CS 348 Lecture 5

SQL Part 2

Semih Salihoglu
Jan 20, 2025

Data
Systems
Group

waTERLOO | DBS

Announcements

* Project Milestone o:

Recap: ORDER BY

* SELECT [DISTINCT] ...
FROM ... WHERE ... GROUP BY ... HAVING ...

* ASC = ascending, DESC = descending

* Semantics: After SELECT list has been computed
and optional duplicate elimination has been carried

out,

Recap: ORDER BY example

* List all users, sort them by

and
SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC, name;
is the option
* Strictly speaking, only columns can appearin

ORDER BY clause (although some DBMS support more)

* Can use sequence numbers instead of names to refer to
output columns: :

LIMIT

* The LIMIT clause specifies the number of rows to
return

* ORDER BY + LIMIT: useful template for “top-k’ (or
“bottom-k”) queries

* E.g., Return top 3 users with highest popularities

SELECT uid, name, age, pop
FROM User

ORDER BY pop DESC
LIMIT 3;

* OFFSET: Many systems have an OFFSET clause to
skip some number of rows before outputting

Basic SQL features

* Query
* SELECT-FROM-WHERE statements
» Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
 Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
» Aggregation and grouping (GROUP BY, HAVING)
* Ordering (ORDER)

Incomplete information

* Example: User (uid, name, age, pop)

* Value
* We do not know Nelson’s pop

e Value

* Suppose pop is based on interactions with others on our
social networking site

* Nelsonis new to our site; what is their pop?

Solution 1

from each domain (type)

* pop cannot be —1, so use —1 as a special value to
indicate a missing or invalid pop

bl answer>

SELECT AVG(pop) FROM User;

SELECT AVG(pop) FROM User WHERE pop != -1;

* Not recommended for 2 reasons:

* Hard to find a value for each data type (e.g., what to use for
booleans)

* Not universal: Many options exist and can be confusing
to other people co-developing applications!
* For numeric columns: highest, lowest, 0, or a value < 0?
* For string columns: “Nil”, “nil”, “none”, “n/a”?

Solution 2

* A valid-bit for every column

* User (uid,
name, name_is valid,
age, age is valid,
pop, pop_is_valid)

SELECT AVG(pop) FROM User WHERE pop is valid=1;

* Complicates schema and queries
* Need almost double the number of columns

Solution 3

* Decompose the table; missing row = missing value
* UserName (uid, name)
* UserAge (uid, age) > No entry for Nelson

* UserPop (uid, pop) > No entry for Nelson
e UserlID (uid)

* Conceptually the cleanest solution

* Still complicates schema and queries
* How to get all information about users in a table?
* Natural join doesn’t work!

SQL’s solution

* A special value
* For every domain (i.e., any datatype)

» Example: User (uid, name, age, pop)
* (789, “Nelson”, NULL, NULL)

* Special rules for dealing with NULL’s

SELECT * FROM User WHERE name=‘Nelson” AND pop > 0.5 22

Three-valued logic

T Y zANDy <z ORy NOT z . . .
TRUE TRUE | TRUE TRUE FALSE Can think of this equivalently as follows:
TRUE UNKNOWN | UNKNOWN TRUE FALSE
TRUE FALSE | FALSE TRUE FALSE Let TRUE = 1, FALSE = 0O , = 0.5
UNKNOWN TRUE UNKNOWN TRUE UNKNOWN
UNKNOWN UNKNOWN | UNKNOWN UNKNOWN UNKNOWN Th e n :
UNKNOWN FALSE FALSE UNKNOWN UNKNOWN
FALSE UNKNOWN | FALSE UNKNOWN TRUE x AND y = min(x, y)
FALSE FALSE FALSE FALSE TRUE
x OR y =max(x,y)
NOTx=1—x
* Comparing a with another value (including another

NULL) ., the result is

and clauses only select rows for output if
the condition evaluates to
* NULL is not enough

functions

Will 789 be in the output?

(789, “Nelson”, NULL, NULL)

SELECT uid FROM User where name="‘Nelson” AND pop>0.5;

Unfortunate consequences

e Qla =Qlb?

Q1a. SELECT AVG(pop) FROM User;

Q1b. SELECT SUM(pop)/COUNT(*) FROM User;

e Q2a =Q2b?

Q2a. SELECT * FROM User;

Q2b SELECT * FROM User WHERE pop=pop;

* Be careful: NULL breaks many equivalences

Another problem

* Example: Who has NULL pop values?

k!
L wor
SELECT * FROM User WHERE pop = NULL; ©

(SELECT * FROM User)

put ugly

EXCEPT
(SELECT * FROM USER WHERE pop=pop);

* SQL introduced special, built-in predicates
and

SELECT * FROM User WHERE pop IS NULL;

Takehome ex.

