
CS 348 Lecture 6

SQL Part 3

Semih Salihoğlu

Jan 22nd, 2025

1

SQL features covered so far

• Query
• SELECT-FROM-WHERE statements

• Set and bag operations

• Subqueries

• Aggregation and grouping

• Ordering & LIMIT

• Outerjoins (and NULL)

• Modification
• INSERT/DELETE/UPDATE

Today: Constraints, schema changes

2

Constraints

• Restricts what data is allowed in a database
• In addition to the simple structure and type restrictions

imposed by the table definitions

• Why use constraints?
• Protect data integrity (catch errors)

• Tell the DBMS about the data (so it can optimize better)

• Declared as part of the schema and enforced by the
DBMS

3

Types of SQL constraints

• NOT NULL

• Key

• Referential integrity (foreign key)

• Tuple- and attribute-based CHECK’s

• Another one: “General assertion” is also in the
standard but not implemented in SQL systems

4

NOT NULL constraint examples

5

CREATE TABLE User
(uid INT NOT NULL,
 name VARCHAR(30) NOT NULL,
 twitterid VARCHAR(15) NOT NULL,
 age INT,
 pop DECIMAL(3,2));

CREATE TABLE Group
(gid CHAR(10) NOT NULL,
 name VARCHAR(100) NOT NULL);

CREATE TABLE Member
(uid INT NOT NULL,
 gid CHAR(10) NOT NULL);

Key declaration examples

6

CREATE TABLE User
(uid INT NOT NULL PRIMARY KEY,
 name VARCHAR(30) NOT NULL,
 twitterid VARCHAR(15) NOT NULL UNIQUE,
 age INT,
 pop DECIMAL(3,2));

CREATE TABLE Group
(gid CHAR(10) NOT NULL PRIMARY KEY,
 name VARCHAR(100) NOT NULL);

CREATE TABLE Member
(uid INT NOT NULL,
 gid CHAR(10) NOT NULL,
PRIMARY KEY(uid,gid));

This form is
required for multi-
attribute keys

At most one
primary key per
table

Any number of
UNIQUE keys per
table

CREATE TABLE Member
(uid INT NOT NULL PRIMARY KEY,
 gid CHAR(10) NOT NULL PRIMARY KEY,

Some systems allow PKs to be
NULL (e.g., Sqlite), in which case
often multiple nulls since null !=
null; others don’t (e.g., Postgres).

Systems generally allow UNIQUE
constraints to contain nulls (and
multiple nulls because null != null)

Key declaration examples

7

CREATE TABLE User
(uid INT NOT NULL PRIMARY KEY,
 name VARCHAR(30) NOT NULL,
 twitterid VARCHAR(15) NOT NULL,
 age INT,
 pop DECIMAL(3,2),
 UNIQUE (name,age));
);

Similarly, This form is
required for multi-attribute
unique constraints

Referential integrity example

• If a uid appears in Member, it must appear in User
• Member.uid references User.uid

• If a gid appears in Member, it must appear in Group
• Member.gid references Group.gid

That is, no “dangling pointers”

8

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

gid name

abc …

gov …

dps …

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User GroupMember

Referential integrity in SQL

• Referenced column(s) must be PRIMARY KEY

• Referencing column(s) form a FOREIGN KEY

• Example

9

CREATE TABLE Member
(uid INT NOT NULL REFERENCES User(uid),
 gid VARHAR(10) NOT NULL,
PRIMARY KEY(uid,gid),
FOREIGN KEY (gid) REFERENCES Group(gid));

This form is required for multi-
attribute foreign keys

CREATE TABLE MemberBenefits
(…..
FOREIGN KEY (uid,gid) REFERENCES Member(uid,gid));

Some system allow them to be
non-PK but must be UNIQUE

Enforcing referential integrity

Example: Member.uid references User.uid

• Insert or update a Member row so it refers to a non-
existent uid
• Reject

10

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User Member

000 gov

Enforcing referential integrity

Example: Member.uid references User.uid

• Delete or update a User row whose uid is
referenced by some Member row
• Multiple Options (in SQL)

11

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… ….

User Member

Option 1: Reject
Option 2: Cascade
(ripple changes to all
referring rows)

CREATE TABLE Member
(uid INT NOT NULL
REFERENCES User(uid)
ON DELETE CASCADE,
…..);

Enforcing referential integrity

Example: Member.uid references User.uid

• Delete or update a User row whose uid is
referenced by some Member row
• Multiple Options (in SQL)

12

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

NULL abc

NULL gov

… ….

