
CS 348 Lecture 4

SQL Part 1

Semih Salihoğlu

Jan 15th, 2025

1

SQL

• SQL: Structured Query Language
• Pronounced “S-Q-L” or “sequel”

• The standard query language supported by most DBMS

• A brief history
• IBM System R

• ANSI SQL96

• ANSI SQL89

• ANSI SQL92 (SQL2)

• ANSI SQL99 (SQL3)

• ANSI SQL 2003 (added OLAP, XML, etc.)

• ANSI SQL 2006 (added more XML)

• ANSI SQL 2008, …

2

SQL

• Data-definition language (DDL): define/modify
schemas, delete relations

• Data-manipulation language (DML): query
information, and insert/delete/modify tuples

• Integrity constraints: specify constraints that the
data stored in the database must satisfy

• Intermediate/Advanced topics: (next week)
• E.g., triggers, views, indexes, programming, recursive

queries

3

this
week

DDL

• CREATE TABLE table_name
(…, column_name column_type, …);

• DROP TABLE table_name;

4

CREATE TABLE User(uid INT, name VARCHAR(30), age INT, pop FLOAT);
CREATE TABLE Group (gid VARCHAR(10), name VARCHAR(100));
CREATE TABLE Member (uid INT, gid VARCHAR(10));

DROP TABLE User;
DROP TABLE Group;
DROP TABLE Member;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

-- everything from -- to the end of line is ignored.
-- SQL is insensitive to white space.
-- SQL is insensitive to case (e.g., ...CREATE... is
-- equivalent to ...create...).

How does it
work with
MySQL?

Basic queries for DML: SFW statement

• SELECT 𝐴1, 𝐴2, …, 𝐴𝑛
FROM 𝑅1, 𝑅2, …, 𝑅𝑚
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;

• Also called an SPJ (select-project-join) query

• Corresponds to (but not really equivalent to)
relational algebra query:

𝜋𝐴1,𝐴2,…,𝐴𝑛
𝜎𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑅1 × 𝑅2 × ⋯ × 𝑅𝑚

5

Examples

• List all rows in the User table

• * is a short hand for “all columns”

• List name of users under 18 (selection, projection)

• When was Lisa born?

• SELECT list can contain expressions
• Can also use built-in functions such as SUBSTR, ABS, etc.

• String literals (case sensitive) are enclosed in single
quotes

6

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT * FROM User;

SELECT name FROM User where age <18;

SELECT 2021-age FROM User where name = ‘Lisa’;

Example: join

• List ID’s and names of groups with a user whose
name contains “Simpson”

7

SELECT Group.gid, Group.name
 FROM User, Member, Group
 WHERE User.uid = Member.uid
 AND Member.gid = Group.gid
 AND ….;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Example: join

• List ID’s and names of groups with a user whose
name contains “Simpson”

• LIKE matches a string against a pattern
• % matches any sequence of zero or more characters

• Okay to omit table_name in table_name.column_name if
column_name is unique

8

SELECT Group.gid, Group.name
 FROM User, Member, Group
 WHERE User.uid = Member.uid
 AND Member.gid = Group.gid
 AND User.name LIKE ‘%Simpson%’;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Example: rename

• ID’s of all pairs of users that belong to one group
• Relational algebra query:

𝜋𝑚1.𝑢𝑖𝑑,𝑚2.𝑢𝑖𝑑

𝜌𝑚1
𝑀𝑒𝑚𝑏𝑒𝑟 ⋈𝑚1.𝑔𝑖𝑑=𝑚2.𝑔𝑖𝑑 ∧ 𝑚1.𝑢𝑖𝑑>𝑚2.𝑢𝑖𝑑 𝜌𝑚2

𝑀𝑒𝑚𝑏𝑒𝑟

• SQL (not exactly):
SELECT m1.uid AS uid1, m2.uid AS uid2
 FROM Member AS m1, Member AS m2
 WHERE m1.gid = m2.gid
 AND m1.uid > m2.uid;

