
CS 348 Lecture 3-1

Relational Model Part 2
Semih Salihoğlu

Jan 13th, 2025

1

Outline

• More examples of relational algebra

• Monotone operators

• Relational calculus

• SQL (second half of lecture)

2

(Recap) Relational data model

• A database is a collection of relations (or tables)
• Each relation has a set of attributes (or columns)
• Each attribute has a unique name and a domain (or type)
• The domains are required to be atomic

• Each relation contains a set of tuples (or rows)
• Each tuple has a value for each attribute of the relation
• Duplicate tuples are not allowed

• Two tuples are duplicates if they agree on all attributes

FSimplicity is a virtue!

3

Single, indivisible
piece of information

(Recap) Integrity constraints

• Candidate key
• Set of K attributes that uniquely identify a row and has

only the necessary attributed (i.e., minimal)

• Primary key

• Foreign key

4

(Recap) RA operators
Core Operators
1. Selection: 𝜎!𝑅
2. Projection: 𝜋"𝑅
3. Cross product: 𝑅×𝑆
4. Union: 𝑅 ∪ 𝑆
5. Difference: 𝑅 − 𝑆
6. Renaming: 𝜌# $!→$!" ,$#→$#" ,… 𝑅

Derived Operators
1. Join: 𝑅 ⋈! 𝑆
2. Natural join: 𝑅 ⋈ 𝑆
3. Intersection: 𝑅 ∩ 𝑆

5

More example

• All groups (ids) that Lisa belongs to

6

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

More example

• All groups (ids) that Lisa belongs to

7

𝑀𝑒𝑚𝑏𝑒𝑟𝜎!"#$%"'()""
𝑈𝑠𝑒𝑟

Who’s Lisa?

Writing a query bottom-up:

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

uid name age pop

123 Milhouse 10 0.2

857 Lisa 8 0.7

… … … …

uid gid

123 gov

857 abc

857 gov

… …

uid name age pop

857 Lisa 8 0.7

More example

• All groups (ids) that Lisa belongs to

8

𝑀𝑒𝑚𝑏𝑒𝑟

⋈User.uid=Member.uid

𝜎!"#$%"'()""
𝑈𝑠𝑒𝑟

Who’s Lisa?

Writing a query bottom-up:

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

uid gid

123 gov

857 abc

857 gov

… …

uid name age pop

857 Lisa 8 0.7

uid name age pop gid

857 Lisa 8 0.7 abc

857 Lisa 8 0.7 gov

More example

• All groups (ids) that Lisa belongs to

9

𝑀𝑒𝑚𝑏𝑒𝑟

⋈User.uid=Member.uid

𝜋*(+Lisa’s groups

𝜎!"#$%"'()""
𝑈𝑠𝑒𝑟

Who’s Lisa?

Writing a query bottom-up:

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

uid gid

123 gov

857 abc

857 gov

… …

uid name age pop

857 Lisa 8 0.7

uid name age pop gid

857 Lisa 8 0.7 abc

857 Lisa 8 0.7 gov

gid

abc

gov

Take home ex.

• All groups (ids) that Lisa belongs to

10

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

names?

𝑀𝑒𝑚𝑏𝑒𝑟
⋈
𝜋*(+Lisa’s groups

𝑈𝑠𝑒𝑟
𝜎!"#$%"'()""

Who’s Lisa?

𝐺𝑟𝑜𝑢𝑝
⋈

𝜋!"#$Group names

More example

• Names of users in Lisa’s groups

11

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

More example

• Names of users in Lisa’s groups

12

Users in
Lisa’s groups 𝑈𝑠𝑒𝑟

⋈

𝜋!"#$Their names

𝑀𝑒𝑚𝑏𝑒𝑟
⋈

𝜋,(+

𝑀𝑒𝑚𝑏𝑒𝑟
⋈
𝜋*(+Lisa’s groups

𝑈𝑠𝑒𝑟
𝜎!"#$%"'()""

Who’s Lisa?

Writing a query bottom-up:

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

More example

• IDs of groups that Lisa doesn’t belong to

13

Writing a query top-down:

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

More example

• IDs of groups that Lisa doesn’t belong to

14

IDs of Lisa’s groupsAll group IDs
−

𝜋*(+

𝐺𝑟𝑜𝑢𝑝

𝑀𝑒𝑚𝑏𝑒𝑟

𝑈𝑠𝑒𝑟

⋈

𝜎!"#$%"'()""

𝜋*(+

Writing a query top-down:

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A trickier example

• Who are the most popular users?

𝜎!"!	$	%&%'(!"!)*	+,%' 	𝑈𝑠𝑒𝑟

• Because it cannot be evaluated over a single row

15

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

WRONG!

A trickier example

• Who are the most popular users?
• Who do NOT have the highest pop rating?
• Whose pop is lower than somebody else’s?

16

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A trickier example

• Who are the most popular users?
• Who do NOT have the highest pop rating?
• Whose pop is lower than somebody else’s?

17

𝜋,(+

𝑈𝑠𝑒𝑟

−

𝑈𝑠𝑒𝑟𝑈𝑠𝑒𝑟

𝜌-)$.(𝜌-)$.)