User Member

Option 3: Set NULL
(set all references to NULL)

CREATE TABLE Member
(uid INT NOT NULL
REFERENCES User(uid)
ON DELETE SET NULL,
…..);

Deferred constraint checking

• Example:

• The first INSERT will always violate a constraint!

• Deferred constraint checking is necessary
• Check only at the end of a set of operations (transactions)

• Allowed in SQL as an option

• Use keyword deferred

13

CREATE TABLE Dept
(name CHAR(20) NOT NULL PRIMARY KEY,
 chair CHAR(30) NOT NULL
 REFERENCES Prof(name));

CREATE TABLE Prof
(name CHAR(30) NOT NULL PRIMARY KEY,
 dept CHAR(20) NOT NULL
 REFERENCES Dept(name));

Tuple- and attribute-based CHECK’s

14

• Can be put on a single table:
• Syntax: Check (P), where P is a boolean expression that must

be true for each tuple (i.e., checked per tuple)

• Either placed next to an attribute

• Or at the end of table definition as a separate statement

• Only checked when a tuple is inserted or modified
• Reject if P evaluates to FALSE

• TRUE and UNKNOWN are fine

• SQL Standard: P is arbitrary and can contain sub-queries.

• In practice: SQL systems do not allow sub-queries

Tuple- and attribute-based CHECK’s

15

• Useful to put domain constraints or correlate multiple
attributes of the same tuple

• Examples: CREATE TABLE User(...
 age INTEGER CHECK(age > 0),
 ...);

CREATE TABLE Products(...
pID INTEGER,
price INTEGER,
discountedPrice INTEGER,
CHECK(price <= discountedPrice));

Tuple- and attribute-based CHECK’s

16

• Can specify complex constraints if sub-queries are
supported (but again any system I know of does not)

• Reasoning about complex CHECK constraints can be
hard:

• E.g:

• Similarly, if the sub-query contains complex joins
interpreting the behaviour can be hard

CREATE TABLE Member
(uid INTEGER NOT NULL,
 CHECK(uid IN (SELECT uid FROM User)),
 ...);

Should you check when User is updated?
According to SQL Standard:
Checked when new tuples are added to
Member but not when User is modified

General assertion (Optional)

• Also only in the SQL standard; Not supported in systems

• CREATE ASSERTION 𝑎𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛_𝑛𝑎𝑚𝑒
CHECK assertion_condition;

• assertion_condition is checked for each modification
that could potentially violate it

• Example: Member.uid references User.uid

17

CREATE ASSERTION MemberUserRefIntegrity
CHECK (NOT EXISTS
 (SELECT * FROM Member
 WHERE uid NOT IN
 (SELECT uid FROM User)));

Assertions are
statements
that must

always be true

Can include
multiple

tables

Naming constraints

• It is possible to name constraints (similar to
assertions)

18

CREATE TABLE User(...
 age INT, constraint minAge check(age > 0),
 ...);

Exercises

19

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

Member

Consider this db instance:

• MemberBenefits table references the Member table
• (uid,gid) forms the primary key of MemberBenefits table
• Assume discount is of type INT (and uid is INT and gid is

string with a max of 30 characters)

• Write a DDL to create the MemberBenefits table

uid gid discount

857 dps 10

123 gov 25

857 abc 5

MemberBenefits

Exercises

20

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

Member

Consider this db instance:

• MemberBenefits table references the Member table
• (uid,gid) forms the primary key of MemberBenefits table
• Assume discount is of type INT (and uid is INT and gid is

string with a max of 30 characters)

• Write a DDL to create the MemberBenefits table

uid gid discount

857 dps 10

123 gov 25

857 abc 5

MemberBenefits

CREATE TABLE MemberBenefits
(uid INT,
gid VARCHAR(30),
discount INT,
PRIMARY KEY (uid,gid),
FOREIGN KEY (uid,gid) REFERENCES Member(uid,gid));

Exercises

21

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

Member

Consider this db instance:

• Assume all foreign key references are set to ON DELETE
SET NULL

• (Assume the db allows this, just for this exercise)

• What happens when user 857 is deleted from the User
table? (Recall Member table references uid of User table)

Exercise

• Assume the User table requires pop column values to
be between 0 and 1. Complete the following DDL
statement.

22

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

CREATE TABLE User
(uid INT PRIMARY KEY,
 name VARCHAR(30),
 age INT,
 pop DECIMAL(3,2) ???);

Exercise.