• AS keyword is completely optional

9

SELECT m1.uid AS uid1, m2.uid AS uid2
 FROM Member AS m1, Member AS m2
 WHERE m1.gid = m2.gid
 AND m1.uid > m2.uid;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

• Names of all groups that Lisa and Ralph are both in

Tip: Write the FROM clause first, then WHERE, and
then SELECT

10

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

• Names of all groups that Lisa and Ralph are both in

11

SELECT g.name
 FROM User u1, …, Member m1, …
 WHERE u1.name = 'Lisa' AND …
 AND u1.uid = m1.uid AND …
 AND …;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

• Names of all groups that Lisa and Ralph are both in

12

SELECT g.name
 FROM User u1, User u2, Member m1, Member m2, …
 WHERE u1.name = 'Lisa' AND u2.name = ‘Ralph’
 AND u1.uid = m1.uid AND u2.uid=m2.uid
 AND …;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

• Names of all groups that Lisa and Ralph are both in

13

SELECT g.name
 FROM User u1, User u2, Member m1, Member m2, Group g
 WHERE u1.name = 'Lisa' AND u2.name = ‘Ralph’
 AND u1.uid = m1.uid AND u2.uid=m2.uid
 AND m1.gid = g.gid AND m2.gid = g.gid;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Why SFW statements?

• Many queries can be written using only selection,
projection, and cross product (or join)

• These queries can be written in a canonical form
which is captured by SFW:

𝜋𝐿 𝜎𝑝 𝑅1 × ⋯ × 𝑅𝑚

• Example: 𝜋𝑅.𝐴,𝑆.𝐵 𝑅 ⋈𝑝1
𝑆 ⋈𝑝2

𝜋𝑇.𝐶𝜎𝑝3
𝑇

14

= 𝜋𝑅.𝐴,𝑆.𝐵,𝑇.𝐶𝜎𝑝1∧𝑝2∧𝑝3
𝑅 × 𝑆 × 𝑇

Set versus bag

15

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

User

𝜋𝑎𝑔𝑒𝑈𝑠𝑒𝑟

SELECT age
FROM User;

age

10

8

…

age

10

8

8

8

…

Set
• No duplicates
• Relational model and algebra use set

semantics

Bag
• Duplicates allowed
• Number of duplicates is significant
• SQL uses bag semantics by default

A case for bag semantics

• Efficiency
• Saves time of eliminating duplicates

• Which one is more useful?

• The first query just returns all possible user ages

• The second query returns the user age distribution

• Besides, SQL provides the option of set semantics
with DISTINCT keyword

16

𝜋𝑎𝑔𝑒𝑈𝑠𝑒𝑟
SELECT age
FROM User;

Forcing set semantics

• ID’s of all pairs of users that belong to one group

→Say Lisa and Ralph are in both the book club and the
student government, they id pairs will appear twice

• Remove duplicate (uid1, uid2) pairs from the output

17

SELECT m1.uid AS uid1, m2.uid AS uid2
 FROM Member AS m1, Member AS m2
 WHERE m1.gid = m2.gid
 AND m1.uid > m2.uid;

SELECT DISTINCT m1.uid AS uid1, m2.uid AS uid2
 FROM Member AS m1, Member AS m2
 WHERE m1.gid = m2.gid;
 AND m1.uid > m2.uid;

Semantics of SFW

• SELECT [DISTINCT] 𝐸1, 𝐸2, …, 𝐸𝑛
FROM 𝑅1, 𝑅2, …, 𝑅𝑚
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;

• For each 𝑡1 in 𝑅1:
 For each 𝑡2 in 𝑅2: … …
 For each 𝑡𝑚 in 𝑅𝑚:

 If 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is true over 𝑡1•𝑡2•… • 𝑡𝑚:
 Compute and output 𝐸1, 𝐸2, …, 𝐸𝑛 as a row

