
CS 348 Lecture 7

SQL Part 4

Semih Salihoğlu

Jan 27th, 2025

1

Announcements

• Assignment 1: Due January 31st

• Assignment 2: Out January 31st (due Feb 14)

• Project Milestone 1: See the Piazza note on the ER
model background.

2

SQL features to cover in this lecture

• Views: Virtual tables

• WITH statement: Temporary tables

• Indexes

• Programming Applications With SQL

3

SQL features to cover in this lecture

• Views: Virtual tables

• WITH statement: Temporary tables

• Indexes

• Programming Applications With SQL

4

Views
• A view is like a “virtual” table

• Contrasts with “base” tables, i.e., those added through
CREATE TABLE statements.

• Defined by a query, which describes how to compute
the view contents on the fly

• Stored as a query by DBMS instead of query contents

• Can be used in queries just like a regular table

5

CREATE VIEW PopGroup AS
 SELECT * FROM User
 WHERE uid IN (SELECT uid
 FROM Member
 WHERE gid = ‘popgroup');

DROP VIEW popGroup;

Base
tables

SELECT AVG(pop) FROM PopGroup;

SELECT AVG(pop)
FROM (SELECT * FROM User
 WHERE uid IN
 (SELECT uid FROM Member
 WHERE gid = ‘popgroup'))
 AS popGroup;

SELECT MIN(pop) FROM PopGroup;

SELECT … FROM PopGroup;

Why use views?

• To hide complexity from users

• To hide data from users

• Logical data independence

• To provide a uniform interface

6

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 7 0.3

Exercises

7

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User

Member

Consider this db instance:

• What is the output of these queries?

SELECT * FROM ageGroups;

CREATE VIEW ageGroups(age,cnt) AS
 (SELECT age, COUNT(*) FROM User GROUP BY age)

SELECT age FROM ageGroups
WHERE cnt = (SELECT MAX(cnt) FROM ageGroups);

Exercises

• Assume there is a CHECK constraint on User table
s.t. (age > 0 and age < 140)

• What happens to the following statements?

8

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

CREATE VIEW youngUsers AS
 (SELECT * FROM User WHERE age < 25) WITH CHECK OPTION;

INSERT INTO youngUsers VALUES (835, ‘Alex’, 30, 0.2);

INSERT INTO youngUsers VALUES (923, ‘James’, 150, 0.3);

Storing Views: Materialized views

• Some systems allow view relations to be stored in db
• If the actual relations used in the view definition change, the

view is kept up-to-date

• Such views are called materialized views

• Why? Because of several performance reasons:
• Views are results of SQL queries
1. No query is faster than an already computed one: answering

the query is equivalent to just scanning the computed
“materialized view”

2. If the query is asked multiple times, we can avoid
recomputing views each time

• View maintenance: updating the materialized view upon
base table changes

• Immediately or lazily, up to the DBMS
• Fascinating, challenging & still active research problem

9

Can we modify views directly?

• Does it even make sense, since views are virtual?

• It does make sense if we want users to really see
views as tables

• Goal: modify the base tables such that the
modification would appear to have been
accomplished on the view

10

A simple case

11

CREATE VIEW UserPop AS
 SELECT uid, pop FROM User;

DELETE FROM UserPop WHERE uid = 123;

DELETE FROM User WHERE uid = 123;

translates to:

An impossible case

• No matter what we do on User, the inserted row
will not be in PopularUser

12

CREATE VIEW PopularUser AS
 SELECT uid, pop FROM User
 WHERE pop >= 0.8;

INSERT INTO PopularUser VALUES(987, 0.3);

A case with too many possibilities

• Set everybody’s pop to 0.5?

• Adjust everybody’s pop by the same amount?

• Just lower one user’s pop?

13

CREATE VIEW AveragePop(pop) AS
 SELECT AVG(pop) FROM User;

UPDATE AveragePop SET pop = 0.5;

Renamed
column

SQL92 updateable views

• More or less just single-table selection queries
• No join

• No aggregation or group by

• No subqueries

• Attributes not listed in SELECT must be nullable

• Arguably somewhat restrictive

• Still might get it wrong in some cases
• See the slide titled “An impossible case”

• Adding WITH CHECK OPTION to the end of the view
definition will make DBMS reject such modifications

14

SQL features to cover in this lecture

• Views: Virtual tables

• WITH statement: Temporary tables

• Indexes

• Programming Applications With SQL

15

WITH clause
• WITH clause provides a way of defining a temporary relation

whose definition is available only to the query in which the
with clause occurs

• Think of this as an “on-the-fly” view only for a single query

• Ex: List group ids of users with age > 10 and pop < 0.5

• Supported by many but not all DBMSs

• Can be written using subqueries but can simplify your sub-queries (in
some systems can even refer to a not yet defined outer query variabl

