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Outline For Today

1. SQL Recursive Query Support

➢ Recursion Motivation & FixedPoint Subroutine

➢ WITH and WITH RECURSIVE Clauses

➢ Monotonicity

➢ Linear vs Non-Linear Recursion

➢ Mutual Recursion

➢ Important Note About Convergence of Recursive Queries

2. Datalog: A More Elegant Query Languages For Recursion
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Strengths and Limitations of SQL So Far

Strengths:

➢ Excellent fit for tasks using fundamental set operations: 

➢ projection, joins, filtering, grouping etc. and combinations

➢ Very high-level:

I. Declarative: abstracts users away from low-level computations

II. Physical data independence: abstracts away low-level storage

Limitations:

➢ Is not Turing-complete

➢ More specifically: Cannot express recursive computations

➢ Historically: Recursion was an afterthougt when standardizing SQL
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Motivating Example 1: Transitive Closure

➢ Ex: Given academic <(co-)supervisor, student> relationships:

➢ Find all academic ancestors/descendants of an academic
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Advisor

supervisor student

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B D2

C2C1

A

B

D1

Ancestors

anc desc

… …

… …

… …

… …

… …

… …



Motivating Example 1: Transitive Closure
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D2

C2C1

A

B

D1

➢ Can find ancestors at any fixed degree, e.g., 1st, 2nd or 4th degree

➢ If max depth d is known: union all possible queries upto degree d:

(SELECT * FROM Advisor) UNION

(SELECT Adv1.sup, Adv2.stu FROM Adv1,Adv2 WHERE Adv1.stu=Adv2.sup) UNION

… (SQL Query for d-degree ancestors)

➢ But cannot express arbitrary depths

Advisor

sup stu

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

2 Degree Ancestors Query:

SELECT Adv1.sup AS anc, Adv2.stu as desc

FROM Advisor Adv1, Advisor Adv2

WHERE Adv1.stu = Adv2.sup



Motivating Example 1: Transitive Closure
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➢ Historical Fact: killer app of graph DBMSs before relational systems 

was the “parts explosion query” equivalent transitive closure

➢ Ask me offline if you want to hear more about this history!



Motivating Example 2: Shortest Paths

➢ Many other queries build on top of transitive closure.

➢ Ex: Given flights <from, to, price> relationships:

➢ Find cheapest paths from A to F
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Flights

from to cost

A B 5

A C 5

B D 10

C D 2

C E 10

D F 5

F E 2

A

B D

C E

F

5

5

10

2 2

10

5



Motivating Example 2: Shortest Paths
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Flights

from to cost

A B 5

A C 5

B D 10

C D 2

C E 10

D F 5

F E 2

A

B D

C E

F

5

5

10

2 2

10

5

➢ Can find all (shortest) paths with any fixed number, e.g., k, edges

➢ If max depth d is known (*and (directed) graph is acyclic*)

i. Union all paths with up to d edges. Call this relation AllPaths:

ii. SELECT from, to, min(cost) FROM AllPaths

➢ But cannot express arbitrary depths

3-edge Paths Query:

SELECT F1.from, F3.to, F1.cost+F2.cost+F3.cost as cost

FROM Flights F1, Flights F2, Flights F3

WHERE F1.to=F2.from AND F2.to=F3.from



Solution: Recursive “Fixed Point” Computations
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➢ Transitive closure (TC) and all paths (or shortest paths which 

depend on all paths) are inherently recursive properties of graphs

➢ Example: TC of v: all nodes that v can directly or indirectly reach

➢ Computing them require a recursive computation subroutine:

➢ High-level Recursive Subroutine for TC:

FixedPoint(fnc F w/ T as input):

Tprev = ∅

Tnew = F(Tprev) // 1
st degree ancestors

while (Tprev != Tnew):

  Tprev = Tnew

     Tnew = F(Tprev) // compute up to next-degree ancestors

Equivalently: Compute T0=∅; T1=F(T0); T2=F(T1); ... until Ti =Ti+1

➢ Upshot: SQL WITH RECURSIVE is a way to run FP subroutine

Important Questions: 

1. When does fp converge?

2. When is it unique? 



SQL WITH
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➢ A convenient way to define sub-queries and temporary views

WITH R1 AS Q1

  R2 AS Q2

  …

  Rn AS Qn

Q // a query that can use existing tables *and* R1, …, Rn

➢ Ex:

WITH Deg2Anc AS (SELECT Adv1.sup AS anc, Adv2.stu as desc

     FROM Advisor Adv1, Advisor Adv2

     WHERE Adv1.stu = Adv2.sup)

  Deg3Anc AS (….)

