CS 348 Lecture 4

SQL Part 1

Semih Salihoglu
Jan 15" 2025

Data
Systems
Group

waTERLOO | DBS

SQL

* SQL:
* Pronounced “S-Q-L” or “sequel”
* The standard query language supported by most DBMS

* A brief history
* IBM System R
* ANSISQL96
* ANSISQL89
* ANSISQL92 (SQL2)
* ANSISQL99 (SQL3)
« ANSI SQL 2003 (added OLAP, XML, etc.)
* ANSISQL 2006 (added more XML)
* ANSISQL 2008, ...

SQL

define/modify
schemas, delete relations

query
information, and insert/delete/modify tuples

specify constraints that the
data stored in the database must satisfy

* Intermediate/Advanced topics:

* E.g., triggers, views, indexes, programming, recursive
queries

User (uid int, name string, age int, pop float)

Group (gid string, name string)
D D L Member (uid int, gid string)

table name
(..., column_name column_type, ...);

CREATE TABLE User(uid INT, name VARCHAR(30), age INT, pop FLOAT);
CREATE TABLE Group (gid VARCHAR(10), name VARCHAR(100));

CREATE TABLE Member (uid INT, gid VARCHAR(10));

table name;

DROP TABLE User;

DROP TABLE Group;
DROP TABLE Member;

Basic queries for DML: SFW statement

Ay, Ay, .. Ay
R{,R,,...R,
condition;

* Also called an SPJ (select-project-join) query

* Corresponds to ()
relational algebra query:

7-[Al,Az,...,An(O-condition(Rl X RZ Xoeee X Rm))

User (uid int, name string, age int, pop float)

Exa m p I e S Group (gid string, name string)

Member (uid int, gid string)

e List all rows in the User table
SELECT * FROM User;

is a short hand for “all columns”’

* List name of users under 18 (selection, projection)
SELECT name FROM User where age <18;

e When was Lisa born?

SELECT 2021-age FROM User where name = ‘Lisa’;

* SELECT list can contain expressions
e Can also use built-in functions such as SUBSTR, ABS, etc.

* String literals (case sensitive) are enclosed in

User (uid int, name string, age int, pop float)

Exa m p I e : jo i n Group (gid string, name string)

Member (uid int, gid string)

* List
contains “Simpson”

SELECT Group.gid, Group.name
FROM User, Member, Group

WHERE User.uid = Member.uid
AND Member.gid = Group.gid
AND;

User (uid int, name string, age int, pop float)

Exa m p I e : jo i n Group (gid string, name string)

Member (uid int, gid string)

* List ID’s and names of groups with a user whose
name 7

SELECT Group.gid, Group.name
FROM User, Member, Group

WHERE User.uid = Member.uid
AND Member.gid = Group.gid
AND User.name LIKE ‘%Simpson%’;

matches a string against a pattern
. matches any sequence of zero or more characters

* Okay to omit table_ namein table name.column_name if
column_nameis unique

User (uid int, name string, age int, pop float)

Exa m ple: rename Group (gid string, name string)

Member (uid int, gid string)

* ID’s of all pairs of users that belong to one group
* Relational algebra query:

7-[11'11.1,Ll'd,”mz.uid
(pmlMember le.gid=m2.gid AN mquid>m,.uid pmz Member)

* SQL (not exactly):

SELECT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2

WHERE m1.gid = m2.gid
AND m1.uid > m2.uid;

keyword is completely optional

A more complicated example

* Names of all groups that Lisa and Ralph are both in

Tip: Write the FROM clause first, then WHERE, and
then SELECT

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

* Names of all and Ralph are both in

SELECT g.name
FROM User ut, ..., Member mi, ...

WHERE u1.name ="Lisa' AND...
AND ut.uid = m1.uid AND ...
AND ...;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

* Names of all Lisa and are both in

SELECT g.name
FROM User u1, User u2, Member m1, Member m2, ...

WHERE u1.name = 'Lisa' AND u2.name = ‘Ralph’
AND u1.uid = m1.uid AND u2.uid=m2.uid
AY\\ DI

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

that Lisa and Ralph are

SELECT g.name
FROM User u1, User u2, Member m1, Member m2, Group g

WHERE u1.name = 'Lisa' AND u2.name = ‘Ralph’
AND ut.uid = m1.uid AND u2.uid=m2.uid
AND m1.gid = g.gid AND m2.gid = g.gid;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Why SFW statements?