Consider this db instance: 142

123
857
456
324

User
Bart NULL
Milhouse 8
Lisa 8
Nelson 8
Ralph NULL

* What is the output of these queries?

SELECT uid FROM User where age > 5 OR pop < 0.5;

SELECT uid FROM User where age > 5 AND pop < 0.5;

0.9
NULL
0.7
NULL
0.3

Member
857 dps
123 gov
857 abc
857 gov
456 abc
456 gov

SELECT avg(pop), count(*) FROM User GROUP BY age;

SELECT name FROM User WHERE age IN (SELECT age FROM User

WHERE name = 'Bart');

User (uid int, name string, age int, pop float)

Ta ke h O m e e X. Group (gid string, name string)

Member (uid int, gid string)

* For the previous db instance, what is the output for:

SELECT avg(pop), count(*) FROM User WHERE age IS NOT NULL
GROUP BY age;

SELECT MAX(pop), count(*) FROM User GROUP BY age;

* Write a query to find all users (uids) with non-null
popularity who belong to at least one group.

Need for a new join query

* Example: construct a master group membership list
with all groups and its members info

SELECT g.gid, g.name AS gname,
u.uid, u.name AS uname

FROM Group g, Member m, User u
WHERE g.gid = m.gid AND m.uid = u.uid;

* What if a group is empty?
* [t may be reasonable for the master list to

as well

* For these groups, uid and uname columns would be
NULL

19

Outerjoin examples

gid lpame |ud |
Group >t Member anc Book Club 857
GFOUP gov Student Government 123
m_ gov Student Government 857
abc Book Club dps Dead Putting Society 142
gov Student Government
dps Dead Putting Society m 789

spr

Sports Club

Member

uid | gid
142 dps

123
857
857
789

gov
abc
gov

foo

A full outer (natural)join between R and S:

* Allrowsintheresult of R x S, plus

« “Dangling” R rows (those that do not join with any
S rows) padded with NULL’s for §’s columns

« “Dangling” S rows (those that do not join with any
R rows) padded with NULL’s for R’s columns

Similar definition for outer theta joins =>
what is supported in SQL

Outerjoin examples

gov
dps

spr

Group

Book Club

Student Government
Dead Putting Society
Sports Club

Member

uid | gid
142 dps

123
857
857
789

gov
abc
gov

foo

Group > Member abc

gov
gov
dps

spr

20

Book Club 857
Student Government 123
Student Government 857
Dead Putting Society 142
Sports Club NULL

* Aleft outerjoin (R »<S5)includesrowsinR x S
plus dangling R rows padded with NULL’s

Group >t Member anc

gov
dps
oo

Book Club 857
Student Government 123
Student Government 857
Dead Putting Society 142

* Aright outerjoin (R > S)includes rowsin R x
S plus dangling S rows padded with NULL’s

Outer (theta) join syntax

SELECT * FROM Group LEFT OUTER JOIN Member

~ Group X ~ Member
Group.gid=Member.gid

ON Group.gid = Member.gid;

SELECT * FROM User LEFT OUTER JOIN Member

] _ ~ User _ = Member
ON User.uid = Member.uid AND pop < 0.5; User.uid=Member.uid AND pop<0.5
SELECT * FROM Group RIGHT OUTER JOIN Member
~ Group > Member

ON Group.gid = Member.gid; Group.gid=Member.gid

SELECT * FROM Group FULL OUTER JOIN Member ~ Group Y " Member
ON Group.gid = Member.gid; Group.gid=Member.gid

Natural Outer Join syntax

I="For natural joins, add keyword NATURAL; don’t use ON

SELECT * FROM Group LEFT OUTER JOIN Member ON Group.gid = Member.gid;

SELECT * FROM Group NATURAL LEFT OUTER JOIN Member;

Inner join syntax

SELECT * FROM Group JOIN Member ON Group.gid = Member.gid;

SELECT * FROM Group INNER JOIN Member ON Group.gid = Member.gid;

1" Similarly for natural (inner) joins, add keyword NATURAL; don’t
use ON

SELECT * FROM Group NATURAL JOIN Member;

SELECT * FROM Group NATURAL INNER JOIN Member;

Two orthogonal aspects of joins

1. Join Predicate: Natural vs Theta

* Natural: join predicate is equality of common attributes
* Theta: arbitrary predicate