• Assume the User table requires pop column values to
be between 0 and 1 or NULL. Complete the following
DDL statement.

23

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

CREATE TABLE User
(uid INT PRIMARY KEY,
 name VARCHAR(30),
 age INT,
 pop DECIMAL(3,2) CHECK(pop IS NULL OR (pop >= 0 AND pop < 1));

Take home ex.

• Say every user with pop >=0.9 must belong to the
Book Club (gid=‘abc’). Create as assertion to check
this constraint.

24

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Schema modification

• How to add constraints once the schema is
defined??

• Add or Modify attributes/domains

• Add or Remove constraints

26

Add or Modify attributes/domains

• Alter table table_name Add column column_name

• Alter table table_name Rename column old_name to
new_name

• Alter table table_name Drop column column_name

Domain change:

• Alter table table_name Alter column column_name
datatype

27

Error if column
already has

conflicting data!

Add or Remove constraints

• Alter table table_name Add constraint
constraint_name constraint_condition

• Alter table table_name Drop constraint
constraint_name

28

ALTER TABLE Member
ADD CONSTRAINT fk_user FOREIGN KEY(uid)
REFERENCES User(uid)

ALTER TABLE Member
DROP CONSTRAINT fk_user

SQL

• Constraints

• Schema changes

• Triggers (Optional)

29

Note: The rest of these slides on
triggers is optional material.

It is presented here to expose you
to how much application logic you
can push into SQL systems using a

rule-based approach called triggers.
You will not be tested on triggers.

30

Recall “referential integrity”

Example: Member.uid references User.uid

• Delete or update a User row whose uid is
referenced by some Member row
• Multiple Options (in SQL)

31

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… ….

User Member

Option 1: Reject
Option 2: Cascade
(ripple changes to all
referring rows)

CREATE TABLE Member
(uid INT NOT NULL
REFERENCES User(uid)
ON DELETE CASCADE,
…..);

Can we generalize it?

32

Event

Condition

Action

Delete/update a
User row

Whether its uid is
referenced by some

Member row

If yes: reject/ delete
cascade/null

Referential constraints Data Monitoring

Some user’s
popularity is updated

Whether the user is a
member of “Pop group”
and pop drops below 0.5

If yes: kick that user out
of Pop group!

Triggers

• A trigger is an event-condition-action (ECA) rule
• When event occurs, test condition; if condition is

satisfied, execute action

33

CREATE TRIGGER PickyPopGroup

Event

Condition

Action

Transition variable
AFTER UPDATE OF pop ON User

REFERENCING NEW ROW AS newUser
FOR EACH ROW

WHEN (newUser.pop < 0.5)
 AND (newUser.uid IN (SELECT uid
 FROM Member
 WHERE gid = ‘popgroup'))

 DELETE FROM Member
 WHERE uid = newUser.uid AND gid = ‘popgroup';

Trigger option 1 – possible events

• Possible events include:
• INSERT ON table; DELETE ON table; UPDATE [OF column]

ON table

34

CREATE TRIGGER PickyPopGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW
 WHEN (newUser.pop < 0.5)
 AND (newUser.uid IN (SELECT uid
 FROM Member
 WHERE gid = ‘popgroup'))
 DELETE FROM Member
 WHERE uid = newUser.uid AND gid = ‘popgroup';

Event

Condition

Action

Trigger option 2 – timing

• Timing—action can be executed:
• AFTER or BEFORE the triggering event

• INSTEAD OF the triggering event on views (more later)

35

CREATE TRIGGER NoFountainOfYouth
BEFORE UPDATE OF age ON User
REFERENCING OLD ROW AS o, NEW ROW AS n
FOR EACH ROW
 WHEN (n.age < o.age)
 SET n.age = o.age;

Event

Condition

Action

Trigger option 3 – granularity

• Granularity—trigger can be activated:
• FOR EACH ROW modified

36

CREATE TRIGGER PickyPopGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW
 WHEN (newUser.pop < 0.5)
 AND (newUser.uid IN (SELECT uid
 FROM Member
 WHERE gid = ‘popgroup'))
 DELETE FROM Member
 WHERE uid = newUser.uid AND gid = ‘popgroup';

Event

Condition

Action

Trigger option 3 – granularity

• Granularity—trigger can be activated:
• FOR EACH ROW modified

• FOR EACH STATEMENT that performs modification

37

CREATE TRIGGER PickyPopGroup2
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT
 DELETE FROM Member
 WHERE gid = ‘popgroup’
 AND uid IN (SELECT uid
 FROM newUsers
 WHERE pop < 0.5);

