
CS 348 Lecture 8

Recursion in SQL & (optional) Datalog

Semih Salihoğlu

Jan 29th, 2025

1

Outline For Today

1. SQL Recursive Query Support

➢ Recursion Motivation & FixedPoint Subroutine

➢ WITH and WITH RECURSIVE Clauses

➢ Monotonicity

➢ Linear vs Non-Linear Recursion

➢ Mutual Recursion

➢ Important Note About Convergence of Recursive Queries

2. Datalog: A More Elegant Query Languages For Recursion

2

Strengths and Limitations of SQL So Far

Strengths:

➢ Excellent fit for tasks using fundamental set operations:

➢ projection, joins, filtering, grouping etc. and combinations

➢ Very high-level:

I. Declarative: abstracts users away from low-level computations

II. Physical data independence: abstracts away low-level storage

Limitations:

➢ Is not Turing-complete

➢ More specifically: Cannot express recursive computations

➢ Historically: Recursion was an afterthougt when standardizing SQL

3

Motivating Example 1: Transitive Closure

➢ Ex: Given academic <(co-)supervisor, student> relationships:

➢ Find all academic ancestors/descendants of an academic

4

Advisor

supervisor student

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B D2

C2C1

A

B

D1

Ancestors

anc desc

… …

… …

… …

… …

… …

… …

Motivating Example 1: Transitive Closure

5

D2

C2C1

A

B

D1

➢ Can find ancestors at any fixed degree, e.g., 1st, 2nd or 4th degree

➢ If max depth d is known: union all possible queries upto degree d:

(SELECT * FROM Advisor) UNION

(SELECT Adv1.sup, Adv2.stu FROM Adv1,Adv2 WHERE Adv1.stu=Adv2.sup) UNION

… (SQL Query for d-degree ancestors)

➢ But cannot express arbitrary depths

Advisor

sup stu

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

2 Degree Ancestors Query:

SELECT Adv1.sup AS anc, Adv2.stu as desc

FROM Advisor Adv1, Advisor Adv2

WHERE Adv1.stu = Adv2.sup

Motivating Example 1: Transitive Closure

6

➢ Historical Fact: killer app of graph DBMSs before relational systems

was the “parts explosion query” equivalent transitive closure

➢ Ask me offline if you want to hear more about this history!

Motivating Example 2: Shortest Paths

➢ Many other queries build on top of transitive closure.

➢ Ex: Given flights <from, to, price> relationships:

➢ Find cheapest paths from A to F

7

Flights

from to cost

A B 5

A C 5

B D 10

C D 2

C E 10

D F 5

F E 2

A

B D

C E

F

5

5

10

2 2

10

5

Motivating Example 2: Shortest Paths

8

Flights

from to cost

A B 5

A C 5

B D 10

C D 2

C E 10

D F 5

F E 2

A

B D

C E

F

5

5

10

2 2

10

5

➢ Can find all (shortest) paths with any fixed number, e.g., k, edges

➢ If max depth d is known (*and (directed) graph is acyclic*)

i. Union all paths with up to d edges. Call this relation AllPaths:

ii. SELECT from, to, min(cost) FROM AllPaths

➢ But cannot express arbitrary depths

3-edge Paths Query:

SELECT F1.from, F3.to, F1.cost+F2.cost+F3.cost as cost

FROM Flights F1, Flights F2, Flights F3

WHERE F1.to=F2.from AND F2.to=F3.from

Solution: Recursive “Fixed Point” Computations

9

➢ Transitive closure (TC) and all paths (or shortest paths which

depend on all paths) are inherently recursive properties of graphs

➢ Example: TC of v: all nodes that v can directly or indirectly reach

➢ Computing them require a recursive computation subroutine:

➢ High-level Recursive Subroutine for TC:

FixedPoint(fnc F w/ T as input):

Tprev = ∅

Tnew = F(Tprev) // 1
st degree ancestors

while (Tprev != Tnew):

 Tprev = Tnew

 Tnew = F(Tprev) // compute up to next-degree ancestors

Equivalently: Compute T0=∅; T1=F(T0); T2=F(T1); ... until Ti =Ti+1

➢ Upshot: SQL WITH RECURSIVE is a way to run FP subroutine

Important Questions:

1. When does fp converge?

2. When is it unique?

SQL WITH

10

➢ A convenient way to define sub-queries and temporary views

WITH R1 AS Q1

 R2 AS Q2

 …

 Rn AS Qn

Q // a query that can use existing tables *and* R1, …, Rn

➢ Ex:

WITH Deg2Anc AS (SELECT Adv1.sup AS anc, Adv2.stu as desc

 FROM Advisor Adv1, Advisor Adv2

 WHERE Adv1.stu = Adv2.sup)

 Deg3Anc AS (….)

