
CS 348 Lectures 10-11

Database Design Theory:

Theory of Normal Forms

Semih Salihoğlu

Feb 6th-11th 2025

1

Lectures on Relational Algebra & SQL (1)

➢ Main SQL clauses for querying and data manipulation

➢ Founded on relational algebra

➢ Constraints: Primary Keys, Foreign Keys, Not NULL, General

Assertions and CHECKs

➢ Triggers

➢ Views

➢ Primary ways to get different abstractions on data

➢ When materialized also a way to achieve performance

➢ Indexes

➢ Fast access to some data

2

Achieve Integrity of Database

Ease of Programming

Performance

Lectures on Relational Algebra & SQL (2)

➢ Recursion: Can be considered a weak point for SQL

➢ Not an elegant way to express recursive computations

➢ E.g.: Try to express finding shortest paths in a graph

➢ GraphDB query languages: better but minor additional support

➢ Datalog: (I think) better declarative logic-based language for

recursive programming

➢ Some DBMSs implement it. Good for coffee/OH chat

3

Example Datalog Program
Parent(A, B) is an external relation w/ tuples (e.g., (Alice, Bob))
Ancestor(X, Y) :- parent(X, Y)
Ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y)

➢ There are alg. (e.g., “semi-naïve datalog algorithm”) that can find

“fixed point” states of any set of Datalog rules

Lectures on Relational Algebra & SQL (3)

➢ SQL Programming Interfaces

➢ SLQ programming is almost always through a programming

language (PL) or framework.

➢ Frameworks (e.g., Ruby on Rails) give basic functionality with no

explicit SQL coding

➢ For somewhat complex apps, need direct SQL through a PL

4

Lectures on Relational Algebra & SQL (4)

5

Primary Takeaway:

SQL is very high-level and a very different style of programming data

processing tasks than standard procedural PLs.

Little needs to be known algorithmically to perform tasks.

Next 2 Lectures: Relational Database Design Theory

6

➢ Theory of Normal Forms (TNF): Given a set of constraints about

the real-world facts that an app will store, how can we formally
separate “good” and ”bad” relational db schemas?

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

… … … … … …

Inst

iID name salary depName

111 Alice 5000 CS

222 Bob 4000 Physics

… … …. …

Dep

depName bldng budget

CS DC 20000

Physics PHY 30000
If given a depName: (bldng, budget)

is unique, i.e., determined,

Design 1, intuitively, is a bad design with redundancy.

Design 1 Design 2

➢Goal of TNF: make the above intuition formal.

Following 2 Lectures: Entity/Relationship (ER) Model

➢Often users do not directly design relational tables

➢ER Model: An even higher-level data model

➢Close to object-oriented programming

➢ In turn, it is close to modeling data as a graph

➢How complex dbs are modeled in practice

➢Analogous to programming frameworks

Following 2 Lectures: Entity/Relationship (ER) Model

Trains Stations
name

address

number

engineer

time

ExpressTrains

LocalTrains LocalStations

ExpressStations

ISA

LocalTrainStops

ISA

time

ExpressTrainStops

Many DBMSs provide an actual

E/R Schema Designer. Can be

done manually for small/medium-

size db schemas.

ER-to-Relational
Mapper

R1

A1,1 … A1,m1

… … …

R2

A2,1 … A2,m2

… … …

Rn

An,1 … An,mn

… … …

…

➢Upshot: Does not guarantee good designs as in TNF.

Still need to ensure final relations adhere to the principles of TNF

Outline For Today

1. Application Constraints and Decompositions

2. Functional Dependencies

3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.

4. Dependency Preservation and 3rd Normal Form

5. Multi-valued Dependencies and 4th Normal Form

9

Outline For Today

1. Application Constraints and Decompositions

2. Functional Dependencies

3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.