Event

Condition
& Action

Transition table:
contains all the
affected rows

Trigger option 3 – granularity

• Granularity—trigger can be activated:
• FOR EACH ROW modified

• FOR EACH STATEMENT that performs modification

38

CREATE TRIGGER PickyPopGroup2
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT
 DELETE FROM Member
 WHERE gid = ‘popgroup’
 AND uid IN (SELECT uid
 FROM newUsers
 WHERE pop < 0.5);

Transition table:
contains all the
affected rows

Can only be used
with AFTER

triggers

Transition variables/tables

• OLD ROW: the modified row before the triggering event

• NEW ROW: the modified row after the triggering event

• OLD TABLE: a read-only table containing all old rows
modified by the triggering event

• NEW TABLE: a table containing all modified rows after the
triggering event

 AFTER Trigger BEFORE Trigger

39

Event Row Statement

Delete old r; old t old t

Insert new r; new t new t

Update old/new r; old/new t old/new t

Event Row Statement

Update old/new r -

Insert new r -

Delete old r -

Statement- vs. row-level triggers

• Simple row-level triggers are easier to implement
• Statement-level triggers: require significant amount of

state to be maintained in OLD TABLE and NEW TABLE

• However, in some cases a row-level trigger may be
less efficient
• E.g., 4B rows and a trigger may affect 10% of the rows.

Recording an action for 4 Million rows, one at a time, is not
feasible due to resource constraints.

• Certain triggers are only possible at statement level
• E.g., ??

40

Certain triggers are only possible at
statement level

41

CREATE TRIGGER MaintainAvgPop
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
 OLD TBALE AS oldUsers
FOR EACH STATEMENT
 WHEN (0.5 > (SELECT AVG(pop) from User)
 BEGIN
 DELETE FROM User WHERE uid IN (SELECT uid

 FROM newUsers)
 INSERT INTO User (SELECT * FROM oldUsers)
 END

Event

Condition

Transition
tables

Action

System issues

• Recursive firing of triggers
• Action of one trigger causes another trigger to fire

• Can get into an infinite loop

• Interaction with constraints (tricky to get right!)
• When to check if a triggering event violates constraints?

• After a BEFORE trigger

• Before an AFTER trigger

• (based on db2, other DBMS may differ)

• Best to avoid when alternatives exist

42

SQL features covered so far

Basic & Intermediate SQL

• Query

• Modification

• Constraints

• Triggers

Next: Views, Indexes, Programming & recursion

43

	Slide 1
	Slide 2: SQL features covered so far
	Slide 3: Constraints
	Slide 4: Types of SQL constraints
	Slide 5: NOT NULL constraint examples
	Slide 6: Key declaration examples
	Slide 7: Key declaration examples
	Slide 8: Referential integrity example
	Slide 9: Referential integrity in SQL
	Slide 10: Enforcing referential integrity
	Slide 11: Enforcing referential integrity
	Slide 12: Enforcing referential integrity
	Slide 13: Deferred constraint checking
	Slide 14: Tuple- and attribute-based CHECK’s
	Slide 15: Tuple- and attribute-based CHECK’s
	Slide 16: Tuple- and attribute-based CHECK’s
	Slide 17: General assertion (Optional)
	Slide 18: Naming constraints
	Slide 19: Exercises
	Slide 20: Exercises
	Slide 21: Exercises
	Slide 22: Exercise
	Slide 23: Exercise.
	Slide 24: Take home ex.
	Slide 26: Schema modification
	Slide 27: Add or Modify attributes/domains
	Slide 28: Add or Remove constraints
	Slide 29: SQL
	Slide 30: Note: The rest of these slides on triggers is optional material. It is presented here to expose you to how much application logic you can push into SQL systems using a rule-based approach called triggers. You will not be tested on triggers.
	Slide 31: Recall “referential integrity”
	Slide 32: Can we generalize it?
	Slide 33: Triggers
	Slide 34: Trigger option 1 – possible events
	Slide 35: Trigger option 2 – timing
	Slide 36: Trigger option 3 – granularity
	Slide 37: Trigger option 3 – granularity
	Slide 38: Trigger option 3 – granularity
	Slide 39: Transition variables/tables
	Slide 40: Statement- vs. row-level triggers
	Slide 41: Certain triggers are only possible at statement level
	Slide 42: System issues
	Slide 43: SQL features covered so far