⋈-)$.(.0102-)$.).010

𝜋-)$.(.,(+

A deeper question:
When (and why) is “−” needed?

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Non-monotone operators

• If some old output rows may become invalid à the
operator is non-monotone

• Example: difference operator 𝑅 − 𝑆

18

RelOp
Add more rows

to the input...

What happens
to the output?

uid gid

123 gov

857 abc

uid gid

123 gov

901 edf

− =
uid gid

857 abc

857 abc

This old row
becomes invalid
because the new
row added to S

𝑆𝑅

Non-monotone operators

• If some old output rows may become invalid (causing some
row removal) à the operator is non-monotone
• Otherwise (old output rows always remain “correct”) à the

operator is monotone

19

RelOp
Add more rows

to the input...

What happens
to the output?

uid gid

123 gov

857 abc

uid gid

123 gov

901 edf

− =
uid gid

857 abc

189 abc

189 abc

This old row is
always valid no

matter what
rows are added

to R

𝑆𝑅

Classification of relational operators

• Selection: 𝜎!𝑅
• Projection: 𝜋"𝑅
• Cross product: 𝑅×𝑆
• Join: 𝑅 ⋈! 𝑆
• Natural join: 𝑅 ⋈ 𝑆
• Union: 𝑅 ∪ 𝑆
• Difference: 𝑅 − 𝑆
• Intersection: 𝑅 ∩ 𝑆

20

Monotone
Monotone
Monotone
Monotone
Monotone
Monotone
Monotone w.r.t. 𝑅; non-monotone w.r.t 𝑆

Monotone

Why is “−” needed for “highest”?

• Composition of monotone operators produces a
monotone query
• Old output rows remain “correct” when more rows are

added to the input

• Is the “highest” query monotone?
• No!
• Current highest pop is 0.9
• Add another row with pop 0.91
• Old answer is invalidated

FSo it must use difference!

21

Why do we need core operator 𝑋?

• Difference
• The only non-monotone operator

• Projection
• The only operator that removes columns

• Cross product
• The only operator that adds columns

• Union
• ?

• Selection
• ?

22

Extensions to relational algebra

• Duplicate handling (“bag algebra”)
• Grouping and aggregation

FAll these will come up when we talk about SQL
FBut for now we will stick to standard relational

algebra without these extensions

23

Relational Calculus (Optional)

• Relational Algebra: procedural language
• An algebraic formalism in which queries are expressed

by applying a sequence of operations to relations.

• Relational Calculus: declarative language
• A logical formalism in which queries are expressed as

formulas of first-order logic.

• Codd’s Theorem: Relational Algebra and Relational
Calculus are essentially equivalent in terms of
expressive power.

24

Relational calculus

• Use first-order logic (FOL) formulae to specify
properties of the query answer

• Example: Who are the most popular?
• 𝑢. 𝑢𝑖𝑑	 𝑢 ∈ 𝑈𝑠𝑒𝑟 ∧
	 	 ¬ ∃𝑢" ∈ 𝑈𝑠𝑒𝑟: 𝑢. 𝑝𝑜𝑝 < 𝑢". 𝑝𝑜𝑝 }, or

• 𝑢. 𝑢𝑖𝑑	 𝑢 ∈ 𝑈𝑠𝑒𝑟 ∧
 ∀𝑢" ∈ 𝑈𝑠𝑒𝑟: 𝑢. 𝑝𝑜𝑝 ≥ 𝑢". 𝑝𝑜𝑝 }

25

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Relational calculus
• Relational algebra = “safe” relational calculus
• Every query expressible as a safe relational calculus

query is also expressible as a relational algebra query
• And vice versa

• Example of an “unsafe” relational calculus query
• 𝑢. 𝑛𝑎𝑚𝑒	 ¬ 𝑢 ∈ 𝑈𝑠𝑒𝑟 à users not in the database
• Cannot evaluate it just by looking at the database

• A query is safe if, for all database instances
conforming to the schema, the query result can be
computed using only constants appearing in the
database instance or in the query itself.

26

Turing machine

How does relational algebra compare with a Turing
machine?
• A conceptual device that can

execute any computer algorithm
• Approximates what general-

purpose programming languages
can do
• E.g., Python, Java, C++, …

27

http://en.wikipedia.org/wiki/File:Alan_Turing_photo.jpg

Alan Turing (1912-1954)

Limits of relational algebra

• Relational algebra has no recursion
• Example: given relation Friend(uid1, uid2), who can Bart

reach in his social network with any number of hops?
• Writing this query in r.a. is impossible!

• So r.a. is not as powerful as general-purpose languages

• But why not?
• Optimization becomes undecidable
FSimplicity is empowering
• Besides, you can always implement it at the application

level, and recursion is added to SQL nevertheless!

28

Summary
• Part 1: Relational data model
• Data model
• Database schema
• Integrity constraints (keys)
• Languages (relational algebra, relational calculus, SQL)

• Part 2: Relational algebra – basic language
• Core operators & derived operators

(how to write a query)
• V.s. relational calculus
• V.s. general programming language

• What’s next?
• SQL – query language used in practice (4 lectures)

29

