
CS 348 Lecture 5

SQL Part 2

Semih Salihoğlu

Jan 20th, 2025

1

Announcements

• Project Milestone 0: due Jan 22nd !

2

Recap: ORDER BY

• SELECT [DISTINCT] …
FROM … WHERE … GROUP BY … HAVING …
ORDER BY output_column [ASC|DESC], …;

• ASC = ascending, DESC = descending

• Semantics: After SELECT list has been computed
and optional duplicate elimination has been carried
out, sort the output according to ORDER BY
specification

3

Recap: ORDER BY example

• List all users, sort them by popularity (descending)
and name (ascending)

• ASC is the default option

• Strictly speaking, only output columns can appear in
ORDER BY clause (although some DBMS support more)

• Can use sequence numbers instead of names to refer to
output columns: ORDER BY 4 DESC, 2;

4

SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC, name;

LIMIT
• The LIMIT clause specifies the number of rows to

return

• ORDER BY + LIMIT: useful template for “top-k” (or
“bottom-k”) queries

• E.g., Return top 3 users with highest popularities

• OFFSET: Many systems have an OFFSET clause to
skip some number of rows before outputting

5

SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC
LIMIT 3;

Basic SQL features

• Query
• SELECT-FROM-WHERE statements

• Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))

• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)

• Aggregation and grouping (GROUP BY, HAVING)

• Ordering (ORDER)

• Outerjoins (and Nulls)

• Modification
• INSERT/DELETE/UPDATE

• Constraints

6

Lecture 5

Incomplete information

• Example: User (uid, name, age, pop)

• Value unknown
• We do not know Nelson’s pop

• Value not applicable
• Suppose pop is based on interactions with others on our

social networking site

• Nelson is new to our site; what is their pop?

7

Solution 1

• Dedicate a value from each domain (type)
• pop cannot be −1, so use −1 as a special value to

indicate a missing or invalid pop

• Not recommended for 2 reasons:
• Hard to find a value for each data type (e.g., what to use for

booleans)

• Not universal: Many options exist and can be confusing
to other people co-developing applications!
• For numeric columns: highest, lowest, 0, or a value < 0?

• For string columns: “Nil”, “nil”, “none”, “n/a”?

8

SELECT AVG(pop) FROM User;

SELECT AVG(pop) FROM User WHERE pop != -1;

Solution 2

• A valid-bit for every column
• User (uid,

 name, name_is_valid,
 age, age_is_valid,
 pop, pop_is_valid)

• Complicates schema and queries
• Need almost double the number of columns

9

SELECT AVG(pop) FROM User WHERE pop_is_valid=1;

Solution 3

• Decompose the table; missing row = missing value
• UserName (uid, name)

• UserAge (uid, age)

• UserPop (uid, pop)

• UserID (uid)

• Conceptually the cleanest solution

• Still complicates schema and queries
• How to get all information about users in a table?

• Natural join doesn’t work!

10

Has a tuple for Nelson

Has a tuple for Nelson

No entry for Nelson

No entry for Nelson

SQL’s solution

• A special value NULL
• For every domain (i.e., any datatype)

• Example: User (uid, name, age, pop)
• 789, “Nelson”, NULL, NULL

• Special rules for dealing with NULL’s

11

SELECT * FROM User WHERE name=‘Nelson’ AND pop > 0.5 ??

Three-valued logic

• Comparing a NULL with another value (including another
NULL) using =, >, etc., the result is NULL

• WHERE and HAVING clauses only select rows for output if
the condition evaluates to TRUE
• NULL is not enough

• Aggregate functions ignore NULL, except COUNT(*)

12

Can think of this equivalently as follows:
Let TRUE = 1, FALSE = 0, UNKNOWN = 0.5

Then:
𝑥 AND 𝑦 = min(𝑥, 𝑦)
𝑥 OR 𝑦 = max(𝑥, 𝑦)

NOT 𝑥 = 1 − 𝑥

Will 789 be in the output?
13

SELECT uid FROM User where name=‘Nelson’ AND pop>0.5;

789, “Nelson”, NULL, NULL

Unfortunate consequences

• Q1a = Q1b?

• Q2a = Q2b?

• Be careful: NULL breaks many equivalences

14

Q1a. SELECT AVG(pop) FROM User;

Q1b. SELECT SUM(pop)/COUNT(*) FROM User;

Q2a. SELECT * FROM User;

Q2b SELECT * FROM User WHERE pop=pop;

Another problem

• Example: Who has NULL pop values?

• SQL introduced special, built-in predicates
IS NULL and IS NOT NULL

15

SELECT * FROM User WHERE pop = NULL;

(SELECT * FROM User)
EXCEPT
(SELECT * FROM USER WHERE pop=pop);

SELECT * FROM User WHERE pop IS NULL;

uid name age pop

142 Bart NULL 0.9

123 Milhouse 8 NULL

857 Lisa 8 0.7

456 Nelson 8 NULL

324 Ralph NULL 0.3

Takehome ex.
16

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User Member

Consider this db instance:

• What is the output of these queries?