4. Dependency Preservation and 3rd Normal Form

5. Multi-valued Dependencies and 4th Normal Form

10

Application Constraints

11

➢ Consider a simple university DB:

➢ Independent of stored data: there will be external app. constraints. E.g:

➢ Each instructor has 1 name, salary, and department

➢ Each department has 1 building

➢ Each student can have 1 advisor from each department

➢ Instructor i’s set of addresses are independent of the departments of i

➢ High-level idea: A “good” DB makes such constraints explicit

Instructors Departments Courses Students

Application Constraints

12

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

… … … … … …

➢ Instructors: iIDs, names, salaries, departments (w/ unique iIDs)

➢ Departments: names, building, budget (w/ unique names)

➢ Constraint 1: Each instructor has 1 name, salary, and department

➢ Constraint 2: Each department has 1 building and 1 associated budget

➢ Possible Design: 1 large table InstDep with one row for each instructor

✓

X

b/c iID is key

➢ Problem: redundant data replication. (CS, DC, 20000) repeated k times if
there are k instructors in CS.

b/c depName is not key

Problems of Redundancy

13

➢ Harder to keep db consistent when facts are stored multiple times. E.g:

➢ If CS’s building changed to E4 => need to update 3 rows

➢ Suppose Bob is the only instructor in Physics and retires (a delete):

➢ Deletion of Bob’s tuple: Physics department, which might exist, is

deleted unless extra work is done

➢ If new department (w/out yet an instructor) is added: new row w/ NULLs

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

… … … … … …

Redundancy Is Determined By App. Constraints

14

Course

cID term iID capacity

CS348 F21 Semih 100

CS341 F21 Lap Chi 80

CS348 S21 Xi 100

CS348 W20 Xi 100

CS350 W19 Salem 130

➢ Courses: cID, term, iID, capacity

➢ Unclear if this is redundant or not. Depends on external app constraint:

➢ If courses have 1 associated capacity (independent of term): Redundant

➢ O.w repetition may be necessary and reflects similarity across entities.

Redundancy Is Determined By App. Constraints

15

➢ Courses: cID, term, iID, capacity

➢ Unclear if this is redundant or not. Depends on external app constraint:

➢ If courses have 1 associated capacity (independent of term): Redundant

➢ O.w repetition may be necessary and reflects similarity across entities.

➢ Takeaway: Constraints are external to the db/app and need to be inputs

in a db design theory.

Course

cID term iID capacity

CS348 F21 Semih 100

CS341 F21 Lap Chi 80

CS348 S21 Xi 100

CS348 W20 Xi 100

CS350 W19 Salem 130

CS348 W22 David 200

Solution To Redundancy: Decompositions

16

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

Inst

iID name salary depName

111 Alice 5000 CS

222 Bob 4000 Physics

333 Carl 5200 CS

444 Diana 5500 CS

Dep

depName bldng budget

CS DC 20000

Physics PHY 30000

Desiderata for Decompositions (1)

17

➢ D1 (Lossless): If R is decomposed into R1 and R2, then:

R = R1 ⋈ R2

➢ Lossless-ness achieved by decomposing on an appropriate key

RESULT

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

Inst

iID name salary depName

111 Alice 5000 CS

222 Bob 4000 Physics

333 Carl 5200 CS

444 Diana 5500 CS

Dep

depName bldng budget

CS DC 20000

Physics PHY 30000

⋈

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

=

Example Lossy Decomposition

18

InstDep

ID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

ID

111

222

333

444

name

Alice

Bob

Carl

Diana

salary

5000

4000

5200

5500

depName

CS

Physics

bldng

DC

PHY

budget

20000

30000

RESULT

ID name salary depName bldng budget

111 Alice 5000 CS DC 20000

111 Bob 5200 CS PHY 30000

… … … … … …

⋈ ⋈ ⋈ ⋈ ⋈

X Can’t tell what’s fact and what’s not.

Desiderata for Decompositions (2)

➢ D2 (Locality of Constraints): If the app had a constraint C, we

would prefer to check C in a single relation

➢ Will discuss more in 3rd Normal Form. Stay tuned.

Outline For Today

1. Application Constraints and Decompositions

2. Functional Dependencies

3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.