SELECT desc FROM (SELECT * FROM Deg2Anc UNION

 SELECT * FROM Deg3Anc)

 WHERE anc = “A”

➢ Ri is the result of Qi

➢ Ri visible to Ri+1, …, Rn

➢ Can explicitly specify schema as

R1(foo, bar) AS Q1 o.w inherits from Q

SQL WITH RECURSIVE

11

➢ WITH can be suffixed with RECURSIVE keyword

WITH RECURSIVE

 R1 AS Q1

 R2 AS Q2

 …

 Rn AS Qn

Q // a query that can use existing tables *and* R1, …, Rn

➢ Semantics of “WITH RECURSIVE T AS Q”: run FixedPoint subroutine

T0 = ∅

T1 = Q (but use T0 for T)

T2 = Q (but use T1 for T)

… until Ti = Ti+1

Note: In SQL standard RECURSIVE is bound to specific Ri. We will and some

systems bind it to WITH, so all Ri.

Can reference R1

TC: ATTEMPT 1

12

D2

C2C1

A

B

D1

Advisor

sup stu

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

WITH RECURSIVE Ancestors(anc, desc) AS (

 SELECT Ancestor.anc, Adv.stu

 FROM Ancestor, Advisor

 WHERE Ancestor.desc = Advisor.sup)

➢ Problem? Ancestor starts as ∅

➢ Common fix: UNION with a 2nd query that inits Ancestor to Advisor

➢ Common WITH RECURSIVE query template:

 WITH RECURSIVE R AS (QB UNION QR)

non-recursive

“base” query

recursive query

TC: ATTEMPT 2: Union w/ a “Base” Case

13

D2

C2C1

A

B

D1

Advisor

sup stu

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

WITH RECURSIVE Ancestors(anc, desc) AS (

 SELECT sup as anc, stu as desc

 FROM Advisor

 UNION

 SELECT Ancestor.anc, Adv.stu

 FROM Ancestor, Advisor

 WHERE Ancestor.desc = Advisor.sup)

base

query

recursive

query

Anc0

anc desc

Ancestor1 =

QB

anc desc

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

duplicate eliminating

union

∪

QR

anc desc

QR = Anc0 ⋈ Advisor

Anc1

anc desc

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

=

Is Anc1–Ans0=∅?

No: Repeat

TC: ATTEMPT 2: Union w/ a “Base” Case

14

D2

C2C1

A

B

D1

Advisor

sup stu

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

Ancestor2 =

QB

anc desc

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

∪

QR

anc desc

A C1

B D1

QR = Anc1 ⋈ Advisor

Anc1

anc desc

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

=

Anc2

anc desc anc desc

C1 D1 A C1

C1 D2 B D1

C2 D1

C2 D2

B C1

A B

Is Anc2–Ans1=∅?

No: Repeat

All 1-degree

ancestors

TC: ATTEMPT 2: Union w/ a “Base” Case

15

D2

C2C1

A

B

D1

Advisor

sup stu

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

Ancestor3 =

QB

anc desc

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

∪

QR

anc desc

A C1

B D1

A D1

A D2

QR = Anc2 ⋈ Advisor

=

Anc3

anc desc anc desc

C1 D1 A C1

C1 D2 B D1

C2 D1 A D1

C2 D2 A D2

B C1

A B

Anc2

anc desc anc desc

C1 D1 A C1

C1 D2 B D1

C2 D1

C2 D2

B C1

A B

Is Anc3–Ans2=∅?

No: Repeat

All 1- and 2-degree

ancestors

TC: ATTEMPT 2: Union w/ a “Base” Case

16

D2

C2C1

A

B

D1

Advisor

sup stu

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

Ancestor4 =

QB

anc desc

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

∪

QR

anc desc

A C1

B D1

A D1

A D2

QR = Anc3 ⋈ Advisor

=

Anc4

anc desc anc desc

C1 D1 A C1

C1 D2 B D1

C2 D1 A D1

C2 D2 A D2

B C1

A B

Is Anc4–Ans3=∅?