16

WITH temp(uid) AS (SELECT u.uid FROM User
u WHERE u.age > 10 and u.pop < 0.5)

SELECT gid FROM Member m, temp t
 WHERE m.uid=t.uid

WITH temp AS (SELECT u.uid FROM User u
WHERE u.age > 10 and u.pop < 0.5)

SELECT gid FROM Member m, temp t
 WHERE m.uid=t.uid

Table name Col name Table name Col name

WITH clause

17

SELECT *
FROM Users
WHERE EXISTS (SELECT * FROM Members
 WHERE Members.uid = Users.uid)

WITH tmp AS (SELECT * FROM Members
 WHERE Members.uid = Users.uid)

SELECT *
FROM Users
WHERE EXISTS (SELECT * FROM tmp)

can in many systems equivalently be written as:

Note that temporary tables are tables, so you need to use them as tables:
WHERE EXISTS (SELECT * FROM tmp) above.

You cannot do WHERE EXISTS (tmp) => this is not valid SQL syntax, since tmp
is a table; it’s not a string substitution for “SELECT * FROM Members
 WHERE Members.uid = Users.uid”

SQL features to cover in this lecture

• Views: Virtual tables

• WITH statement: Temporary tables

• Indexes

• Programming Applications With SQL

18

Motivating examples of using indexes

• Can we go “directly” to rows with name='Bart’ instead
of scanning the entire table?

 → index on User.name

• Can we find relevant Member rows “directly”?

 → index on Member.gid

• For each relevant Member row, can we “directly” look
up User rows with matching Member.uid

 → index on User.uid

19

SELECT * FROM User WHERE name = 'Bart';

SELECT * FROM User, Member
WHERE User.uid = Member.uid AND Member.gid = ‘popgroup';

Indexes
• An index is an auxiliary persistent data structure

that helps with efficient searches
• Search tree (e.g., B+-tree), lookup table (e.g., hash

table), etc.
More on indexes later in this course!

• CREATE [UNIQUE] INDEX 𝑖𝑛𝑑𝑒𝑥𝑛𝑎𝑚𝑒 ON
𝑡𝑎𝑏𝑙𝑒𝑛𝑎𝑚𝑒(𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒1,…,𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒𝑛);

• With UNIQUE, the DBMS will also enforce that
𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒1, … , 𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒𝑛 is a key of

𝑡𝑎𝑏𝑙𝑒𝑛𝑎𝑚𝑒
• So it is same behavior as creating an index + a unique

constraint on 𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒1, … , 𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒𝑛

• DROP INDEX 𝑖𝑛𝑑𝑒𝑥𝑛𝑎𝑚𝑒;
• Typically, the DBMS will automatically create

indexes for PRIMARY KEY and UNIQUE constraint
declarations

20

Indexes

• An index on 𝑅. 𝐴 can speed up accesses of the form
• 𝑅. 𝐴 = 𝑣𝑎𝑙𝑢𝑒
• sometimes, if it is tree-based also: 𝑅. 𝐴 > 𝑣𝑎𝑙𝑢𝑒 (or <, <=, >=)

• An index on 𝑅. 𝐴1, … , 𝑅. 𝐴𝑛 can speed up
• 𝑅. 𝐴1 = 𝑣𝑎𝑙𝑢𝑒1 ∧ ⋯ ∧ 𝑅. 𝐴𝑛 = 𝑣𝑎𝑙𝑢𝑒𝑛

• 𝑅. 𝐴1, … , 𝑅. 𝐴𝑛 > 𝑣𝑎𝑙𝑢𝑒1, … , 𝑣𝑎𝑙𝑢𝑒𝑛 (again depending on the
index type)

Questions (will be discussed in the 2nd half of course):
Ordering of index columns is important—is an index on

𝑅. 𝐴, 𝑅. 𝐵 equivalent to one on 𝑅. 𝐵, 𝑅. 𝐴 ?
How about an index on 𝑅. 𝐴 plus another on 𝑅. 𝐵?
More indexes = better performance?