* Many queries can be written using only

* These queries can be written in a canonical form
which is captured by SFW:

* Example: nR_A’S_B(R X, S) M (nT_CapsT)

— T[R.A,S.B,T.Co-pl/\pz/\pg (R X S X T)

Set versus bag

User
10
8
142 Bart 10 0.9 Mage User
123 Milhouse 10 0.2
857 Lisa 8 0.7 Set
456 Ralph 8§ 03 * No duplicates
use
semantics
SELECT age Bag
FROM User; 10 * Duplicates allowed
3 * Number of duplicates is significant
uses semantics

A case for bag semantics

* Efficiency
* Saves time of eliminating duplicates

* Which one is more useful?
SELECT age
TageUser FROM User;

* The first query just returns all possible user ages
* The second query returns the user age distribution

* Besides, SQL provides the option of set semantics
with keyword

Forcing set semantics

* ID’s of all pairs of users that belong to one group

SELECT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2

WHERE m1.gid = m2.gid
AND m1l.uid > m2.uid;

—>Say Lisa and Ralph are in both the book club and the
student government, they id pairs will appear twice

* Remove duplicate (uid1, uid2) pairs from the output

SELECT DISTINCT m1.uid AS uidl, m2.uid AS uid2
FROM Member AS m1, Member AS m2

WHERE m1.gid = m2.gid;
AND m1.uid > m2.uid;

Semantics of SFW

* Foreach t; in Ry:
Foreacht, inR,:
Foreach t,, in R,,:

If condition is true overtyet,e
Compute and output Ey, E,, ..

If DISTINCT is present
Eliminate duplicate rows in output

* t1, ty, ..., t,,, are often called

e ® Uiyt

., E,, as arow

SQL set and bag operations

* Set: UNION, EXCEPT, INTERSECT
* Exactly like set U, —, and n in relational algebra
* Duplicates in input tables, if any, are first eliminated
* Duplicates in result are also eliminated (for UNION)

Bagl Bag2 (SELECT * FROM Bag1l) (SELECT * FROM Bag1) (SELECT * FROM Bag1)
. : UNION EXCEPT INTERSECT
(SELECT * FROM Bag2); (SELECT * FROM Bag2); (SELECT * FROM Bag2);
apple orange
apple orange apple apple orange

orange orange orange

19

SQL set and bag operations

* Set: UNION, EXCEPT, INTERSECT
* Exactly like set U, —, and N in relational algebra

* Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL

* Think of each row as having an implicit count (the
number of times it appears in the table)

(SELECT * FROM Bag1)
UNION ALL

(SELECT * FROM ;
Bagl Bag2

sum up the counts

apple

apple apple from two tables
apple

apple orange
orange

orange orange

apple

apple: 2 apple: 1 orange apple: 3
orange:1 orange:2 . orange:3

20

SQL set and bag operations

* Set: UNION, EXCEPT, INTERSECT

* Exactly like set U, —, and N in relational algebra

* Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL

* Think of each row as having an implicit count (the
number of times it appears in the table)

(SELECT * FROM Bag1)

EXCEPT ALL
Bag]_ Bagz (SELECT * FROM Bag2);
apple apple apple

apple orange

orange orange

apple: 2 apple: 1
orange:1 orange:2

apple: 1
orange:0

proper-subtract
the two counts

SQL set and bag operations

* Set: UNION, EXCEPT, INTERSECT
* Exactly like set U, —, and N in relational algebra

* Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL

* Think of each row as having an implicit count (the
number of times it appears in the table)

(SELECT * FROM Bag1l)
INTERSECT ALL

Bagl Bag2 (SELECT * FROM Bag2);
: : \ take the

minimum of the

apple apple apple two counts
apple orange orange
orange orange

apple: 2 apple: 1 apple: 1
orange:1 orange:2 orange:1

22

Set versus bag operations

Poke (uid1, uid2, timestamp)
* uid1 poked uid2 at timestamp

Question: How do these two queries differ?

Q1l: Q2:
(SELECT uid1 FROM Poke) (SELECT uid1 FROM Poke)

EXCEPT EXCEPT ALL
(SELECT uid2 FROM Poke); (SELECT uid2 FROM Poke);

Set versus bag operations

Poke (uid1, uid2, timestamp)
* uid1 poked uid2 at timestamp

Question: How do these two queries differ?

Q1l: Q2:
(SELECT uid1 FROM Poke) (SELECT uid1 FROM Poke)

EXCEPT EXCEPT ALL
(SELECT uid2 FROM Poke); (SELECT uid2 FROM Poke);

Users who poked others but Users who poked others
never got poked by others more than others poked them

SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations

& Next: how to

Table subqueries

* Use as
* In set and bag operations, FROM clauses, etc.