SELECT desc FROM (SELECT * FROM Deg2Anc UNION 

       SELECT * FROM Deg3Anc) 

                  WHERE anc = “A”

➢ Ri is the result of Qi

➢ Ri visible to Ri+1, …, Rn

➢ Can explicitly specify schema as 

R1(foo, bar) AS Q1 o.w inherits from Q



SQL WITH RECURSIVE
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➢ WITH can be suffixed with RECURSIVE keyword

WITH  RECURSIVE 

  R1 AS Q1

  R2 AS Q2

  …

  Rn AS Qn

Q // a query that can use existing tables *and* R1, …, Rn

➢ Semantics of “WITH RECURSIVE T AS Q”: run FixedPoint subroutine

T0 = ∅

T1 = Q (but use T0 for T)

T2 = Q (but use T1 for T)

… until Ti = Ti+1 

Note: In SQL standard RECURSIVE is bound to specific Ri. We will and some 

systems bind it to WITH, so all Ri.

Can reference R1



TC: ATTEMPT 1
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D2

C2C1

A

B

D1

Advisor

sup stu

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

WITH RECURSIVE Ancestors(anc, desc) AS (

 SELECT Ancestor.anc, Adv.stu

 FROM Ancestor, Advisor 

 WHERE Ancestor.desc = Advisor.sup)

➢ Problem? Ancestor starts as ∅

➢ Common fix: UNION with a 2nd query that inits Ancestor to Advisor

➢ Common WITH RECURSIVE query template:

 WITH RECURSIVE R AS (QB UNION QR)

non-recursive 

“base” query

recursive query



TC: ATTEMPT 2: Union w/ a “Base” Case
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D2

C2C1

A

B

D1

Advisor

sup stu

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

WITH RECURSIVE Ancestors(anc, desc) AS (

 SELECT sup as anc, stu as desc

 FROM Advisor

  UNION

 SELECT Ancestor.anc, Adv.stu

 FROM Ancestor, Advisor 

 WHERE Ancestor.desc = Advisor.sup)

base 

query

recursive 

query

Anc0

anc desc

Ancestor1 =

QB

anc desc

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

duplicate eliminating 

union

∪

QR

anc desc

QR = Anc0 ⋈ Advisor

Anc1

anc desc

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

=

Is Anc1–Ans0=∅? 

No: Repeat



TC: ATTEMPT 2: Union w/ a “Base” Case
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D2

C2C1

A

B

D1

Advisor

sup stu

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

Ancestor2 =

QB

anc desc

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

∪

QR

anc desc

A C1

B D1

QR = Anc1 ⋈ Advisor

Anc1

anc desc

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

=

Anc2

anc desc anc desc

C1 D1 A C1

C1 D2 B D1

C2 D1

C2 D2

B C1

A B

Is Anc2–Ans1=∅? 

No: Repeat

All 1-degree 

ancestors



TC: ATTEMPT 2: Union w/ a “Base” Case
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D2

C2C1

A

B

D1

Advisor

sup stu

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

Ancestor3 =

QB

anc desc

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

∪

QR

anc desc

A C1

B D1

A D1

A D2

QR = Anc2 ⋈ Advisor

=

Anc3

anc desc anc desc

C1 D1 A C1

C1 D2 B D1

C2 D1 A D1

C2 D2 A D2

B C1

A B

Anc2

anc desc anc desc

C1 D1 A C1

C1 D2 B D1

C2 D1

C2 D2

B C1

A B

Is Anc3–Ans2=∅? 

No: Repeat

All 1- and 2-degree 

ancestors



TC: ATTEMPT 2: Union w/ a “Base” Case
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D2

C2C1

A

B

D1

Advisor

sup stu

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

Ancestor4 =

QB

anc desc

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

∪

QR

anc desc

A C1

B D1

A D1

A D2

QR = Anc3 ⋈ Advisor

=

Anc4

anc desc anc desc

C1 D1 A C1

C1 D2 B D1

C2 D1 A D1

C2 D2 A D2

B C1

A B

Is Anc4–Ans3=∅? 