21

SQL features to cover in this lecture

• Views: Virtual tables

• WITH statement: Temporary tables

• Indexes

• Programming Applications With SQL

22

Programming Applications W/ SQL

➢Challenge of using SQL on a real app:

➢Not intended for general-purpose computation

➢E.g.: No while or for loops, standard conditionals, arbitrary
functions

➢Solutions

➢Augment SQL with constructs from general-purpose programming
languages

➢E.g.: SQL/PSM (Persistent Stored Modules)

➢Use SQL together with general-purpose programming languages:
many possibilities

➢Through an API

➢Embedded SQL, e.g., in C

➢SQL generating approaches: Web Programming Frameworks
(e.g., Django)

23

You will use this in practice.

And this

1) Augmenting SQL: SQL/PSM
➢An ISO standard to extend SQL to an advanced prog. lang.

➢Control flow, exception handling, etc.

➢Several systems adopt SQL/PSM partially (e.g. MySQL, PostgreSQL)

➢PSM = Persistent Stored Modules

➢CREATE PROCEDURE proc_name(param_decls)
 local_decls
 proc_body;

➢CREATE FUNCTION func_name(param_decls)
RETURNS return_type
 local_decls
 func_body;

➢CALL proc_name(params);

➢Inside procedure body:
SET variable = CALL func_name(params);

24

SQL/PSM Example

25

CREATE FUNCTION SetMaxPop(IN newMaxPop FLOAT)
RETURNS INT
-- Enforce newMaxPop; return # rows modified.
BEGIN
DECLARE rowsUpdated INT DEFAULT 0;
DECLARE thisPop FLOAT;
 -- A cursor to range over all users:
DECLARE userCursor CURSOR FOR
 SELECT pop FROM User
FOR UPDATE;
 -- Set a flag upon “not found” exception:
DECLARE noMoreRows INT DEFAULT 0;
DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET noMoreRows = 1;
 … (see next slide) …
 RETURN rowsUpdated;
END

Declare
local
variables

26

-- Fetch the first result row:
OPEN userCursor;
FETCH FROM userCursor INTO thisPop;
-- Loop over all result rows:
WHILE noMoreRows <> 1 DO
 IF thisPop > newMaxPop THEN
 -- Enforce newMaxPop:
 UPDATE User SET pop = newMaxPop
 WHERE CURRENT OF userCursor;
 -- Update count:
 SET rowsUpdated = rowsUpdated + 1;
 END IF;
 -- Fetch the next result row:
 FETCH FROM userCursor INTO thisPop;
END WHILE;
CLOSE userCursor;

Function
body

SQL/PSM Example

➢Assignment using scalar query results

➢SELECT INTO

➢Other loop constructs

➢FOR, REPEAT UNTIL, LOOP

➢Flow control

➢GOTO

➢Exceptions

➢SIGNAL, RESIGNAL

➢…

➢For more PostgreSQL-specific information, look for “PL/pgSQL”

in PostgreSQL documentation

➢https://www.postgresql.org/docs/9.6/plpgsql.html

➢Ultimately: Not very popular nowadays. 27

Other SQL/PSM Features

https://www.postgresql.org/docs/9.6/plpgsql.html

➢E.g.: Python psycopg2, JDBC, ODBC (C/C++/VB)

➢Based on the SQL/CLI (Call-Level Interface) standard

➢The application program sends SQL commands to the DBMS at

runtime. Gets back a “cursor” that can iterate over results.

➢Results are converted to objects in the application program.

Often you use a cursor to loop through result tuples.

➢In Assignment 2: You will work with JDBC API for Java

applications (standard for many DBMSs).

➢ Next we cover an API for Python for PostgreSQL.

28

2) Working with SQL through an API

➢Functionalities provided in these APIs:

➢Connect/disconnect to a DBMS => get a connection object

➢Execute SQL queries

➢ Iterate over result tuples (e.g., cursors) and access attributes of tuples

➢Begin/commit/rollback transactions

➢…

29

2) Working with SQL through an API

import psycopg2
conn = psycopg2.connect(dbname='beers')
cur = conn.cursor()
list all drinkers:
cur.execute('SELECT * FROM Drinker')
for drinker, address in cur:
 print(drinker + ' lives at ' + address)
print menu for bars whose name contains “a”:
cur.execute('SELECT * FROM Serves WHERE bar LIKE %s', ('%a%',))
for bar, beer, price in cur:
 print('{} serves {} at ${:,.2f}'.format(bar, beer, price))
cur.close()
conn.close()

Example API: Python psycopg2

30

Tuple of parameter values,
one for each %s

You can iterate over cur
one tuple at a time

Placeholder for
query parameter

➢Different APIs have different interfaces (e.g,. JDBC), so

need to read their documentations.