Yes: Stop

Anc3

anc desc anc desc

C1 D1 A C1

C1 D2 B D1

C2 D1 A D1

C2 D2 A D2

B C1

A B

All 1-, 2-, and 3-

degree ancestors

Final

Answer

called the

fixed point

of Q.

Some Comments

17

➢ Recall common WITH RECURSIVE query template:

 WITH RECURSIVE R AS (QB UNION QR)

➢ Can use other queries/templates (e.g., multiple base cases)

➢ But some restrictions apply (stay tuned)

➢ Note that fixed-point computation was very well-behaved in TC:

➢ Computation converged:

➢ In finite steps (and computed a finite relation)

➢ No oscillations

➢ Question: Are there conditions that guarantee convergence to a

unique fixed point of Q?

Monotonicity

18

➢ If we focus on core relational algebra foundation of SQL:

➢ Select/project/cross product/join/union/set difference/intersection

➢ Ignore group by and aggregations and arithmetic functions etc.

➢ Theorem: If a recursive Q is “monotone w.r.t to every relation it

contains”, then Q has a unique and finite fixed point (i.e., the fixed

point subroutine is guaranteed to converge)

➢ Definition: Q is monotone w.r.t R iff adding more tuples to R can not

remove tuples from output of Q (but new tuples can appear)

➢ i.e., if each t that used to be in the output of Q is guaranteed to

remain in output if add more tuples to R (keeping all else same)

Monotonicity

19

➢ Recall each core RA operator except set difference is monotone w.r.t

their arguments

➢ E.g.: 𝑅 ⋈𝑝 𝑆 is monotone w.r.t R and S

➢ But: : 𝑅 − 𝑆 is non-monotone w.r.t S

➢ Therefore: Any Q that uses core relational algebraic operations and

does not use set difference is monotone

=> Q will converge to a unique fixed point (if recursive)

➢ Note 1: Q can still be monotone even if it contains set difference. But

not guaranteed to be.

➢ Note 2: Q can be non-monotone & still converge, i.e. monotonicity is

a sufficient condition for convergence but not necessary

Why Does Monotonicity Guarantee A Unique

Fixed Point For A Recursive Query?

20

➢ Proof Sketch: Recall fixed point subroutine:

T0 = ∅; T1 = Q (but use T0 for T); T2 = Q (but use T1 for T)

…

➢ Note we are assuming we are focusing on core RA:

➢ Each value in a column of Ti is from a value from base relation

➢ But every base relation in Q is finite.

Anc4

anc desc anc desc

C1 D1 A C1

C1 D2 B D1

C2 D1 A D1

C2 D2 A D2

B C1

A B

Advisor

sup stu

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

➢ Any relation, no matter what its schema is,

has a finite maximum size.

➢ B/c Q is monotone (specifically w.r.t to T):

T1⊂T2⊂T3⊂… (must stop b/c finiteness)

i.e. T1 ⊂ T2 ⊂ … Tk = Tk+1 (and fp stops)

Example Non-Monotone Recursive Query 1

21

WITH RECURSIVE T(x) AS (

 SELECT x FROM R

 UNION

 SELECT sum(x) as x FROM T)

R

x

1

2

T2

x

1

2

3

T3

x

1

2

6

T4

x

1

2

9

➢ Q is non-monotone b/c as we added 3, 3 got deleted, as we added 6,

6 got deleted etc.

➢ That’s why aggr. not allowed in recursive queries in SQL standard .

X X

… would never

converge

A 2nd example after we cover “mutual recursion” (stay tuned).

T0

x

T1

x

1

2

Linear vs Non-linear Recursion

22

➢ Recall QR in transitive closure:

SELECT Ancestor.anc, Adv.stu

 FROM Ancestor, Advisor

 WHERE Ancestor.desc = Advisor.sup

Has 1 reference to itself Ancestor: Called linear recursion

Can have > 1 reference to Ancestor, called non-linear recursion

Non-linear Recursive Computation of Ancestors

23

WITH RECURSIVE Ancestors(anc, desc) AS (

 SELECT sup as anc, stu as desc

 FROM Advisor

 UNION

 SELECT Anc1.anc, Anct.desc

 FROM Ancestor Anc1, Ancestor Anc2

 WHERE Ac1.desc = Anc2.anc)

23

Anc0

anc desc

Ancestor1 =

QB

anc desc

1 2

2 3

3 4

4 5

5 6

6 7

7 8

∪

QR

anc desc

Anc1

anc desc

1 2

2 3

3 4

4 5

5 6

6 7

7 8

=

Is Anc1–Ans0=∅?