4. Dependency Preservation and 3rd Normal Form

5. Multi-valued Dependencies and 4th Normal Form

20

Functional Dependencies (FDs): Generalized

Uniqueness Constraints

➢ Informally: Let X, Y be sets of attributes. A functional dependency X → Y

holds if for each possible value of attributes X there is only 1 possible Y

value, i.e. X “determines” Y uniquely (independent of other values in a

tuple).

➢ Formally: Let t[A] be a tuple t’s projection on attributes A

Dfn: Let X, Y be sets of attributes. An fd X → Y holds in a relation R, if given

t1 and t2 ∈ R s.t. t1[X] = t2[X], then t1[Y] = t2[Y] holds.

Example FDs

➢ Constraint 1: Each iID has 1 name and salary

➢ iID → name, salary

➢ Constraint 2: Each depName has 1 building & 1 associated budget

➢ depName → bldng, budget

➢ Key constraints: Each iID, depName is unique in InstDep

➢ iID, depName → name, salary, bldgn, budget

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

… … … … … …

➢ Captures generalized uniqueness constraints (beyond keys):

Some FD Vocabulary

➢ Suppose ℱ: (i) iID → name, salary; (ii) depName → bldng, budget

➢ E.g: The above instance is a legal instance

➢ E.g: iID → name, salary holds on the above instance.

➢ Won’t need this vocabulary much in lecture. May see in assignments.

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

111 Alice 5000 Biology BIO 50000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

➢ We take FDs as given, i.e., cannot be inferred from a relation instance.

➢ FDs limit legal instances of a relation R(A1, …, Am)

➢ Given a set ℱ of fds on R, on all legal instances of R, each F ∈ ℱ hold.

Implied FDs: Armstrong’s Axioms

➢ A set of fds can imply other fds via 3 intuitive rules: Armstrong’s Axioms

1. Reflexivity: If Y⊆ X, then X → Y (trivially)

➢ iID, name → iID

➢ English: Each iID and name value takes a unique iID value

2. Augmentation: if X → Y, then XZ → YZ (trivially)

➢ If iID → salary then iID, bldng → salary, bldng

➢ English: if each iID takes a unique salary value, then each (iID,

bldng) value pair takes a unique (salary, bldng) value

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

… … … … … …

Implied FDs: Armstrong’s Axioms

3. Transitivity: if X → Y and Y → Z, then X → Z

➢ Suppose each instructor can be in a single department and each

dep has a single budget

➢ FD1: iID → depName FD2: depName → budget, then

iID → budget

➢ English: If each iID value takes a unique depName value, which in

turn takes a unique budget value, then each iID value takes a unique

budget value.

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

… … … … … …

Other Rules Implied by Armstrong’s Axioms

1. Decomposition: If X → YZ, then X → Y and X → Z

Proof:

i. X → YZ

ii. YZ → Y (by reflexivity)

iii. X → Y (by transitivity)

2. Union: If X → Y and X → Z then X → YZ (Prove as exercise)

3. Pseudo-transitivity: If X → Y and YZ → T then XZ→ T (Prove as

exercise)

ℱ+: Closure of ℱ

Dfn: Let ℱ be a set of fds. The closure ℱ+ of ℱ is the set of all fds implied

by ℱ.

➢ Ex: ℱ: iID→name, depName & depName→bldng

➢ ℱ+: ℱ ∪ iID→iID; iID,email→name,email (trivial ones) … ∪

 iID→bldng (transitivity) etc..

InstDep

iID name email depName bldng

111 Alice alice@gmail CS DC

111 Alice alice@hotmail CS DC

222 Bob bob@gmail Physics PHY

222 Bob bob@hotmail Physics PHY

333 Carl carl@gmail CS DC

… … … … …

Exercise Showing an FD is in ℱ+

➢ Consider an Inst_Proj relation of instructors and their research projects

InstProj

iID name projID projName projDep hours funds

➢ (i) iID → name; (ii) projID → projName, projDep;

 (iii) iID, projID → hours; (iv) projDep, hours → funds;

➢ Prove iID, projID → funds

1. iID, projID → hours (by fd iii)

2. projID → projName, projDep (by fd ii)

3. iID, projID → hours, projName, projDep (by pseudo-transitivity of 1 & 2)

4. iID, projID → funds (by transitivity of 3, and fd iv) (+ decomposition)

How To Compute ℱ+ from ℱ

Outline For Today

1. Application Constraints and Decompositions

2. Functional Dependencies

3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.