Yes: Stop

Anc3

anc desc anc desc

C1 D1 A C1

C1 D2 B D1

C2 D1 A D1

C2 D2 A D2

B C1

A B

All 1-, 2-, and 3-

degree ancestors

Final 

Answer

called the 

fixed point 

of Q.



Some Comments
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➢ Recall common WITH RECURSIVE query template:

 WITH RECURSIVE R AS (QB UNION QR)

➢ Can use other queries/templates (e.g., multiple base cases)

➢ But some restrictions apply (stay tuned)

➢ Note that fixed-point computation was very well-behaved in TC:

➢ Computation converged:

➢ In finite steps (and computed a finite relation)

➢ No oscillations

➢ Question: Are there conditions that guarantee convergence to a 

unique fixed point of Q?



Monotonicity
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➢ If we focus on core relational algebra foundation of SQL:

➢ Select/project/cross product/join/union/set difference/intersection 

➢ Ignore group by and aggregations and arithmetic functions etc.

➢ Theorem: If a recursive Q is “monotone w.r.t to every relation it 

contains”, then Q has a unique and finite fixed point (i.e., the fixed 

point subroutine is guaranteed to converge)

➢ Definition: Q is monotone w.r.t R iff adding more tuples to R can not 

remove tuples from output of Q (but new tuples can appear)

➢ i.e., if each t that used to be in the output of Q is guaranteed to 

remain in output if add more tuples to R (keeping all else same)



Monotonicity
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➢ Recall each core RA operator except set difference is monotone w.r.t 

their arguments

➢ E.g.: 𝑅 ⋈𝑝 𝑆 is monotone w.r.t R and S

➢ But: : 𝑅 − 𝑆 is non-monotone w.r.t S

➢ Therefore: Any Q that uses core relational algebraic operations and 

does not use set difference is monotone 

=> Q will converge to a unique fixed point (if recursive)

➢ Note 1: Q can still be monotone even if it contains set difference. But 

not guaranteed to be.

➢ Note 2: Q can be non-monotone & still converge, i.e. monotonicity is 

a sufficient condition for convergence but not necessary



Why Does Monotonicity Guarantee A Unique 

Fixed Point For A Recursive Query?
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➢ Proof Sketch: Recall fixed point subroutine:

T0 = ∅; T1 = Q (but use T0 for T); T2 = Q (but use T1 for T)

…

➢ Note we are assuming we are focusing on core RA: 

➢ Each value in a column of Ti is from a value from base relation

➢ But every base relation in Q is finite. 

Anc4

anc desc anc desc

C1 D1 A C1

C1 D2 B D1

C2 D1 A D1

C2 D2 A D2

B C1

A B

Advisor

sup stu

C1 D1

C1 D2

C2 D1

C2 D2

B C1

A B

➢ Any relation, no matter what its schema is, 

has a finite maximum size.

➢ B/c Q is monotone (specifically w.r.t to T):

T1⊂T2⊂T3⊂…  (must stop b/c finiteness)

i.e. T1 ⊂ T2 ⊂ … Tk = Tk+1 (and fp stops)



Example Non-Monotone Recursive Query 1
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WITH RECURSIVE T(x) AS (

 SELECT x FROM R

       UNION

 SELECT sum(x) as x FROM T)

R

x

1

2

T2

x

1

2

3

T3

x

1

2

6

T4

x

1

2

9

➢ Q is non-monotone b/c as we added 3, 3 got deleted, as we added 6, 

6 got deleted etc.

➢ That’s why aggr. not allowed in recursive queries in SQL standard .

X X

… would never 

converge 

A 2nd example after we cover “mutual recursion” (stay tuned).

T0

x

T1

x

1

2



Linear vs Non-linear Recursion
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➢ Recall QR in transitive closure:

SELECT Ancestor.anc, Adv.stu

 FROM Ancestor, Advisor 

 WHERE Ancestor.desc = Advisor.sup

Has 1 reference to itself Ancestor: Called linear recursion

Can have > 1 reference to Ancestor, called non-linear recursion



Non-linear Recursive Computation of Ancestors
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WITH RECURSIVE Ancestors(anc, desc) AS (

 SELECT sup as anc, stu as desc

 FROM Advisor

  UNION

 SELECT Anc1.anc, Anct.desc

 FROM Ancestor Anc1, Ancestor Anc2 

 WHERE Ac1.desc = Anc2.anc)
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Anc0

anc desc

Ancestor1 =

QB

anc desc

1 2

2 3

3 4

4 5

5 6

6 7

7 8

∪

QR

anc desc

Anc1

anc desc

1 2

2 3

3 4

4 5

5 6

6 7

7 8

=

Is Anc1–Ans0=∅? 