SELECT avg(pop), count(*) FROM User GROUP BY age;

SELECT uid FROM User where age > 5 OR pop < 0.5;

SELECT uid FROM User where age > 5 AND pop < 0.5;

SELECT name FROM User WHERE age IN (SELECT age FROM User
 WHERE name = 'Bart');

Take home ex.

• For the previous db instance, what is the output for:

• Write a query to find all users (uids) with non-null
popularity who belong to at least one group.

17

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT avg(pop), count(*) FROM User WHERE age IS NOT NULL
GROUP BY age;

SELECT MAX(pop), count(*) FROM User GROUP BY age;

Need for a new join query

• Example: construct a master group membership list
with all groups and its members info

• What if a group is empty?

• It may be reasonable for the master list to include
empty groups as well
• For these groups, uid and uname columns would be

NULL

18

SELECT g.gid, g.name AS gname,
 u.uid, u.name AS uname
FROM Group g, Member m, User u
WHERE g.gid = m.gid AND m.uid = u.uid;

Outerjoin examples
19

gid name

abc Book Club

gov Student Government

dps Dead Putting Society

spr Sports Club

uid gid

142 dps

123 gov

857 abc

857 gov

789 foo

Group

Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

Group༖Member

A full outer (natural) join between R and S:
• All rows in the result of 𝑅 ⋈ 𝑆, plus
• “Dangling” 𝑅 rows (those that do not join with any

𝑆 rows) padded with NULL’s for 𝑆’s columns
• “Dangling” 𝑆 rows (those that do not join with any

𝑅 rows) padded with NULL’s for 𝑅’s columns

Similar definition for outer theta joins =>
what is supported in SQL

spr Sports Club NULL

foo NULL 789

Outerjoin examples
20

gid name

abc Book Club

gov Student Government

dps Dead Putting Society

spr Sports Club

uid gid

142 dps

123 gov

857 abc

857 gov

789 foo

Group

Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

spr Sports Club NULL

Group༔Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

foo NULL 789

Group༕Member

• A left outerjoin (𝑅 ༔ 𝑆) includes rows in 𝑅 ⋈ 𝑆
plus dangling 𝑅 rows padded with NULL’s

• A right outerjoin (𝑅 ༕ 𝑆) includes rows in 𝑅 ⋈
𝑆 plus dangling 𝑆 rows padded with NULL’s

Outer (theta) join syntax
21

SELECT * FROM Group LEFT OUTER JOIN Member
 ON Group.gid = Member.gid;

SELECT * FROM Group RIGHT OUTER JOIN Member
 ON Group.gid = Member.gid;

SELECT * FROM Group FULL OUTER JOIN Member
 ON Group.gid = Member.gid;

≈ 𝐺𝑟𝑜𝑢𝑝 ༔
𝐺𝑟𝑜𝑢𝑝.𝑔𝑖𝑑=𝑀𝑒𝑚𝑏𝑒𝑟.𝑔𝑖𝑑

𝑀𝑒𝑚𝑏𝑒𝑟

≈ 𝐺𝑟𝑜𝑢𝑝 ༕
𝐺𝑟𝑜𝑢𝑝.𝑔𝑖𝑑=𝑀𝑒𝑚𝑏𝑒𝑟.𝑔𝑖𝑑

𝑀𝑒𝑚𝑏𝑒𝑟

≈ 𝐺𝑟𝑜𝑢𝑝 ༖
𝐺𝑟𝑜𝑢𝑝.𝑔𝑖𝑑=𝑀𝑒𝑚𝑏𝑒𝑟.𝑔𝑖𝑑

𝑀𝑒𝑚𝑏𝑒𝑟

SELECT * FROM User LEFT OUTER JOIN Member
 ON User.uid = Member.uid AND pop < 0.5;

≈ 𝑈𝑠𝑒𝑟 ༔
𝑈𝑠𝑒𝑟.𝑢𝑖𝑑=𝑀𝑒𝑚𝑏𝑒𝑟.𝑢𝑖𝑑 𝐴𝑁𝐷 𝑝𝑜𝑝<0.5

𝑀𝑒𝑚𝑏𝑒𝑟

Natural Outer Join syntax
22

☞For natural joins, add keyword NATURAL; don’t use ON

SELECT * FROM Group NATURAL LEFT OUTER JOIN Member;

Natural join: gid
appears once

SELECT * FROM Group LEFT OUTER JOIN Member ON Group.gid = Member.gid;

Inner join syntax

☞Normal or “inner” join: instead of OUTER JOIN:

☞ use just JOIN or INNER JOIN keywords

☞Similarly for natural (inner) joins, add keyword NATURAL; don’t
use ON

23

SELECT * FROM Group JOIN Member ON Group.gid = Member.gid;

SELECT * FROM Group NATURAL JOIN Member;

SELECT * FROM Group INNER JOIN Member ON Group.gid = Member.gid;

SELECT * FROM Group NATURAL INNER JOIN Member;