4. Dependency Preservation and 3rd Normal Form

5. Multi-valued Dependencies and 4th Normal Form

30

Boyce-Codd Normal Form (BCNF)

Dfn (BCNF): Given a set of fds ℱ, a relation R is in BCNF iff:

∀ X → Y ∈ ℱ+ s.t. XY ⊆ R, one of the following two conditions hold:

1. X → Y is trivial (i.e., Y ⊆ X)

2. X is a super key of R (i.e., X → R)

Q: Why does X → R imply X is super key?

Example Relations in BCNF and not in BCNF (1)

InstDep

iID name salary depName bldng budget

➢ Note we only need to look at the schema of R and ℱ+

➢ As before suppose ℱ: (i) iID→name,salary; (ii) depName→bldng,budget

Q: Is InstDep in BCNF?

A: No b/c iID is not key. Can check by computing ℱ+ = ℱ ∪ all trivial fds. B/c

can’t apply transitivity to the fds in ℱ to generate more non-trivial fds.

Example Relations in BCNF and not in BCNF (2)

R1

iID name salary depName

Q: Is R1 in BCNF?

A: No b/c iID is still not key.

R2

depName bldng budget

➢ As before suppose ℱ: (i) iID→name,salary; (ii) depName→bldng,budget

R3

iID name salary

R2

depName bldng budget

R4

iID depName

Q: Is R3 in BCNF?

A: Yes

Q: Is R2 in BCNF?

A: Yes b/c depName is key.

Q: Is R4 in BCNF?

A: Yes b/c no non-trivial FDs

Greedy BCNF Decomposition Algorithm (1)

Very High-level
Input: R, ℱ+

rels = { R }
1. find an fd X → Y violating BCNF on a relation Ri ∊ rels
2. Split Ri into Ri1 = X ∪ (Ri – Y) and Ri2 = X ∪ Y;
 rels = (rels – Ri) ∪ Ri1 ∪ Ri2
3. repeat 1-2 until no such fd can be found.

➢ Several properties of the alg (won’t formally prove):

1. Always returns a set of relations R1, …, Rk s.t. Rj is in BCNF and this is

a lossless decomposition of R, i.e., R1 ⋈ … Rj = R. (Why? Stay tuned.)

2. The output is *not* unique. (Exercise: show a simple example with a

relation and two fds to demonstrate this)

Greedy BCNF Decomposition Algorithm (2)

InstDep

iID name salary depName bldng budget

R1

iID name salary depName

R2

depName bldng budget

➢ ℱ: (i) iID→name,salary; (ii) depName→bldng,budget

➢ ℱ+ = ℱ ∪ all trivial fds.

R3

iID name salary

R4

iID depName

use: depName→bldng,budget

use: iID→name,salary

Why Do We Consider ℱ+ instead of ℱ?

➢ After a split some non-trivial direct or implied fds from ℱ (through

transitivity) could remain and cause redundancy

➢ Ex: ℱ: (i) iID→depName; (ii) depName→bldng

InstDep

iID email depName bldng

111 a@gmail CS DC

111 a@hotmail CS DC

iID depName

111 CS

use: iID→depName

iID email bldng

111 a@gmail DC

111 a@hotmail DC

still repetition

need: iID→bldg ∈ ℱ+

iID bldng

111 DC

iID email

111 a@gmail

111 a@hotmail

Why is BCNF A Lossless Decomposition? (1)

➢ By construction of the algorithm, X, which are the join attributes or Ri1

and Ri2, i.e., Ri1 ∩ Ri2, is a key in one of the split relations.

➢ Since it’s a key, the join is 1-1:

➢ i.e., each tuple t in Ri1 will join with 1 tuple t’ in Ri2.