No: Repeat

5

63

1

2

4

7

8Advisor

sup stu

1 2

2 3

3 4

4 5

5 6

6 7

7 8

Non-linear Recursive Computation of Ancestors

2424

QB

anc desc

1 2

2 3

3 4

4 5

5 6

6 7

7 8

∪

Anc2

anc desc anc desc

1 2 1 3

2 3 2 4

3 4 3 5

4 5 4 6

5 6 5 7

6 7 6 8

7 8

=

5

63

1

2

4

7

8Advisor

sup stu

1 2

2 3

3 4

4 5

5 6

6 7

7 8

Anc1

anc desc

1 2

2 3

3 4

4 5

5 6

6 7

7 8

All 1-degree

ancestors

QR

anc desc

1 3

2 4

3 5

4 6

5 7

6 8

24

Non-linear Recursive Computation of Ancestors

QB

anc desc

1 2

2 3

3 4

4 5

5 6

6 7

7 8

∪

QR

anc desc anc desc anc desc

1 3 2 5 4 8

2 4 3 6

3 5 4 7

4 6 5 8

5 7 1 5

6 8 2 6

1 4 3 7

=

5

63

1

2

4

7

8Advisor

sup stu

1 2

2 3

3 4

4 5

5 6

6 7

7 8

All 1 and 2-degree

ancestors

Anc2

anc desc anc desc

1 2 1 3

2 3 2 4

3 4 3 5

4 5 4 6

5 6 5 7

6 7 6 8

7 8

Anc3

a d a d a d a d

1 2 1 3 2 5 4 8

2 3 2 4 3 6

3 4 3 5 4 7

4 5 4 6 5 8

5 6 5 7 1 5

6 7 6 8 2 6

7 8 1 4 3 7 25

Non-linear Recursive Computation of Ancestors

QB

anc desc

1 2

2 3

3 4

4 5

5 6

6 7

7 8

∪ =

5

63

1

2

4

7

8Advisor

sup stu

1 2

2 3

3 4

4 5

5 6

6 7

7 8

All 1, 2, 3, and 4-degree

ancestors

Anc4

a d a d a d a d

1 2 1 3 2 5 4 8

2 3 2 4 3 6 1 6

3 4 3 5 4 7 2 7

4 5 4 6 5 8 3 8

5 6 5 7 1 5 1 7

6 7 6 8 2 6 2 8

7 8 1 4 3 7 1 8

Anc3

a d a d a d a d

1 2 1 3 2 5 4 8

2 3 2 4 3 6

3 4 3 5 4 7

4 5 4 6 5 8

5 6 5 7 1 5

6 7 6 8 2 6

7 8 1 4 3 7

QR

a d a d a d

1 3 2 5 4 8

2 4 3 6 1 6

3 5 4 7 2 7

4 6 5 8 3 8

5 7 1 5 1 7

6 8 2 6 2 8

1 4 3 7 1 8 26

Non-linear Recursive Computation of Ancestors

QB

anc desc

1 2

2 3

3 4

4 5

5 6

6 7

7 8

∪ =

5

63

1

2

4

7

8Advisor

sup stu

1 2

2 3

3 4

4 5

5 6

6 7

7 8

All 1, … 8-degree

ancestors

QR

a d a d a d

1 3 2 5 4 8

2 4 3 6 1 6

3 5 4 7 2 7

4 6 5 8 3 8

5 7 1 5 1 7

6 8 2 6 2 8

1 4 3 7 1 8 27

Anc4

a d a d a d a d

1 2 1 3 2 5 4 8

2 3 2 4 3 6 1 6

3 4 3 5 4 7 2 7

4 5 4 6 5 8 3 8

5 6 5 7 1 5 1 7

6 7 6 8 2 6 2 8

7 8 1 4 3 7 1 8

Anc5

a d a d a d a d

1 2 1 3 2 5 4 8

2 3 2 4 3 6 1 6

3 4 3 5 4 7 2 7

4 5 4 6 5 8 3 8

5 6 5 7 1 5 1 7

6 7 6 8 2 6 2 8

7 8 1 4 3 7 1 8

Is Anc5–Ans4=∅?