 If DISTINCT is present
 Eliminate duplicate rows in output

• 𝑡1, 𝑡2, …, 𝑡𝑚 are often called tuple variables

18

SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra

• Duplicates in input tables, if any, are first eliminated

• Duplicates in result are also eliminated (for UNION)

19

fruit

apple

apple

orange

fruit

orange

orange

orange

Bag1 Bag2 (SELECT * FROM Bag1)
UNION
(SELECT * FROM Bag2);

fruit

apple

orange

(SELECT * FROM Bag1)
EXCEPT
(SELECT * FROM Bag2);

fruit

apple

(SELECT * FROM Bag1)
INTERSECT
(SELECT * FROM Bag2);

fruit

orange

SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra

• Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL
• Think of each row as having an implicit count (the

number of times it appears in the table)

20

fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
UNION ALL
(SELECT * FROM Bag2);

fruit

apple

apple

orange

apple

orange

orange

sum up the counts
from two tables

apple: 2
orange:1

apple: 1
orange:2

apple: 3
orange:3

SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra

• Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL
• Think of each row as having an implicit count (the

number of times it appears in the table)

21

fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
EXCEPT ALL
(SELECT * FROM Bag2);

fruit

apple

proper-subtract
the two counts

apple: 2
orange:1

apple: 1
orange:2

apple: 1
orange:0

SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra

• Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL
• Think of each row as having an implicit count (the

number of times it appears in the table)

22

fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
INTERSECT ALL
(SELECT * FROM Bag2);

fruit

apple

orange

take the
minimum of the
two counts

apple: 2
orange:1

apple: 1
orange:2

apple: 1
orange:1

Set versus bag operations

Poke (uid1, uid2, timestamp)
• uid1 poked uid2 at timestamp

Question: How do these two queries differ?

23

Q1:
(SELECT uid1 FROM Poke)
EXCEPT
(SELECT uid2 FROM Poke);

Q2:
(SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke);

Set versus bag operations

Poke (uid1, uid2, timestamp)
• uid1 poked uid2 at timestamp

Question: How do these two queries differ?

24

Q1:
(SELECT uid1 FROM Poke)
EXCEPT
(SELECT uid2 FROM Poke);

Q2:
(SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke);

Users who poked others but
never got poked by others

Users who poked others
more than others poked them

SQL features covered so far

• SELECT-FROM-WHERE statements

• Set and bag operations

Next: how to nest SQL queries

25

• Use query result as a table
• In set and bag operations, FROM clauses, etc.

• Example: names of users who poked others more
than others poked them

Table subqueries

26

SELECT DISTINCT name
FROM User,

((SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke)) AS T

WHERE User.uid = T.uid;

• A query that returns a single value, i.e., a single row
and single column can be used as a value in WHERE,
SELECT, etc.

• Example: users at the same age as Bart

• When can this query go wrong?
• Return more than 1 row

• Return no rows

Scalar subqueries

27

SELECT *
FROM User,
WHERE age = (SELECT age
 FROM User
 WHERE name = ‘Bart’);

• 𝑥 IN (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if 𝑥 is in the result of
𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦

• Example: users at the same age as (some) Bart

IN subqueries

28

SELECT *
FROM User,
WHERE age IN (SELECT age
 FROM User
 WHERE name = ‘Bart’);

• EXISTS (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦
is non-empty

• Example: users at the same age as (some) Bart

• This happens to be a correlated subquery—a subquery
that references tuple variables in surrounding queries

EXISTS subqueries

29

SELECT *
FROM User AS u,
WHERE EXISTS (SELECT * FROM User
 WHERE name = ‘Bart’
 AND age = u.age);

Another example

• Users who join at least two groups

• How to find which table a column belongs to?
• Start with the immediately surrounding query

• If not found, look in the one surrounding that; repeat if
necessary

30

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT * FROM User u
WHERE EXISTS
 (SELECT * FROM Member m
 WHERE uid = u.uid
 AND EXISTS
 (SELECT * FROM Member
 WHERE uid = u.uid
 AND gid <> m.gid));