Very High-level
Input: R, ℱ+

rels = { R }
1. find an fd X → Y violating BCNF on a relation Ri ∊ rels

s.t. XY ∈ attr(Ri) (attr(Ri) is the attributes/cols of Ri)
2. Split Ri into Ri1 = X ∪ (Ri – Y) and Ri2 = XY;
 result = (result – Ri) ∪ Ri1 ∪ Ri2
3. repeat 1-2 until no such fd can be found.

Why is BCNF A Lossless Decomposition? (2)

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

555 Ed 2500 Physics DC 20000

R1

iID name salary depName

111 Alice 5000 CS

222 Bob 4000 Physics

333 Carl 5200 CS

444 Diana 5500 CS

555 Ed 2500 Physics

R2

depName bldng budget

CS DC 20000

Physics PHY 30000

use: depName→bldng,budget

Since CS is key in R2, each R1 tuple can join with only 1 R2 tuple.

Why is BCNF Decomp Alg. *Not* “Depend. Preserving”?

➢ Decomposing on non-trivial fd1 can “break” a non-trivial fd2

➢ Ex: fd1: iID → depName: an instructor belongs to 1 dep

 fd2: sID, depName → iID: a student has 1 advisor from each dep.

DeptAdvisor

sID iID depName

s1 111 CS

s1 555 Physics

s2 111 CS

R2

iID depName

111 CS

555 Physics

R1

sID iID

s1 111

s1 555

s2 111

use: iID → depName

➢ Can no longer check fd2 in a single relation. Need to join R1 and R2.

Note: Not in BCNF. Why?

Outline For Today

1. Application Constraints and Decompositions

2. Functional Dependencies

3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.

4. Dependency Preservation and 3rd Normal Form

5. Multi-valued Dependencies and 4th Normal Form

40

Dependency Preservation (1)

Dfn (Restriction): Let ℱ be a set of fds. The restriction of ℱ to a relation Ri

is the set of fds in ℱ+ that contain all its attributes in Ri.

Dfn (Dependency Preservation): Let ℱ be a set of fds on a relation R. Let

D={R1, …, Rk} be a decomposition of R with F1’, …, Fk’ as the restrictions

of ℱ onto Ri for i=1,…,k. Let ℱ′=F1’ ∪ … ∪ Fk’. D is dependency preserving

iff ℱ+ = ℱ′+.

➢ Note some fds ∈ ℱ+ may not be “localized” in a single relation in D but

every fd ∈ ℱ+ must be implied by a set of fds that are localized to a

single relation.

Dependency Preservation (2)

➢ ℱ = fd1: iID → depName: an instructor belongs to 1 dep

 fd2: sID → iID: a student has 1 advisor.

➢ Note ℱ+ contains sID → depName.

DeptAdvisor

sID iID depName

R2

iID depName

R1

sID iID

use: iID → depName

➢ Cannot check sID → depName in a single relation but that’s OK.

➢ We can still check it without any joins:

➢ fd1: iID → depName can be checked in R2

➢ fd2: sID → iID can be checked in R1

➢ fd1 and fd2 imply sID → depName

3rd Normal Form (3NF): Relaxation of BCNF To Allow

Some “Reasonable” Redundancy

Dfn: Given a set of fds ℱ, a relation R is in 3NF iff:

∀ X → Y ∈ ℱ+ s.t. XY ⊆ R, one of the following three conditions hold:

1. X → Y is trivial (i.e., Y ⊆ X)

2. X is a super key of R (i.e., X → R)

3. Each attribute in Y – X is part of a candidate key

➢ Recall candidate key K: a set of “minimal” attributes K that form a key for

R, i.e., no proper subset of K is a key for R.

3NF Example

➢ Recall non-BCNF example:

fd1: iID → depName: an instructor belongs to 1 dep

 fd2: sID, depName → iID: a student has 1 advisor from each dep.

DeptAdvisor

sID iID depName

s1 111 CS

s1 555 Physics

s2 111 CS

➢ ∉ BCNF but ∈ 3NF b/c iID → depName is a non-trivial, non-key fd but:

➢ sID,depName -> iID is a key. Moreover a candidate key.

