CS 348 Lecture 2

Relational Model Part 1

Semih Salihoglu
Jan 8", 2025

WATERLGO | DBS

More Info On **Tentative™* Deadlines

> Note: Last lecture’s slide had a different Milestone 1 deadline.

Week |M W Deadline
1 Jan 6 Jan 8
2 Jan 13 |[Jan 15 | A1 out (FridJan 17)
3 Jan 20 |Jan 22 | Project Milestone 0 due (Wed Jan 22)
4 Jan 27 |[Jan29 | A1 due /A2 out (FridJdan 31)
5 Feb 3 Feb 5 Project Milestone 1 due (Fri Feb 7)
6 Feb 10 |Feb 12 | A2 due (Fri Feb 14)
Reading Week
7 Feb 24 |Feb26 | Midterm (Fri Feb 28 4:30-6:00pm)
8 Mar 3 Mar 5 A3 out (Fri Mar 7)
9 Mar 10 |Mar 12 | Milestone 2 due (Fri Mar 14)
10 Mar 17 | Mar 19
11 Mar 24 | Mar 26 | A3 due (Mar 28)
12 Mar 31 | Apr2 Milestone 3 due (TBD sometime this week)

More Info About Projects

» By Milestone O:
» Find teammates (use Piazza) and register to a "Learn Group”

» Drop deadline: around Milestone 1 deadline, can drop out of a group
» might desolve a group, so need all teammates consent.

» After drop deadline you cannot drop out of Option 2

» WIll provide more details over Piazza

Outline

e Part 1: Relational data model

* Part 2: Relational algebra

Relational data model

Modeling data as relations or tables, each storing logically related
information together

A Book Club

Bart

{ I\/Iember b

Milhouse Student Government

Dead Putting SouM mm

Lisa
Ralph

456 4
Mﬂ’ —
o 123 gov
~ 857 abc
857 gov
456 abc

relations (or tables) 456 gov

Attributes

Group

abc A Book Club

Bart 10 9 gov Student Government
123 Milhouse 10 0.2 dps Dead Putting Society
857 Lisa 8 0.7
456 Ralph 8 0.3

Member 7PN
142 dps

123 gov

. 857 abc
attributes (or columns) e
456 abc

456 gov

Domain

Group

Ve gid_Jome
142 0.9

Bart 10
123 Milhouse 10 0.2
S o el

gov Student Government

dps Dead Putting Society

ﬁ& Member mm
142 dps

\ 123 gov
String Int Float 857 abc
857 gov

456 abc
456 gov

domain (or type)

Tuples

Group

e i ome

Bart 10 gov Student Government
'123 _Milhouse 10 0.2_“ “ dps Dead Putting Society
857 Lisa 8 W
'- 56 Ralph 8 0.3 3
Member mm
/{ dps
tuples (or rows) 123 gov
857 abc
Duplicates (all attr. have same val) are not allowed 857 gov
Ordering of rows doesn’t matter 456 abc

(even though output can be ordered) 456 gov

Set representation of tuples

Group

e gid_Jome
142 10 0.9

Bart

123 Milhouse 10 0.2 edu Dead Putting Society
857 Lisa 8 0.7
456 Ralph 8 0.3

Member TN
142 dps

123
User: {(142, Bart, 10, 0.9),
(857, Milhouse, 10, 0.2), ..} 857
Group: {{(abc, A Book Club), 857
(gov, Student Government), ..}
Member: {(142, dps), (123, gov), ..} 456
456

gov Student Government

gov
abc
gov
abc

gov

10

Relational data model

* A database is a collection of relations (or tables)
* Each relation has a set of attributes (or columns)

* Each attribute has a unique name and a domain (or type)
* The domains are required to be atomic

Single, indivisible

piece of information

* Each relation contains a set of tuples (or rows)
* Each tuple has a value for each attribute of the relation

* Duplicate tuples are not allowed
* Two tuples are duplicates if they agree on all attributes

= Simplicity is a virtue!