Use
table_name.
column_name
notation and AS
(renaming) to avoid
confusion

Quantified subqueries

• Universal quantification (for all):
• … WHERE 𝑥 𝑜𝑝 ALL(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …

• True iff for all 𝑡 in the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦, 𝑥 𝑜𝑝 𝑡

• Existential quantification (exists):
• … WHERE 𝑥 𝑜𝑝 ANY(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …

• True iff there exists some 𝑡 in 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 result s.t. 𝑥 𝑜𝑝 𝑡

31

SELECT *
FROM User
WHERE NOT
 (pop < ANY(SELECT pop FROM User));

SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

More ways to get the most popular

• Which users are the most popular?

32

Q2. SELECT *
FROM User
WHERE NOT
 (pop < ANY(SELECT pop FROM User);

Q1. SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

Q3. SELECT *
FROM User AS u
WHERE NOT [EXITS or IN?]
 (SELECT * FROM User
 WHERE pop > u.pop);

Q4. SELECT * FROM User
WHERE uid NOT [EXISTS or IN?]
 (SELECT u1.uid
 FROM User AS u1, User AS u2
 WHERE u1.pop < u2.pop);

EXISTS or IN?

SQL features covered so far

• SELECT-FROM-WHERE statements

• Set and bag operations

• Subqueries
• Subqueries allow queries to be written in more

declarative ways (recall the “most popular” query)

• But in many cases, they don’t add expressive power

Next: aggregation and grouping

33

Aggregates

• Standard SQL aggregate functions: COUNT, SUM,
AVG, MIN, MAX

• Example: number of users under 18, and their
average popularity
• COUNT(*) counts the number of rows

34

SELECT COUNT(*), AVG(pop)
FROM User
WHERE age <18;

Aggregates with DISTINCT

• Example: How many users are in some group?

35

SELECT COUNT(*)
FROM (SELECT DISTINCT uid FROM Member);

SELECT COUNT(DISTINCT uid)
FROM Member;

Is equivalent to

Grouping

• SELECT … FROM … WHERE …
GROUP BY list_of_columns;

• Example: compute average popularity for
each age group

36

SELECT age, AVG(pop)
FROM User
GROUP BY age;

Example of computing GROUP BY

37

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Compute GROUP BY: group
rows according to the values
of GROUP BY columns

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

Compute SELECT
for each group

age avg_pop

10 0.55

8 0.50

SELECT age, AVG(pop) FROM User GROUP BY age;

Semantics of GROUP BY

SELECT … FROM … WHERE … GROUP BY …;

1. Compute FROM (×)

2. Compute WHERE (𝜎)

3. Compute GROUP BY: group rows according to the
values of GROUP BY columns

4. Compute SELECT for each group (𝜋)
• For aggregation functions with DISTINCT inputs, first

eliminate duplicates within the group

Number of groups =
 number of rows in the final output

38

Aggregates with no GROUP BY

• An aggregate query with no GROUP BY clause =
all rows go into one group

 SELECT AVG(pop) FROM User;

39

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Group all rows
into one group

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Aggregate over
the whole group

avg_pop

0.525

SELECT AVG(pop) FROM User;

Restriction on SELECT

• If a query uses aggregation/group by, then every
column referenced in SELECT must be either
• Aggregated, or

• A GROUP BY column

Why?

This restriction ensures that any SELECT expression
produces only one value for each group

40

SELECT uid, age FROM User GROUP BY age;

SELECT uid, MAX(pop) FROM User;

HAVING

• Used to filter groups based on the group properties (e.g.,
aggregate values, GROUP BY column values)

• Assume HAVING refers only to aggregations that also
appear in SELECT (𝜋). Then the computation order is:

• SELECT … FROM … WHERE … GROUP BY …HAVING 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;
1. Compute FROM (×)

2. Compute WHERE (𝜎)

3. Compute GROUP BY: group rows according to the values of
GROUP BY columns

4. Compute SELECT (𝜋): so the group by’s and aggregates

5. Output only those tuples from SELECT (𝜋) if the group passes
HAVING’s 𝜎 condition

41

HAVING

• Note: HAVING can contain aggregations that are
not in the SELECT. (see next slide)

• If so: then those aggregations are also computed in
step 4.