➢ B/c: depName nor sID alone is a key (check ℱ+)

Key point: 3NF relations can have redundant repetition (e.g., due to iID →

depName) that BCNF does not.

But this repetition allows us to verify every fd without any joins.

Intuition Behind 3rd Rule in 3NF (1)

➢ BCNF requires that in the final relations fds are either trivial or keys.

➢ Trivial fds can’t lead to repetition. Neither can keys by definition.

➢ If an fd is non-trivial and non-key, a relation R needs to be decomposed

➢ Problem: Not every relation R and ℱ+ has a dependency preserving

decomposition into BCNF. i.e., a decomposition using fd1 can “break” the

attributes of another non-trivial fd2 into 2 relations so a join is required.

Ex: fd1: iID → depName

 fd2: sID, depName → iID

➢ 3NF’s 3rd condition allows non-trivial, non key fds X→Y if each attribute

 Ai ∈ Y–X is part of a candidate key.

➢ E.g., depName is part of a cand. key, so we don’t need to decompose.

DeptAdvisor

sID iID depName

R2

iID depName

R1

sID iID

Intuition Behind 3rd Rule in 3NF (2)

➢ Question: Why does the 3rd condition guarantee every relation has a

dependency preserving decomposition?

3rd cond: fd*: X → Y is OK if each Ai ∈ Y – X is part of a candidate key.

High-level Intuition: Y – X are the “repeated” values due to fd*.

Let Ai ∈ Y – X. If Ai is part of a candidate key in the relation R, then:

∃ an fdck: Z, Ai → R. So if we decompose according to fd*:

R will split, so we need a join to check fdck.

The 3rd rule allows us to not split in these cases.

Note: This is not a proof.

A simpler proof for Question: study a 3NF decomposition alg. (next slide)

and observe that it is dependency preserving by construction and is

guaranteed to output relations in 3NF.

3NF and BCNF Venn Diagram

BCNF

3NF

➢ Every relation in BCNF is in 3NF but not vice versa.

3NF Bottom-Up Decomp. Alg (1):

Minimal/Canonical Covers

➢ A set of FDs ℱ is minimal if:

1. Every right-hand side of a FD in ℱ is a single attribute

2. For no 𝑋→𝐴 is the set ℱ − {𝑋→𝐴} equivalent to ℱ, i.e.,

Let ℱ′ = ℱ − 𝑋→𝐴 , then ℱ′+ = ℱ+.

3. For no 𝑋→𝐵 and 𝑍 a proper subset of 𝑋 is the set

(ℱ − 𝑋→𝐵) ∪ 𝑍→𝐵 equivalent to ℱ

➢ Ex: R(A, B, C, D, E, F, G)

ℱ: fd1: 𝐴→𝐵𝐶
 fd2: D→𝐸
 fd3: A,D→𝐹
 fd4: 𝐴, 𝐸→𝐹
 fd5: D,E→𝐺

Fails Condition 1

Fails Condition 2: e.g., fd2 and fd4 imply fd3

Fails Condition 3: difficult to directly see, but

you can try that having instead fd5: D→G has

the same closure, i.e., is the same set of fds.

3NF Bottom-Up Decomp. Alg (2)

Outline For Today

1. Application Constraints and Decompositions

2. Functional Dependencies

3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.

4. Dependency Preservation and 3rd Normal Form

5. Multi-valued Dependencies and 4th Normal Form

50

Restatement of FDs: Conditional Independence

Among Attribute Sets (1)

➢ Recall the informal dfn of FDs: Let X, Y be sets of attributes. A functional

dependency X → Y holds if for each possible value of attributes X there

is only 1 possible value Y value. I.e. X “determines” Y uniquely

(independent of other values in a tuple).