Schema vs. instance
()

* Specifies the of data
* |s defined at setup time, rarely changes
User (uid int, name string, age int, pop float)

Group (gid string, name string)
Member (uid int, gid string)

* Represents the data content
* Changes rapidly, but always to the schema
* Typically has additional rules

User: {(142, Bart, 10, 0.9), (857, Milhouse, 10, 0.2),
Group: {(abc, A Book Club), (gov, Student Government),
Member: {{(142, dps), (123, gov), ..}

)
)

12

Integrity constraints

e A set of rules that database instances should follow

* Example:
* age cannot be negative
* uid should be in the User relation

e uid in Member must refer to arow in User

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

user: {142) Bart, (L0} 0.9), (857) Milhouse, (L) 0.2), ..}

Group: {(abg, A Book Club gov, Student Government), ..}

Member: {(142) dps), (857) gov), ..}

Integrity constraints

* Aninstance is only if it follows the schema and
satisfies all the integrity constraints.

e Reasons to use constraints:

* Address consistency challenges
(last class: duplicate entry for Bob)

* Ensure data entry/modification respects to database
design
* Protect data from bugs in applications

Types of integrity constraints

* Tuple-level

* Domain restrictions, attribute comparisons, etc.
* E.g.age cannot be negative
* E.g. for flights table, arrival time > take off time

* Relation-level

(focus in this lecture)
* E.g. uid should be in the User relation

* Functional dependencies (week 5/6)

e Database-level

 Referential integrity — (focus in this lecture)
e uid in Member must refer to a row in User with the same uid

Key (Candidate Key)

Def: A set of attributes K for a relation R if

In no instance of R will two different
tuples agree on all attributes of K

* Thatis, K canserveasa*“

)

: No proper subset of K satisfies the
above condition

* Thatis, K is

* Example: User (uid, name, age, pop)
* uid is a key of User
* age is not a key (not an identifier)
* {uid, name} is not a key (not minimal), but a

Key (Candidate key)

142
123
857
456

mm-m
Bart
Milhouse 10 0.2
Lisa 8 0.7
Ralph 8 0.3

* Is name a key of User?

* Yes? Seems reasonable for this instance
* No! User names are not unique in general

* Key declarations are part of the schema

16

More examples of keys

* Member (uid, gid) Member

* Only uid?

* No, because of repeated entries

* Only gid?

* No, again due to repeated entries

* Use both!
» {uid, gid}
= A key can contain multiple attributes

142
123
857
456
857
256

dps
gov
abc
gov
dps

gov

More examples of keys

* Address (street address, city, province, zip)
* Key 1: {street address, city, province}
 Key 2: {street address, zip}
“ A relation can have multiple keys!

: 3 candidate key in the
schema declaration

all its attributes, e.g., Address (street_address,
city, province, zip)

Use of keys

* More constraints on data, fewer mistakes

* Look up arow by its key value
* Many selection conditions are “‘key = value”

* “Pointers” to other rows (often across tables)

“Pointers” to other rows

* Foreign key: primary key of one relation appearing
as attribute of another relation

Rkl uid | name ___|age |pop

142 Bart 10 0.9
Milhouse 10 0.2
Lisa 8 0.7
Ralph 8 0.3

Group

c A Book Club
gov Student Government

dps Dead Putting Society

142 dps
123 gov
857 abc
857 gov
456 abc

o
N S IR O Pl S M Y L P e T PR Do AN Do s et Ry W SR (27
. ¥

20

21

“Pointers” to other rows

* Referential integrity: A tuple with a non-null value
for a foreign key must match the primary key value
of a tuple in the referenced relation

sy il
142 dps
Group
123 gov
— _ 557 on (R
bc A Book Club 857 gov
gov Student Government 456 abc
dps Dead Putting Society 456 gov

Referential integrity violation!

Outline

 Part 1;: Relational data model

e Data model
* Database schema
* Integrity constraints (keys)
* Languages
* Relational algebra (focus in this lecture)

* SQL (next lecture)
* Relational calculus (textbook, Ch. 27)

* Part 2: Relational algebra

22

23

Relational algebra

* Alanguage for querying relational data based on “operators”

* Not used in commercial DBMSs (SQL) B O
intermediate result

I . . - I . . tables are transient
RelOp EEEEEEE
_ RelOp
* Core operators:

* Selection, projection, cross product, union, difference,
and renaming

* Additional, derived operators:
* Join, natural join, intersection, etc.

* Compose operators to make complex queries

Core operator 1: Selection o

* Example query: Users with popularity higher than 0.5

142 Bart 10 09 142 Bart 10 09
123 Milhouse 10 0.2 _

- I
857 Lisa 8 07 Lisa

857 8 0.7
456 Ralph 8 0.3 -_--

Core operator 1: Selection

* Input: a table R

* Notation:
* piscalled a (or)

* Purpose: filter rows according to some criteria

* Output: same columns as R, but only rows of R that
satisfy p

More on selection

* Selection condition can include any column of R,
constants, comparison (=, <, etc.) and Boolean
connectives (A: and, V: or, —: not)

* Example: users with popularity at least 0.9 and age
under 10 or above 12
o User

* You must be able to evaluate the condition over
of the input table!