Two orthogonal aspects of joins

1. Join Predicate: Natural vs Theta
• Natural: join predicate is equality of common attributes

• Theta: arbitrary predicate

2. Dangling tuples: Inner vs Outer
• Inner: ignore dangling tuples

• Left/Right/Full Outer: keep dangling tuples (left, right or both)

• You need to specify bothusing the following clauses this order:
1. NATURAL vs Theta: if NATURAL keyword is used then natural, otherwise

theta

2. INNER vs LEFT/RIGHT/FULL OUTER: if omitted, inner is assumed

Note if theta, after INNER or LEFT/RIGHT/FULL OUTER clauses, we need an ON

E.g: This is not correct syntax:

24

SELECT * FROM Group LEFT OUTER JOIN Member;

uid uname age pop

142 Bart 10 0.9

123 Milhouse 10 NULL

857 Lisa 8 0.7

456 Ralph 8 NULL

Exercises
25

uid gid

857 dps

123 gov

857 abc

123 abc

User Member

Consider this db instance:

• What is the output of these queries?

SELECT COUNT(m.gid), COUNT(g.name) FROM Member m RIGHT OUTER JOIN
Group g ON g.gid=m.gid;

SELECT u.name as uname, g.name as gname FROM User u NATURAL JOIN
Member m NATURAL JOIN Group g;

SELECT u.name as uname, m.gid FROM User u LEFT OUTER JOIN Member m
ON u.uid=m.uid;

gid gname

abc Book Club

gov Student Government

dps Dead Putting Society

spr Sports Club

Group

SQL features covered so far

• SELECT-FROM-WHERE statements

• Set and bag operations

• Subqueries

• Aggregation and grouping

• Ordering

• NULLs and outerjoins

Next: data modification statements, constraints

26

INSERT

• Insert one row

• User 789 joins Dead Putting Society

• Insert the result of a query

• Everybody joins Dead Putting Society!

27

INSERT INTO Member VALUES (789, 'dps');

INSERT INTO Member

 (SELECT uid, 'dps' FROM User

 WHERE uid NOT IN (SELECT uid

 FROM Member

 WHERE gid = 'dps'));

INSERT INTO User (uid, name) VALUES (389, ‘Marge');

DELETE

• Delete everything from a table

• Delete according to a WHERE condition
• Example: User 789 leaves Dead Putting Society

• Example: Users over age 18 must be removed from Sports Club

• Some systems allow “deletions with joins in the FROM”
clause. Check your systems’ documentation.

28

DELETE FROM Member;

DELETE FROM Member
WHERE uid IN (SELECT uid FROM User WHERE age > 18)
 AND gid = ‘spr';

DELETE FROM Member WHERE uid=789 AND gid=‘dps’;

UPDATE

• Example: User 142 changes name to “Barney”

• Example: We are all popular!

• But won’t update of every row causes average pop to
change?

Subquery is always computed over the old table

29

UPDATE User
SET name = 'Barney’
WHERE uid = 142;

UPDATE User
SET pop = (SELECT AVG(pop) FROM User);

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 NULL

857 Lisa 8 0.7

456 Ralph 8 NULL

Exercise
30

uid gid

857 dps

123 gov

857 abc

123 abc

User Member

Consider this db instance:

• What is the output of this queries?

INSERT INTO Member (SELECT u.uid, ‘spr’ FROM User u WHERE u.age >= 10
 AND u.pop IS NOT NULL);

gid name

abc Book Club

gov Student Government

dps Dead Putting Society

spr Sports Club

Group

SQL features covered so far

• Query
• SELECT-FROM-WHERE statements

• Set and bag operations

• Subqueries

• Aggregation and grouping

• Ordering

• Outerjoins (and NULL)

• Modification
• INSERT/DELETE/UPDATE

Next lectures: Constraints, schema changes, views,
indexes

31

	Slide 1
	Slide 2: Announcements
	Slide 3: Recap: ORDER BY
	Slide 4: Recap: ORDER BY example
	Slide 5: LIMIT
	Slide 6: Basic SQL features
	Slide 7: Incomplete information
	Slide 8: Solution 1
	Slide 9: Solution 2
	Slide 10: Solution 3
	Slide 11: SQL’s solution
	Slide 12: Three-valued logic
	Slide 13: Will 789 be in the output?
	Slide 14: Unfortunate consequences
	Slide 15: Another problem
	Slide 16: Takehome ex.
	Slide 17: Take home ex.
	Slide 18: Need for a new join query
	Slide 19: Outerjoin examples
	Slide 20: Outerjoin examples
	Slide 21: Outer (theta) join syntax
	Slide 22: Natural Outer Join syntax
	Slide 23: Inner join syntax
	Slide 24: Two orthogonal aspects of joins
	Slide 25: Exercises
	Slide 26: SQL features covered so far
	Slide 27: INSERT
	Slide 28: DELETE
	Slide 29: UPDATE
	Slide 30: Exercise
	Slide 31: SQL features covered so far