Yes: Stop

Fixed Point

Linear recursion

would take 8

steps

Linear vs Non-linear Recursion

28

➢ For tc-like computations:

➢ Linear recursion:

➢ Takes *linear* # iterations in the depth of the relationships

➢ But each iteration might perform less work b/c joins are

between smaller tables

➢ Non-linear recursion:

➢ Takes logarithmic # iterations in the same depth

➢ But each iteration performs more work

➢ SQL standard requires/allows linear recursion for performance

reasons (ask me after lecture)

Mutual Recursion

29

➢ Each Qi in our examples so far referred to itself.

➢ We can have the following “mutually recursive” set of queries

WITH RECURSIVE

 RECURSIVE R1 AS Q1

 RECURSIVE R2 AS Q2

 RECURSIVE R3 AS Q3

 …

Q

e.g. references R2

e.g. references R3

e.g. references R1

➢ Note: Q1-Q3 may be alone non-recursive but together they may be

recursive or they may be recursive alone as well

➢ So they need to be executed “in tandem” until fixed point.

Mutual Recursion Example

30

➢ Table Natural (n) contains 1,2,3,…

➢ Even/Odd numbers < 100

WITH RECURSIVE
 Even(n) AS (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Odd) AND n < 100),
 Odd(n) AS (
 (SELECT n FROM Natural WHERE n = 1)
 UNION
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n-1 FROM Even) AND n < 100)

Even0 = ∅, Odd0 = ∅
Even1 = ∅, Odd1 = {1}

Even2 = {2}, Odd2 = {1}

Even3 = {2}, Odd3 = {1, 3}

Even4 = {2, 4}, Odd4 = {1, 3}

Even5 = {2, 4}, Odd5 = {1, 3, 5}

…

Example Non-Monotone Recursive Query 2:

Set Difference

31

WITH RECURSIVE PGroup(uid) AS
 (SELECT uid FROM User
 AND uid NOT IN (SELECT uid FROM SGroup)),
 RECURSIVE SGroup(uid) AS
 (SELECT uid FROM User
 AND uid NOT IN (SELECT uid FROM PGroup))

➢ Q is non-monotone b/c recall set diff. is nonmonotone w.r.t 2nd arg.

uid name age

142 Bart 10

121 Allison 8

uid uid

PGroup SGroup

uid

142

121

uid

142

121

PGroup SGroup

MINUS can replace with AND uid NOT IN. In

general negated sub-queries or MINUS in

recursive parts are not allowed.

Important Note On Monotonicity/Convergence

32

➢ In practice: DBMSs will not/cannot check for monotonicity and may

allow much more than SQL standard: arithmetic, aggregations.

➢ Nor will they detect oscillations

➢ You can write non-converging code. Systems will often run a max #

iterations (e.g., 100) and error

➢ SQL compiler will not error for these errors. This is on the user!

➢ Be careful with recursive queries: Know your query & database!

Example Non-convergence Based On Database

33

➢ Consider this All Paths query Q:

WITH RECURSIVE AllPaths(s, d, cost) AS
 (SELECT s, d, cost FROM Edges)
 UNION
 (SELECT AllPaths.s, Edges.d, AllPaths.cost+Edges.cost
 FROM AllPaths, Edges
 WHERE AllPaths.d = Edges.s)

➢ If Edges { (1, 2, 10) } => All Paths: { (1, 2, 10) }

➢ Keep Q the same but add one more tuple (2, 1, 5) to Edges

➢ Now there are infinitely many (1, 2) and (2, 1) paths:

(1, 2, 10), (1, 2, 25), (1, 2, 40) etc..

1 2

10

5

Systems will allow this query!

Summary of SQL Recursion

34

➢ Recursion did not exist from 1986-1999 in SQL Standard

➢ General Syntax:

➢ Basic functionality: linear recursion

➢ Extended functionality: non-linear and mutual recursion

➢ Unsafe recursive queries: non-monotone (may not converge) queries

or query is monotone but output relation’s size is infinite (e.g., due to

use of arithmetic)

➢ Personal opinion: Recursive computations are not elegant in SQL.