➢ Equivalently: Let “RST= R- (X ∪ Y). X → Y means given a set of X

values (x1, …, xk):

1. Y values of tuples w/ (x1, …, xk): are independent of values in RST.

2. And there is only 1 set of Y values.

Restatement of FDs: Conditional Independence

Among Attribute Sets (2)

➢ Let “RST= R- (X ∪ Y). X → Y means given a set of X values (x1, …, xk):

1. Y values of tuples w/ (x1, …, xk): are independent of values in RST.

2. And there is only 1 set of Y values.

➢ Ex: depName → bldng, budget

➢ RST: iID, name, salary

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

Multivalued Dependencies (MVDs): Generalized

Conditional Independence Constraints

➢ MVDs remove uniqueness constraint: given X, Y is independent of RST.

Dfn (MVD): Let X, Y be sets of attributes. An MVD X ↠ Y holds in R,

if given t1 and t2 ∈ R s.t. t1[X] = t2[X] and t1[Y] ≠ t2[Y],

then ∃ t3, t4 s.t:

1. t1[X] = t2[X] = t3[X] = t4[X]

2. t3[Y] = t1[Y] and t3[RST] = t2[RST]

3. t4[Y] = t2[Y] and t4[RST] = t1[RST]

X Y RST

t1 x* y1 rst1

t2 x* y2 rst2

… … … …

Multivalued Dependencies (MVDs): Generalized

Conditional Independence Constraints

➢ MVDs remove uniqueness constraint: given X, Y is independent of RST.

Dfn (MVD): Let X, Y be sets of attributes. An MVD X ↠ Y holds in R,

if given t1 and t2 ∈ R s.t. t1[X] = t2[X] and t1[Y] ≠ t2[Y],

then ∃ t3, t4 s.t:

1. t1[X] = t2[X] = t3[X] = t4[X]

2. t3[Y] = t1[Y] and t3[RST] = t2[RST]

3. t4[Y] = t2[Y] and t4[RST] = t1[RST]

X Y RST

t1 x* y1 rst1

t2 x* y2 rst2

t3 x* y1 rst2

t4 x* y2 rst1

Multivalued Dependencies (MVDs): Generalized

Conditional Independence Constraints

InstDep

iID name email depName bldng

111 Alice alice@gmail CS DC

111 Alice alice@hotmail CS DC

111 Alice alice@uw.ca Physics PHY

222 Bob bob@hotmail Physics PHY

333 Carl carl@gmail CS DC

… … … … …

➢ Example Constraint: given an instructor i, i’s emails are independent of

the departments and buildings of these departments (but not unique).

➢ iID ↠ email

Let x* be a set of values for X

attributes (possibly > 1)

for any X values , R contains exactly:

{x*} X {𝚷Y(𝞂X=x*(R)} X {𝚷RST(𝞂X=x*(R)}

Cartesian Product

Multivalued Dependencies (MVDs): Generalized

Conditional Independence Constraints

InstDep

iID name email depName bldng

111 Alice alice@gmail CS DC

111 Alice alice@hotmail CS DC

111 Alice alice@uw.ca Physics PHY

222 Bob bob@hotmail Physics PHY

333 Carl carl@gmail CS DC

111 Alice alice@uw.ca CS DC

111 Alice alice@gmail Physics PHY

111 Alice alice@hotmail Physics PHY

➢ Example Constraint: given an instructor i, i’s emails are independent of

the departments and buildings of these departments (but not unique).

➢ iID ↠ email

Let x* be a set of values for X

attributes (possibly > 1)

for any X values , R contains exactly:

{x*} X {𝚷Y(𝞂X=x*(R)} X {𝚷RST(𝞂X=x*(R)}

Cartesian Product

Note: ∈ BCNF b/c InstDep has no non-trivial, non-key fds. Yet has repetition.

FDs are Specialized MVDs

➢ More formal way to see FDs are specialized MDs (i.e., other than the

informal definition that says MDs remove the uniqueness constraints)

Dfn (MVD): Let X, Y be sets of attributes. An MVD X ↠ Y holds in a relation

R, if given t1 and t2 ∈ R s.t. t1[X] = t2[X] and t1[Y] ≠ t2[Y], then ∃ t3, t4 s.t:

1. t1[X] = t2[X] = t3[X] = t4[X]

2. t3[Y] = t1[Y] and t3[RST] = t2[RST]

3. t4[Y] = t2[Y] and t4[RST] = t1[RST]

➢ Suppose X → Y holds, then by dfn if t1[X] = t2[X] then t1[Y] = t2[Y], so the

condition of MVD trivially holds.