No: Repeat

5

63

1

2

4

7

8Advisor

sup stu

1 2

2 3

3 4

4 5

5 6

6 7

7 8



Non-linear Recursive Computation of Ancestors
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QB

anc desc

1 2

2 3

3 4

4 5

5 6

6 7

7 8

∪

Anc2

anc desc anc desc

1 2 1 3

2 3 2 4

3 4 3 5

4 5 4 6

5 6 5 7

6 7 6 8

7 8

=

5

63

1

2

4

7

8Advisor

sup stu

1 2

2 3

3 4

4 5

5 6

6 7

7 8

Anc1

anc desc

1 2

2 3

3 4

4 5

5 6

6 7

7 8

All 1-degree 

ancestors

QR

anc desc

1 3

2 4

3 5

4 6

5 7

6 8

24



Non-linear Recursive Computation of Ancestors

QB

anc desc

1 2

2 3

3 4

4 5

5 6

6 7

7 8

∪

QR

anc desc anc desc anc desc

1 3 2 5 4 8

2 4 3 6

3 5 4 7

4 6 5 8

5 7 1 5

6 8 2 6

1 4 3 7

=

5

63

1

2

4

7

8Advisor

sup stu

1 2

2 3

3 4

4 5

5 6

6 7

7 8

All 1 and 2-degree 

ancestors

Anc2

anc desc anc desc

1 2 1 3

2 3 2 4

3 4 3 5

4 5 4 6

5 6 5 7

6 7 6 8

7 8

Anc3

a d a d a d a d

1 2 1 3 2 5 4 8

2 3 2 4 3 6

3 4 3 5 4 7

4 5 4 6 5 8

5 6 5 7 1 5

6 7 6 8 2 6

7 8 1 4 3 7 25



Non-linear Recursive Computation of Ancestors

QB

anc desc

1 2

2 3

3 4

4 5

5 6

6 7

7 8

∪ =

5

63

1

2

4

7

8Advisor

sup stu

1 2

2 3

3 4

4 5

5 6

6 7

7 8

All 1, 2, 3, and 4-degree 

ancestors

Anc4

a d a d a d a d

1 2 1 3 2 5 4 8

2 3 2 4 3 6 1 6

3 4 3 5 4 7 2 7

4 5 4 6 5 8 3 8

5 6 5 7 1 5 1 7

6 7 6 8 2 6 2 8

7 8 1 4 3 7 1 8

Anc3

a d a d a d a d

1 2 1 3 2 5 4 8

2 3 2 4 3 6

3 4 3 5 4 7

4 5 4 6 5 8

5 6 5 7 1 5

6 7 6 8 2 6

7 8 1 4 3 7

QR

a d a d a d

1 3 2 5 4 8

2 4 3 6 1 6

3 5 4 7 2 7

4 6 5 8 3 8

5 7 1 5 1 7

6 8 2 6 2 8

1 4 3 7 1 8 26



Non-linear Recursive Computation of Ancestors

QB

anc desc

1 2

2 3

3 4

4 5

5 6

6 7

7 8

∪ =

5

63

1

2

4

7

8Advisor

sup stu

1 2

2 3

3 4

4 5

5 6

6 7

7 8

All 1, …  8-degree 

ancestors

QR

a d a d a d

1 3 2 5 4 8

2 4 3 6 1 6

3 5 4 7 2 7

4 6 5 8 3 8

5 7 1 5 1 7

6 8 2 6 2 8

1 4 3 7 1 8 27

Anc4

a d a d a d a d

1 2 1 3 2 5 4 8

2 3 2 4 3 6 1 6

3 4 3 5 4 7 2 7

4 5 4 6 5 8 3 8

5 6 5 7 1 5 1 7

6 7 6 8 2 6 2 8

7 8 1 4 3 7 1 8

Anc5

a d a d a d a d

1 2 1 3 2 5 4 8

2 3 2 4 3 6 1 6

3 4 3 5 4 7 2 7

4 5 4 6 5 8 3 8

5 6 5 7 1 5 1 7

6 7 6 8 2 6 2 8

7 8 1 4 3 7 1 8

Is Anc5–Ans4=∅? 

