO!
• Consider a simple example 𝑅 under ℱ :
 𝑅 = {A, B, C}

75

ℱ	includes:
A, B → C
C → B

𝑅0 =	{A, C} 𝑅1 = {C, B}

A, B → C is cross-table and
cannot be tested directly

BCNF violation: C → B

In BCNF since
no FD in ℱ/ only

contain A, C

In BCNF since
C → B

Third normal form (3NF)

• A relation 𝑅 is in 3NF under ℱ if each FD 𝑋 → 𝑌 ∈
ℱJ with 𝑋𝑌 ⊆ 𝑅 satisfies:
• either 𝑋 → 𝑌 is trivial, i.e., 𝑌 ⊆ 𝑋,
• or 𝑋 is a super key of 𝑅, i.e., 𝑋 → 𝑅 or,
• or each attribute in 𝑌 − 𝑋 is in a key of 𝑅

• Is 𝑅 = {A, B, C} under ℱ in 3NF? YES!
• A, B → C is satisfied since AB is a super key
• C → B is satisfied since B is part of key {A, B}

76

BCNF only
allows the first
two cases, so
3NF is looser

than BCNF

ℱ	includes:
A, B → C
C → B

Compute 3NF decomposition

• Step 1: Finding the minimal cover of the FD set ℱ

• Given a set of FDs ℱ, we say ℱ′ is equivalent to ℱ if their
closures are the same, i.e., ℱ! = ℱ%!.
• The smallest equivalent set of FDs

• Step 2: Decompose based on the minimal cover

77

ℱ ℱ!
ℱ′ ℱ′!=

Minimal cover

A set of FDs ℱ is minimal if
• every right-hand side of a FD in ℱ is a single attribute
• there does not exist 𝑋 → 𝐴with 𝑍 as a proper subset of 𝑋, such

that ℱ − 𝑋 → 𝐴 ∪ 𝑍 → 𝐴 is equivalent to ℱ
• there does not exist 𝑋→	𝐴 in ℱ such that ℱ − {𝑋 → 𝐴}

equivalent to ℱ

78

Compute minimal cover of ℱ
Repeat the following steps until ℱ does not change

• Step 1: Replace 𝑋 → 𝑌𝑍 with 𝑋 → 𝑌 and 𝑋 → 𝑍

• Step 2: Remove 𝐴 from the LHS of 𝑋 → 𝐵 if 𝐵 is in
the attribute closure of 𝑋 − 𝐴 	until ℱ	

• Step 3: Remove 𝑋 → 𝐴 if 𝐴 is in the attribute closure
of 𝑋 under ℱ − 𝑋 → 𝐴

79

Compute 3NF decomposition

Given a relation 𝑅 with a set ℱ of FDs:

Step 1: Find a minimal cover ℱ∗ for ℱ

Step 2: For every 𝑋 → 𝑌 in ℱ∗ , add a relation {X, Y} to
the decomposition

Step 3: If no relation contains a key for 𝑅, add a
relation containing an arbitrary key for 𝑅 to the
decomposition

80

BCNF v.s. 3NF

• Both BCNF and 3NF are lossless
• BCNF is not necessarily dependency-preserving but

3NF is dependency-preserving

• 3NF contains possible more redundancy than BCNF

81

ℱ	includes:
A, B → C
C → B

𝑅0 =	{A, C} 𝑅1 = {C, B}

A, B → C is cross-
table and cannot
be tested directly

BCNF violation: C → B

In BCNF since
no FD in ℱ/ only

contain A, C

In BCNF since
C → B

𝑅	 =	{A, B, C}

82