* Example: the most popular user

\
g User \NRONG '

27

Core operator 2: Projection i

* Example: IDs and names of all users

7Tuid,name User

uid | name | age | pop _ uid | name __
142 10 0.9

Bart 142 Bart

123 Milhouse 10 0.2 w 123 Milhouse
857 Lisa 8 07 | 857 Lisa

456 Ralph 8 0.3 456 Ralph

Core operator 2: Projection

* Input: a table R

e Notation: 7, R
e Lis alist of columnsinR

* Purpose: output chosen columns
* Output: “same” rows, but only the columnsin L

More on projection

* Duplicate output rows are removed (by definition)
* Example: user ages

Tage User
uid | name | age | pop _ age
142 Bart 10 0.9 10

123 Milhouse 10 02 -
857 Lisa 8 0.7 8

456 Ralph 8 03 e

30

Core operator 3: Cross product X

UserxMember
mm-m uid | gid
123 Milhouse 10 123 gov
857 Lisa 8 857 abc

857 gov

& _Member uid o
02 123 7 Tgov

Userwd

123 Milhouse 10 0.2 857 abc
123 Milhouse 10 0.2 857 gov
857 Lisa 8 0.7 123 gov
857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

Core operator 3: Cross product

* [nput: two tables R and §
* Notation: RxXS$
* Purpose: pairs rows from two tables

* Output: foreachrow rin R and each s in S, output
a row rs (concatenation of r and s)

A note on column ordering

* Ordering of columns is unimportant as far as

contents are concerned

m-mmm mmm-m

123
123
857
857
857

* So cross product is
S, RXS = SXR (up to the ordering of columns)

Milhouse
Milhouse
Milhouse
Lisa
Lisa

Lisa

10

0.2
0.2
0.7
0.7
0.7

857
857
123
857
857

abc
gov
gov
abc

gov

857
857
123
857
857

abc
gov
gov
abc

gov

, i.e., for any R and

123
123
857
857
857

Milhouse 10
Milhouse 10
Milhouse 10
Lisa 8
Lisa 8
Lisa 8

0.2
0.2
0.7
0.7
0.7

Derived operator 1: Join

* Info about users, plus IDs of their groups
User N useruid=Member.uid Member mm

o e L L

123 Milhouse 10 857 abc
857 Lisa 8 0.7 a 857 gov

m pop | Muid | gid _

Milhouse 123 gov
123 Milhouse 10 0.2 857 abc
123 Milhouse 10 0.2 857 gov
857 Lisa 8 0.7 123 gov
857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

33

Derived operator 1: Join

* Info about users, plus IDs of their groups
User Nyser.uid=Member.uid Member

123 gov
123 Milhouse 10 0.2 857 abc
857 Lisa 8 0.7 857 gov

Derived operator 1: Join

* Info about users, plus IDs of their groups
User Myseruid=Member.uid Member

123 gov
123 Milhouse 10 0.2 857 abc
857 Lisa 8 0.7 . 857 gov
N yseruid=
Member.uid
\/
Prefix a column reference
with table name and “.” to 123 Milhouse 10 0.2 123 gov

disambiguate identically named
columns from different tables

857 Lisa 8 0.7 857 abc
8 0.7 857 gov

857 Lisa

Derived operator 1: Join

* Input: two tables R and §

* Notation: R S
* piscalled a (or)

* Purpose: relate rows from two tables according to
some criteria

* Output: foreachrow rin R and eachrow s in §,
output arow rs if r and s satisfy p

* Shorthand for g, (RXS)
* (A.k.a. “theta-join”’)

Derived operator 2: Natural join

User X\ Member

= (User X Useruid= Member)
Member.uid

123 gov

123 Milhouse 10 0.2
857 Lisa 8 0.7 857 abc
e v - - 857 gov

Derived operator 2: Natural join

* Input: two tables R and §
* Notation: R = §

* Purpose: relate rows from two tables, and
* Enforce equality between identically named columns

e Shorthand for nL(R X, S), where

* p equates each pair of attributes commonto R and S

* L is the union of attributes from R and S (with common
attributes removed)