42

HAVING examples

• List the average popularity for each age group with
more than a hundred users

• Can be written using WHERE and table subqueries

43

SELECT age, AVG(pop)
FROM User
GROUP BY age
HAVING COUNT(*)>100;

SELECT T.age, T.apop
FROM (SELECT age, AVG(pop) AS apop, COUNT(*) AS gsize
 FROM User GROUP BY age) AS T
WHERE T.gsize>100;

HAVING examples

• Find average popularity for each age group over 10

• Can be written using WHERE without table subqueries

44

SELECT age, AVG(pop)
FROM User
GROUP BY age
HAVING age >10;

SELECT age, AVG(pop)
FROM User
WHERE age >10
GROUP BY age;

SQL features covered so far

• SELECT-FROM-WHERE statements

• Set and bag operations

• Subqueries

• Aggregation and grouping
• More expressive power than relational algebra

Next: ordering output rows

45

ORDER BY

• SELECT [DISTINCT] …
FROM … WHERE … GROUP BY … HAVING …
ORDER BY output_column [ASC|DESC], …;

• ASC = ascending, DESC = descending

• Semantics: After SELECT list has been computed
and optional duplicate elimination has been carried
out, sort the output according to ORDER BY
specification

46

ORDER BY example

• List all users, sort them by popularity (descending)
and name (ascending)

• ASC is the default option

• Strictly speaking, only output columns can appear in
ORDER BY clause (although some DBMS support more)

• Can use sequence numbers instead of names to refer to
output columns: ORDER BY 4 DESC, 2;

47

SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC, name;

SQL features covered so far

• Query
• SELECT-FROM-WHERE statements

• Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))

• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)

• Aggregation and grouping (GROUP BY, HAVING)

• Ordering (ORDER)

• Outerjoins (and Nulls)

• Modification
• INSERT/DELETE/UPDATE

• Constraints

48

Lecture 4

	Slide 1
	Slide 2: SQL
	Slide 3: SQL
	Slide 4: DDL
	Slide 5: Basic queries for DML: SFW statement
	Slide 6: Examples
	Slide 7: Example: join
	Slide 8: Example: join
	Slide 9: Example: rename
	Slide 10: A more complicated example
	Slide 11: A more complicated example
	Slide 12: A more complicated example
	Slide 13: A more complicated example
	Slide 14: Why SFW statements?
	Slide 15: Set versus bag
	Slide 16: A case for bag semantics
	Slide 17: Forcing set semantics
	Slide 18: Semantics of SFW
	Slide 19: SQL set and bag operations
	Slide 20: SQL set and bag operations
	Slide 21: SQL set and bag operations
	Slide 22: SQL set and bag operations
	Slide 23: Set versus bag operations
	Slide 24: Set versus bag operations
	Slide 25: SQL features covered so far
	Slide 26: Table subqueries
	Slide 27: Scalar subqueries
	Slide 28: IN subqueries
	Slide 29: EXISTS subqueries
	Slide 30: Another example
	Slide 31: Quantified subqueries
	Slide 32: More ways to get the most popular
	Slide 33: SQL features covered so far
	Slide 34: Aggregates
	Slide 35: Aggregates with DISTINCT
	Slide 36: Grouping
	Slide 37: Example of computing GROUP BY
	Slide 38: Semantics of GROUP BY
	Slide 39: Aggregates with no GROUP BY
	Slide 40: Restriction on SELECT
	Slide 41: HAVING
	Slide 42: HAVING
	Slide 43: HAVING examples
	Slide 44: HAVING examples
	Slide 45: SQL features covered so far
	Slide 46: ORDER BY
	Slide 47: ORDER BY example
	Slide 48: SQL features covered so far