* Example: names of

SELECT DISTINCT name
FROM User,
((SELECT uid1 FROM Poke)

EXCEPT ALL
(SELECT uid2 FROM Poke)) AS T
WHERE User.uid = T.uid;

Scalar subqueries

* A query that returns
can be used as
, etc.

* Example: users at the same age as Bart

SELECT *
FROM User,

WHERE age = (SELECT age
FROM User
WHERE name = ‘Bart’);

* When can this query go wrong?
e Return more than 1 row
e Return no rows

IN subqueries

checks if x is in the result of
subquery

* Example: users at the same age as (some) Bart

SELECT *
FROM User,

WHERE age IN (SELECT age
FROM User
WHERE name = ‘Bart’);

EXISTS subqueries

checks if

» Example: users at the same age as (some) Bart

SELECT *
FROM User AS u,z—-

WHERE EXISTS (SELECT * FROM User
WHERE name = ‘Bart’
AND age = u.age);

* This happens to be a —a subquery
that references tuple variables in surrounding queries

User (uid int, name string, age int, pop float)

An Other example Group (gid string, name string)

Member (uid int, gid string)

* Users who join at least two groups

SELECT * FROM User u
WHERE EXISTS
(SELECT * FROM Member m Use

WHERE uid = t.uid table_ name.
column _name

notation and AS

AND EXISTS
(SELECT * FROM Member : :
o (renaming) to avoid

WHERE uid :
AND gld <>m.gid));

confusion

* How to find which table a column belongs to?

* Start with the immediately surrounding query

* If not found, look in the one surrounding that; repeat if
necessary

Quantified subqueries

(for all):

* ... WHERE x op ALL(subquery) ...
* True iff for all t in the result of subquery, x op t

SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);
(exists):
* ... WHERE x op (subquery) ...
* True iff there exists t in subqueryresults.t.xopt

SELECT *
FROM User

WHERE NOT
(pop < ANY(SELECT pop FROM User));

More ways to get the most popular

* Which users are the most popular?

Q1. SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

Q2. SELECT *
FROM User

WHERE NOT
pop < ANY(SELECT pop FROM User)

Q3.SELECT * Q4. SELECT * FROM Use
FROM User AS u WHERE uid NOT [EXISTS 'or IN?]
WHERE NOT [EXITS or IN?] (SELECT ut.uid
(SELECT * FROM User FROM User AS u1, User AS u2
WHERE pop > u.pop); WHERE ut.pop < u2.pop);

SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations

* Subqueries

* Subqueries allow queries to be written in more
declarative ways (recall the “most popular” query)

* But in many cases, they don’t add expressive power

“ Next:

Aggregates

* Standard SQL aggregate functions: ,

))

* Example: number of users under 18, and their
average popularity
* COUNT(*) counts the number of rows

SELECT COUNT(*), AVG(pop)

FROM User
WHERE age <18;

Aggregates with DISTINCT

* Example: How many users are in some group?

SELECT COUNT(¥)
FROM (SELECT DISTINCT uid FROM Member);

SELECT COUNT(DISTINCT uid)
FROM Member;

Grouping

* SELECT ... FROM ... WHERE ...

’

* Example: compute average popularity

SELECT age, AVG(pop)

FROM User
GROUP BY age;

Example of computing GROUP BY

SELECT age, AVG(pop) FROM User CROUP BY age;

Compute GROUP BY: group

142 Bart 10 0.9]
857 Lisa P rows according to the values
123 Milhouse 10 0.2 of GROUP BY columns
456 Ralph 8 03
jl> 142 Bart 10 0.9
Compute SELECT 123 Milhouse 10 02
for each group 857 Lisa 8 07
< 456 Ralph 8 03
10 0.55

8 0.50

Semantics of GROUP BY

1. Compute FROM (X)
2. Compute WHERE (o)

3. Compute GROUP BY: group rows according to the
values of GROUP BY columns

4. Compute SELECT for each group ()
* For aggregation functions with DISTINCT inputs, first
eliminate duplicates within the group

“ Number of groups =
number of rows in the final output

Aggregates with no GROUP BY

* An aggregate query with no GROUP BY clause =
all rows go into one group

SELECT AVG(pop) FROM User;

142
857
123
456

Bart
Lisa
Milhouse

Ralph

10

10

Group all rows
into one group

0.9 142
0.7 |:> 857
0.2 123
0.3 456

Bart
Lisa
Milhouse

Ralph

10

10

Aggregate over
the whole group

0.9

0.7 |) 0.525

0.2
0.3

Restriction on SELECT

* If a query uses aggregation/group by, then every
column referenced in SELECT must be either
* Aggregated, or
* A GROUP BY column
Why?