2. Dangling tuples: Inner vs Outer
* Inner: ignore dangling tuples
* Left/Right/Full Outer: keep dangling tuples (left, right or both)

* You need to specify bothusing the following clauses this order:

1. NATURAL vs Theta: if NATURAL keyword is used then natural, otherwise
theta

2. INNER vs LEFT/RIGHT/FULL OUTER: if omitted, inner is assumed
Note if theta, after INNER or LEFT/RIGHT/FULL OUTER clauses, we need an ON
E.g: This is not correct syntax:

SELECT * FROM Group LEFT OUTER JOIN Member;

EXE rCiSES User Member

Consider this db instance:

142 Bart 10 0.9 857 dps

abc Book Club 123 Milhouse 10 NULL 123 gov

GFOUp gov Student Government 857 Lisa 8 0.7 857 abc
dps Dead Putting Society 456 Ralph 8 NULL 123 abc

spr Sports Club

* What is the output of these queries?

SELECT u.name as uname, g.name as gname FROM User u NATURAL JOIN
Member m NATURAL JOIN Group g;

SELECT u.name as uname, m.gid FROM User u LEFT OUTER JOIN Member m
ON u.uid=m.uid;

SELECT COUNT(m.gid), COUNT(g.name) FROM Member m RIGHT OUTER JOIN
Group g ON g.gid=m.gid;

SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations

* Subqueries

* Aggregation and grouping

* Ordering

“ Next: data modification statements, constraints

INSERT

* [Insert one row

* User 789 joins Dead Putting Society

INSERT INTO Member VALUES (789, 'dps');

INSERT INTO User (uid, name) VALUES (389, ‘Marge’);

* Insert the result of a query

* Everybody joins Dead Putting Society!

INSERT INTO Member
(SELECT uid, 'dps' FROM User

WHERE uid NOT IN (SELECT uid
FROM Member
WHERE gid = 'dps'));

DELETE

* Delete from a table

DELETE FROM Member;

* Delete according to a condition
* Example: User 789 leaves Dead Putting Society

DELETE FROM Member WHERE uid=789 AND gid="dps’;

* Example: Users over age 18 must be removed from Sports Club
DELETE FROM Member

WHERE uid IN (SELECT uid FROM User WHERE age > 18)
AND gid = ‘spr’;

* Some systems allow “deletions with joins in the FROM”
clause. Check your systems’ documentation.

UPDATE

* Example: User 142 changes name to “Barney”’

UPDATE User

SET name ='Barney’
WHERE uid = 142;

* Example: We are all popular!

UPDATE User

SET pop = (SELECT AVG(pop) FROM User);

* But won’t update of every row causes average pop to
change?
® Subquery is always computed over the old table

EXE r'C iS e User Member

Consider this db instance:

142 Bart 10 0.9 857 dps

abc Book Club 123 Milhouse 10 NULL 123 gov

GFOUp gov Student Government 857 Lisa 8 0.7 857 abc
dps Dead Putting Society 456 Ralph 8 NULL 123 abc

spr Sports Club

* What is the output of this queries?

INSERT INTO Member (SELECT u.uid, ‘spr’ FROM User u WHERE u.age >= 10

AND u.pop IS NOT NULL);

SQL features covered so far

* Query
* SELECT-FROM-WHERE statements
* Set and bag operations
* Subqueries
* Aggregation and grouping
* Ordering

® Next lectures: Constraints, schema changes, views,
indexes

	Slide 1
	Slide 2: Announcements
	Slide 3: Recap: ORDER BY
	Slide 4: Recap: ORDER BY example
	Slide 5: LIMIT
	Slide 6: Basic SQL features
	Slide 7: Incomplete information
	Slide 8: Solution 1
	Slide 9: Solution 2
	Slide 10: Solution 3
	Slide 11: SQL’s solution
	Slide 12: Three-valued logic
	Slide 13: Will 789 be in the output?
	Slide 14: Unfortunate consequences
	Slide 15: Another problem
	Slide 16: Takehome ex.
	Slide 17: Take home ex.
	Slide 18: Need for a new join query
	Slide 19: Outerjoin examples
	Slide 20: Outerjoin examples
	Slide 21: Outer (theta) join syntax
	Slide 22: Natural Outer Join syntax
	Slide 23: Inner join syntax
	Slide 24: Two orthogonal aspects of joins
	Slide 25: Exercises
	Slide 26: SQL features covered so far
	Slide 27: INSERT
	Slide 28: DELETE
	Slide 29: UPDATE
	Slide 30: Exercise
	Slide 31: SQL features covered so far