Yes: Stop

Fixed Point

Linear recursion 

would take 8 

steps



Linear vs Non-linear Recursion
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➢ For tc-like computations:

➢ Linear recursion: 

➢ Takes *linear* # iterations in the depth of the relationships

➢ But each iteration might perform less work b/c joins are 

between smaller tables

➢ Non-linear recursion:

➢ Takes logarithmic # iterations in the same depth

➢ But each iteration performs more work

➢ SQL standard requires/allows linear recursion for performance 

reasons (ask me after lecture)



Mutual Recursion
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➢ Each Qi in our examples so far referred to itself.

➢ We can have the following “mutually recursive” set of queries

WITH  RECURSIVE 

      RECURSIVE R1 AS Q1

    RECURSIVE R2 AS Q2

      RECURSIVE R3 AS Q3

  …

Q

e.g. references  R2

e.g. references  R3

e.g. references  R1

➢ Note: Q1-Q3 may be alone non-recursive but together they may be 

recursive or they may be recursive alone as well

➢ So they need to be executed “in tandem” until fixed point.



Mutual Recursion Example
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➢ Table Natural (n) contains 1,2,3,…

➢ Even/Odd numbers < 100

WITH RECURSIVE 
     Even(n) AS (SELECT n FROM Natural
      WHERE n = ANY(SELECT n+1 FROM Odd) AND n < 100),
 Odd(n) AS (
     (SELECT n FROM Natural WHERE n = 1)
      UNION
     (SELECT n FROM Natural
      WHERE n = ANY(SELECT n-1 FROM Even) AND n < 100)

Even0 = ∅, Odd0 = ∅
Even1 = ∅, Odd1 = {1}

Even2 = {2}, Odd2 = {1}

Even3 = {2}, Odd3 = {1, 3}

Even4 = {2, 4}, Odd4 = {1, 3}

Even5 = {2, 4}, Odd5 = {1, 3, 5}

…



Example Non-Monotone Recursive Query 2:

Set Difference
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WITH RECURSIVE PGroup(uid) AS
     (SELECT uid FROM User
      AND uid NOT IN (SELECT uid FROM SGroup)),
 RECURSIVE SGroup(uid) AS
     (SELECT uid FROM User
   AND uid NOT IN (SELECT uid FROM PGroup))

➢ Q is non-monotone b/c recall set diff. is nonmonotone w.r.t 2nd arg.

uid name age

142 Bart 10

121 Allison 8

uid uid

PGroup SGroup

uid

142

121

uid

142

121

PGroup SGroup

MINUS can replace with AND uid NOT IN. In 

general negated sub-queries or MINUS in 

recursive parts are not allowed.



Important Note On Monotonicity/Convergence
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➢ In practice: DBMSs will not/cannot check for monotonicity and may 

allow much more than SQL standard: arithmetic, aggregations.

➢ Nor will they detect oscillations

➢ You can write non-converging code. Systems will often run a max # 

iterations (e.g., 100) and error

➢ SQL compiler will not error for these errors. This is on the user!

➢ Be careful with recursive queries: Know your query & database!



Example Non-convergence Based On Database
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➢ Consider this All Paths query Q:

WITH RECURSIVE AllPaths(s, d, cost) AS
     (SELECT s, d, cost FROM Edges)
   UNION
     (SELECT AllPaths.s, Edges.d, AllPaths.cost+Edges.cost 
      FROM AllPaths, Edges 
      WHERE AllPaths.d = Edges.s)

➢ If Edges { (1, 2, 10) } => All Paths: { (1, 2, 10) }

➢ Keep Q the same but add one more tuple (2, 1, 5) to Edges

➢ Now there are infinitely many (1, 2) and (2, 1) paths:

(1, 2, 10), (1, 2, 25), (1, 2, 40) etc..

1 2

10

5

Systems will allow this query!



Summary of SQL Recursion
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➢ Recursion did not exist from 1986-1999 in SQL Standard

➢ General Syntax:

➢ Basic functionality: linear recursion

➢ Extended functionality: non-linear and mutual recursion

➢ Unsafe recursive queries: non-monotone (may not converge) queries 

or query is monotone but output relation’s size is infinite (e.g., due to 

use of arithmetic)

➢ Personal opinion: Recursive computations are not elegant in SQL.