“ This restriction ensures that any SELECT expression
produces only one value for each group

SELECT uid, age FROM User CROUP BY age;

SELECT uid, MAX(pop) FROM User; ~ONG!

HAVING

* Used to filter groups based on the group properties (e.g.,
aggregate values, GROUP BY column values)

* Assume HAVING refers only to aggregations that also
appear in SELECT (7). Then the computation order is:

* SELECT ... FROM ... WHERE ... GROUP BY ... ;
1. Compute FROM (X)
2. Compute WHERE (o)

3. Compute GROUP BY: group rows according to the values of
GROUP BY columns

4. Compute SELECT (m): so the group by’s and aggregates
5. Output only those tuples from SELECT () if the group passes

HAVING

* Note: HAVING can contain aggregations that are
not in the SELECT. (see next slide)

* If so: then those aggregations are also computed in
step 4.

HAVING examples

* List the average popularity for

SELECT age, AVG(pop)
FROM User

GROUP BY age
HAVING COUNT(*)>100;

* Can be written using WHERE and table subqueries

SELECT T.age, T.apop
FROM (SELECT age, AVG(pop) AS apop, COUNT(*) AS gsize

FROM User CROUP BY age) AST
WHERE T.gsize>100;

HAVING examples

* Find average popularity for each

SELECT age, AVG(pop)
FROM User

GROUP BY age
HAVING age >10;

* Can be written using WHERE table subqueries

SELECT age, AVG(pop)
FROM User

WHERE age >10
GROUP BY age;

SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations
* Subqueries

* Aggregation and grouping
* More expressive power than relational algebra

®Next: ordering output rows

ORDER BY

* SELECT [DISTINCT] ...
FROM ... WHERE ... GROUP BY ... HAVING ...

* ASC = ascending, DESC = descending

* Semantics: After SELECT list has been computed
and optional duplicate elimination has been carried
out,

ORDER BY example

* List all users, sort them by

and
SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC, name;
is the option
* Strictly speaking, only columns can appearin

ORDER BY clause (although some DBMS support more)

* Can use sequence numbers instead of names to refer to
output columns: :

SQL features covered so far

* Query
* SELECT-FROM-WHERE statements
» Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
 Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
» Aggregation and grouping (GROUP BY, HAVING)
* Ordering (ORDER)

	Slide 1
	Slide 2: SQL
	Slide 3: SQL
	Slide 4: DDL
	Slide 5: Basic queries for DML: SFW statement
	Slide 6: Examples
	Slide 7: Example: join
	Slide 8: Example: join
	Slide 9: Example: rename
	Slide 10: A more complicated example
	Slide 11: A more complicated example
	Slide 12: A more complicated example
	Slide 13: A more complicated example
	Slide 14: Why SFW statements?
	Slide 15: Set versus bag
	Slide 16: A case for bag semantics
	Slide 17: Forcing set semantics
	Slide 18: Semantics of SFW
	Slide 19: SQL set and bag operations
	Slide 20: SQL set and bag operations
	Slide 21: SQL set and bag operations
	Slide 22: SQL set and bag operations
	Slide 23: Set versus bag operations
	Slide 24: Set versus bag operations
	Slide 25: SQL features covered so far
	Slide 26: Table subqueries
	Slide 27: Scalar subqueries
	Slide 28: IN subqueries
	Slide 29: EXISTS subqueries
	Slide 30: Another example
	Slide 31: Quantified subqueries
	Slide 32: More ways to get the most popular
	Slide 33: SQL features covered so far
	Slide 34: Aggregates
	Slide 35: Aggregates with DISTINCT
	Slide 36: Grouping
	Slide 37: Example of computing GROUP BY
	Slide 38: Semantics of GROUP BY
	Slide 39: Aggregates with no GROUP BY
	Slide 40: Restriction on SELECT
	Slide 41: HAVING
	Slide 42: HAVING
	Slide 43: HAVING examples
	Slide 44: HAVING examples
	Slide 45: SQL features covered so far
	Slide 46: ORDER BY
	Slide 47: ORDER BY example
	Slide 48: SQL features covered so far