➢ I.e. no non-trivial Cartesian product needs to be taken since {𝚷Y(𝞂X=x*(R)}

has size 1)

Closure of MVDs

here

➢ Given a set of mvds 𝐷, 𝐷′s closure 𝐷+ is the set of mvds logically implied

by 𝐷.

➢ Similar to Armstrong’s Axioms, there are a set of inference rules to

compute 𝐷+.

➢ More rules than Armstrong’s 3 axioms. See Appendix B.1.1 of the text

book’s 6th edition here (or C.1.1 of 7th edition).

https://www.db-book.com/db6/appendices-dir/b.pdf

4NF: Avoiding All Repetition Due to MVDs

Dfn (4NF): Given a set of mvds 𝐷 (which by dfn include all fds), a relation R

is in 4NF iff:

∀ X↠Y ∈ 𝐷+ s.t. XY ⊆ R, one of the following two conditions hold:

1. X ↠ Y is trivial (i.e., Y ⊆ X)

2. X is a super key of R (i.e., X → R)

4th Normal Form Decomposition Algorithm

➢ Simply replace FDs in the BCNF Decomposition Alg with MVDs

Very High-level
Input: R, D+

rels = { R }
1. find an mvd X ↠ Y violating 4NF on a relation Ri ∊ rels

s.t. XY ∈ attr(Ri) (attr(Ri) is the attributes/cols of Ri)
2. Split Ri into Ri1 = X ∪ (Ri – Y) and Ri2 = XY;
 result = result - Ri ∪ Ri1 ∪ Ri2
3. repeat 1-2 until no such mvd can be found.

4NF Decomposition Example

InstDep

iID name email depName bldng

111 Alice alice@gmail CS DC

111 Alice alice@hotmail CS DC

111 Alice alice@uw.ca Physics PHY

222 Bob bob@hotmail Physics PHY

333 Carl carl@gmail CS DC

111 Alice alice@uw.ca CS DC

111 Alice alice@gmail Physics PHY

111 Alice alice@hotmail Physics PHY

R1

iID name depName bldng

111 Alice CS DC

111 Alice Physics PHY

222 Bob Physics PHY

333 Carl CS DC

R2

iID email

111 alice@gmail

111 alice@hotmail

111 alice@uw.ca

222 bob@hotmail

333 carl@gmail

iID ↠ email

Venn Diagram of Normal Forms

62

BCNF

3NF

4NF

➢ Every relation in 4NF is in BCNF but not vice versa (see previous slide).

Enforcing FDs/MVDs in Practice

63

➢ Key constraints are specialized fds that RDBMSs can enforce

➢ But no direct support in RDBMSs for general FDs and MVDs.

➢ But can use table level CHECKs and triggers to enforce these

➢ There is also little support for specifying fds/mvds and decomposing

relations in practice.

➢ Users manually decompose relations if they observe repetition in design

➢ But TNF is very useful when thinking about application constraints and

their implications for redundancy

➢ Try to target relations in 4NF or BCNF in practice. Often many natural

designs are already in these forms.

Summary

64

➢ Theory of Normal Forms (TNF): Given a specification of the real-world

facts that an app will store, how can we formally separate “good” and

”bad” relational db schemas?

➢ Ultimate Goal: Remove redundancy/repetition in design by factoring out

”conditionally” independent parts.

➢ Redundancy depends on app constraints. Same exact relation can

sometimes be redundant or not depending on app constraints.

➢ FDs: Generalized Uniqueness Constraints

➢ BCNF: Using FDs and the schema of R, can formally state whether R

has redundant repetition due to uniqueness constraints.

➢ 3NF: Allows some redundancy to “localize” checking of fds to 1 relation

➢ 4NF: Most strict. Also does not allow repetition due to non-unique

conditional independence relationships.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