WITH  RECURSIVE 

  R1 AS Q1

  R2 AS Q2

  …

  Rn AS Qn
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Rest of the slides are optional and included to better 

understand where SQL recursion is inspired from (which 

is the Datalog language)



Datalog: Logic-based DB Query Language with 

Recursion As a First Class Citizen
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➢ A QL based on logical rules of the form: Head := Body

➢ A DB consists of a set of “base relations” (called “extensional” db)

Likes(person, foodItem)

Sells(restaurant, foodItem, cost)

Frequents(person, restaurant)

➢ Ex Rule: Happy(p) := Likes(p, f), Frequents(p, r), Sells(r, f, c)

Head Body: conjunction/AND of “subgoals”

➢ For simplicity: assume head, subgoals can be relation names (called 

predicates) with arguments that can be variables or constants.

➢ Datalog allows other predicates: e.g., c < 20



Semantics of Datalog Rules
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➢ Happy(p) := Likes(p, f), Frequents(p, r), Sells(r, f, c)

➢ Natural join on common variables:

➢ Any p s.t.”∃ a food f & rest r | p likes f & p frequents r & r sells f” is 

happy

➢ In RA:  𝚷person (Likes ⋈ Frequents ⋈ Sells)

➢ Equality filters on constants:

➢ Happy(p) := Likes(p, f), Frequents(p, r), Sells(r, f, 20)

➢ Any p s.t.” ∃ a food f & rest r | p likes f & p frequents r & r sells f & 

x costs 20 CAD” is happy

➢ Note: also declarative



More “Datalog Program” Examples
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➢ There can be multiple rules with the same head predicate

Happy(p) := Likes(p, f), Frequents(p, r), Sells(r, f, c)

Happy(p) := Likes(p, “Chocolate Cake”) 

Happy(p) := Frequents(p, r), Frequents(“Karim”, r)

➢ Meaning: Any p s.t: 

 1) ” ∃ a food f & rest r | p likes f & p frequents r & r sells f” OR

 2) “p likes Chocolate Cake” OR 

 3) “∃ a restaurant r | both Karim and p frequent r” 

is happy!

➢ Advantage: Arbitrary recursive, non-recursive, mutually recursive 

rules can be just written down as logical “derivation” rules

➢ Similar to context-free grammar rules in programming languages



More Elegant Recursive Programs
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Example 1: Transitive Closure:

Ancestor(a, d) := Advisor(a, d)

Ancestor(a, d) := Ancestor(a, b), Advisor(b, d) 

Example 2: Shortest Paths:

AllPaths(a, d, cost) := Edge(a, d, cost)

AllPaths(a, d, totalCost) := AllPaths(a, k, cost1), Edge(k, d, cost2), 

                             totalCost = cost1 + cost2

ShortestPaths(a, d, min(cost)) := AllPaths(a, d, cost)

➢ Can be done in SQL WITH RECURSIVE but don’t need to think about 

any recursive execution.

➢ Syntax forces one to focus on logical derivation rules for relations.



Very Strong and Beautiful Result
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➢ Given a Datalog program that satisfy some properties (specifically 

some monotonicity and finiteness rules as before):

R1 := body 1 (possibly recursive)
R2 := body 2 (possibly recursive)
…
R2 := body 7 (possibly recursive)
…
Rk := body 1000 (possibly recursive)

➢ Apply rules in arbitrary order to generate new tuples and one 

always converges to same unique fixed-point => i.e., the order of 

execution does not matter

➢ If you want: run R1 := body 1 500 times if it keeps producing 

new tuples; then run R2 := body 2, then Rj, then R1 again etc. 

➢ Extends the convergence criteria we discussed for SQL recursion



Last Comments On Datalog
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➢ Several DBMSs, e.g., recent RelationalAI, LogicBlox or LinkedIn’s 

core graph DBMS, adopts Datalog as a query language instead of 

SQL

➢ Better fit for apps requiring recursion and logical inference rules (e.g., 

in knowledge management and traditional AI applications)

Sibling(x, y) := BioParent(z, x), BioParent(z, y), x != y

➢ Many cool applications have been developed on Datalog: (e.g., 

declarative distributed network programming)

➢ See Peter Alvaro’s work from UC Santa Cruz

➢ Has been the foundation for many seminal theoretical results

https://people.ucsc.edu/~palvaro/
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