Core operator 4: Union

* Input: two tables R and §

e Notation: R U S
* R and S must have identical schema

* Output:
e Has the same schemaas R and S

* Contains all rows in R and all rows in S (with duplicate
rows removed)

uid | gid uid | gid | uid | gid
123 gov = 123 gov

123 gov U
857 abc 901 edf 857 abc
901 edf

39

Core operator 5: Difference

* Input: two tables R and §

e Notation: R — §
* R and S must have identical schema

* Output:
e Has the same schemaas R and S
e Contains all rows in R that arenotin S

uid | gid uid | gid |
123 gov

123 gov —

uid | gid _
857

abc

857 abc 901 edf

40

Derived operator 3: Intersection

* Input: two tables R and §

e Notation: RN S
* R and S must have identical schema

* Qutput:
e Has the same schemaas R and S
e Contains all rows that arein both R and S

 Shorthand forR — (R — S)

. Find tuples in R
* Also equivalentto S — (S — R) - ntstpifsém
e AndtoR X S 2. Remove those

tuples from R

41

Core operator 6: Renaming

* Input: a table (or an expression) R
* Notation: p< R, R, or R

* Purpose: “rename” a table and/or its columns

* Output: a table with the same rows as R, but called
differently

Member M1

le(uid—> uid4,gid— gidl)Member 123 gov

857 abc

123 gov
857 abc

9. Core operator: Renaming

* As with all other relational operators, it doesn’t
modify the database
* Think of the renamed table as a copy of the original

* Used to: Avoid confusion caused by identical
column names

44

9. Core operator: Renaming

* IDs of users who belong to at least two groups

W Member X, Member EEREERE
100 gov 100 gov

100 abc
200 gov

100 abc
200 gov

100

. Condition 1: same uid
100 gov 100 abc

W o, @ . o o
Condition 2: different gids
100 abc 100 gov

Renaming example

* IDs of users who belong to
Member X, Member

Muia (Member N Member.uid=Member.uid A Membfir)
Member.gldiMember.glciNRONG \

p(uid—>uid1,gid—>gid1)Member

Muid1=uid2 ANgldi#gid,

p(uid—>uid2,gid—>gid2)Member

T[U,ldl

Expression tree notation

TI'-Uldl

D<]uid1=uid2 ANgldq{#gid,

P(uid>uid,,gid—gid,) P(uid>uid,,gid—gid,)

Member Member

Take-home Exercises

* Exercise 1: IDs of groups who have

* Exercise 2: IDs of users who belong to
?

Summary of operators

Core Operators

| f A R Note: use
>election: 9 these operators for
ProjeCtion: T[LR assignments &
Cross product: RXS exams

Difference: R — S

1.

2

3.

4. Union:tRUS
5

6. Renaming: P4, 4 4,45,
Derived Operators

1. JointR ™, §

2. Naturaljoin:R @ S

3. Intersectioni:R NS

User (uid int, name string, age int, pop float)
M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* All groups (ids) that Lisa belongs to

Member (uid int, gid string)

User (uid int, name string, age int, pop float)

M O re e Xa m p I e Group@ string, name string)

* All groups (ids) that Lisa belongs to
Writing a query bottom-up:

mm-m
857 Lisa
Who’s Lisa? Uname|="Lisa" Member
User uid | gid
123 gov
mm-m —
123 Milhouse 10
857 gov

857 Lisa 8 0.7

50

User (uid int, name string, age int, pop float)

M O re e Xa m p l e Group (gid string, name string)

Member (uid int, gid string)

* All groups (ids) that Lisa belongs to
Writing a query bottom-up:

uid | name | age | pop | gid

857 Lisa 8 0.7 abc
857 Lisa 8 0.7 gov

X User.uid=Member.uid

maEEmEmEn - Member
857 Lisa 8 0.7 m

WhO’S Lisa? O-namelz"Lisa" 123 gov
857 abc

USBT' 857 gov

51

User (uid int, name string, age int, pop float)

M O re e Xa m p l e Group (gid string, name string)

Member (uid int, gid string)

* All groups (ids) that Lisa belongs to

Writing a query bottom-up: | gid
.) ngid abc
Lisa’s groups |
gov

uid | name | age | pop | gid

857 Lisa 8 0.7 abc
857 Lisa 8 0.7 gov

X User.uid=Member.uid

maEEmEmEn - Member
857 Lisa 8 0.7 m

WhO’S Lisa? O-namelz"Lisa" 123 gov
857 abc

USBT' 857 gov

52

User (uid int, name string, age int, pop float)
Ta ke h O m e eX o Group (gid string, name string)

Member (uid int, gid string)

* All groupsdsy that Lisa belongs to
names:

Summary

* Part 1: Relational data model
* Data model
* Database schema
* Integrity constraints (keys)
* Languages (relational algebra, relational calculus, SQL)

* Part 2: Relational algebra - basic language
* Core operators & derived operators

()

* What’s next?
* More examples in RA

e Relational calculus
* SQL