WITH RECURSIVE

 R1 AS Q1

 R2 AS Q2

 …

 Rn AS Qn

35

Rest of the slides are optional and included to better

understand where SQL recursion is inspired from (which

is the Datalog language)

Datalog: Logic-based DB Query Language with

Recursion As a First Class Citizen

36

➢ A QL based on logical rules of the form: Head := Body

➢ A DB consists of a set of “base relations” (called “extensional” db)

Likes(person, foodItem)

Sells(restaurant, foodItem, cost)

Frequents(person, restaurant)

➢ Ex Rule: Happy(p) := Likes(p, f), Frequents(p, r), Sells(r, f, c)

Head Body: conjunction/AND of “subgoals”

➢ For simplicity: assume head, subgoals can be relation names (called

predicates) with arguments that can be variables or constants.

➢ Datalog allows other predicates: e.g., c < 20

Semantics of Datalog Rules

37

➢ Happy(p) := Likes(p, f), Frequents(p, r), Sells(r, f, c)

➢ Natural join on common variables:

➢ Any p s.t.”∃ a food f & rest r | p likes f & p frequents r & r sells f” is

happy

➢ In RA: 𝚷person (Likes ⋈ Frequents ⋈ Sells)

➢ Equality filters on constants:

➢ Happy(p) := Likes(p, f), Frequents(p, r), Sells(r, f, 20)

➢ Any p s.t.” ∃ a food f & rest r | p likes f & p frequents r & r sells f &

x costs 20 CAD” is happy

➢ Note: also declarative

More “Datalog Program” Examples

38

➢ There can be multiple rules with the same head predicate

Happy(p) := Likes(p, f), Frequents(p, r), Sells(r, f, c)

Happy(p) := Likes(p, “Chocolate Cake”)

Happy(p) := Frequents(p, r), Frequents(“Karim”, r)

➢ Meaning: Any p s.t:

 1) ” ∃ a food f & rest r | p likes f & p frequents r & r sells f” OR

 2) “p likes Chocolate Cake” OR

 3) “∃ a restaurant r | both Karim and p frequent r”

is happy!

➢ Advantage: Arbitrary recursive, non-recursive, mutually recursive

rules can be just written down as logical “derivation” rules

➢ Similar to context-free grammar rules in programming languages

More Elegant Recursive Programs

39

Example 1: Transitive Closure:

Ancestor(a, d) := Advisor(a, d)

Ancestor(a, d) := Ancestor(a, b), Advisor(b, d)

Example 2: Shortest Paths:

AllPaths(a, d, cost) := Edge(a, d, cost)

AllPaths(a, d, totalCost) := AllPaths(a, k, cost1), Edge(k, d, cost2),

 totalCost = cost1 + cost2

ShortestPaths(a, d, min(cost)) := AllPaths(a, d, cost)

➢ Can be done in SQL WITH RECURSIVE but don’t need to think about

any recursive execution.

➢ Syntax forces one to focus on logical derivation rules for relations.

Very Strong and Beautiful Result

40

➢ Given a Datalog program that satisfy some properties (specifically

some monotonicity and finiteness rules as before):

R1 := body 1 (possibly recursive)
R2 := body 2 (possibly recursive)
…
R2 := body 7 (possibly recursive)
…
Rk := body 1000 (possibly recursive)

➢ Apply rules in arbitrary order to generate new tuples and one

always converges to same unique fixed-point => i.e., the order of

execution does not matter

➢ If you want: run R1 := body 1 500 times if it keeps producing

new tuples; then run R2 := body 2, then Rj, then R1 again etc.

➢ Extends the convergence criteria we discussed for SQL recursion

Last Comments On Datalog

41

➢ Several DBMSs, e.g., recent RelationalAI, LogicBlox or LinkedIn’s

core graph DBMS, adopts Datalog as a query language instead of

SQL

➢ Better fit for apps requiring recursion and logical inference rules (e.g.,

in knowledge management and traditional AI applications)

Sibling(x, y) := BioParent(z, x), BioParent(z, y), x != y

➢ Many cool applications have been developed on Datalog: (e.g.,

declarative distributed network programming)

➢ See Peter Alvaro’s work from UC Santa Cruz

➢ Has been the foundation for many seminal theoretical results

https://people.ucsc.edu/~palvaro/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