31

“commit” each change immediately—need to set this option just once at
the start of the session
conn.set_session(autocommit=True)
...
bar = input('Enter the bar to update: ').strip()
beer = input('Enter the beer to update: ').strip()
price = float(input('Enter the new price: '))
try:
 cur.execute('‘’
 UPDATE Serves
 SET price = %s
 WHERE bar = %s AND beer = %s''', (price, bar, beer))
 if cur.rowcount != 1:
 print('{} row(s) updated: correct bar/beer?'\
 .format(cur.rowcount))
except Exception as e:
 print(e)

Perform passing,
semantic analysis,
optimization,
compilation, and finally
execution

More psycopg2 Examples

32

….
while true:
Input bar, beer, price…

cur.execute('‘’
 UPDATE Serves
 SET price = %s
 WHERE bar = %s AND beer = %s''', (price, bar, beer))
….
Check result...

Perform passing,
semantic analysis,
optimization,
compilation, and finally
execution

Execute many times
Can we reduce this overhead?

More psycopg2 Examples

Prepared Statements: Example

33

cur.execute(''' # Prepare once (in SQL).
 PREPARE update_price AS # Name the prepared plan,
 UPDATE Serves
 SET price = $1 # and note the $1, $2, … notation for
 WHERE bar = $2 AND beer = $3''') # parameter placeholders.
while true:
Input bar, beer, price…

 cur.execute(‘
 EXECUTE update_price(%s, %s, %s)',\ # Execute many times.
 (price, bar, beer))….
Check result...

Prepare only once

➢Again: different APIs have different functions to implement

prepared statements; so need to read their documentations.

Watch Out For SQL Injection Attacks!

➢The school probably had something like:

 where name is a string input by user

➢Called an SQL injection attack. Most APIs have
ways to sanitize inputs.

34

http://xkcd.com/327/

cur.execute("SELECT * FROM Students " + \
 "WHERE (name = '" + name + "')")

Augmenting SQL vs. Programming
Through an API

➢Pros of augmenting SQL:

➢More processing features for DBMS

➢More application logic can be pushed closer to data

➢Cons of augmenting SQL:

➢SQL is already too big

➢Complicate optimization and make it impossible to

guarantee safety

35

3) “Embedding” SQL in a host language

➢Can be thought of as the opposite of SQL/PSM

➢Extends a host language, e.g., C or Java, with SQL-based

features

➢Can compile host language together with SQL statements and

catch SQL errors during application compilation time

36

4) Web Programming Frameworks

37

➢ A web development “framework” e.g., Django or Ruby on Rails

➢Very frequent approach to web apps that need a DB

➢For most parts, no explicitly writing of SQL is needed:

➢Example: Django Web App Programming:

➢Define “Models”: python objects and only do oo programming

➢Models will be backed up with Relations in an RDBMS

➢E.g.: a Person class/object with first and lastName:

CREATE TABLE myapp_person (
"id" serial NOT NULL PRIMARY KEY,
"f_name" varchar(30) NOT NULL,
"l_name" varchar(30) NOT NULL);

from django.db import models

class Person(models.Model):
f_name = models.CharField(max_len=30)
l_name = models.CharField(max_len=30)

➢ Would lead the “framework” (not the user) to generate the following

SQL code somewhere in the web application files:

Thank You

	Slide 1
	Slide 2: Announcements
	Slide 3: SQL features to cover in this lecture
	Slide 4: SQL features to cover in this lecture
	Slide 5: Views
	Slide 6: Why use views?
	Slide 7: Exercises
	Slide 8: Exercises
	Slide 9: Storing Views: Materialized views
	Slide 10: Can we modify views directly?
	Slide 11: A simple case
	Slide 12: An impossible case
	Slide 13: A case with too many possibilities
	Slide 14: SQL92 updateable views
	Slide 15: SQL features to cover in this lecture
	Slide 16: WITH clause
	Slide 17: WITH clause
	Slide 18: SQL features to cover in this lecture
	Slide 19: Motivating examples of using indexes
	Slide 20: Indexes
	Slide 21: Indexes
	Slide 22: SQL features to cover in this lecture
	Slide 23: Programming Applications W/ SQL
	Slide 24: 1) Augmenting SQL: SQL/PSM
	Slide 25: SQL/PSM Example
	Slide 26: SQL/PSM Example
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Example API: Python psycopg2
	Slide 31
	Slide 32
	Slide 33: Prepared Statements: Example
	Slide 34: Watch Out For SQL Injection Attacks!
	Slide 35: Augmenting SQL vs. Programming Through an API
	Slide 36: 3) “Embedding” SQL in a host language
	Slide 37: 4) Web Programming Frameworks
	Slide 38

