CS 348 Lectures 10-11 Database Design Theory: Theory of Normal Forms Semih Salihoğlu Feb 6th-11th 2025

Lectures on Relational Algebra & SQL (1)

- Main SQL clauses for querying and data manipulation
 - Founded on relational algebra
- Constraints: Primary Keys, Foreign Keys, Not NULL, General Assertions and CHECKs
- Triggers

Achieve Integrity of Database

Views ***

Ease of Programming

- Primary ways to get different abstractions on data
- When materialized also a way to achieve performance
- Indexes ***
 - Fast access to some data

Lectures on Relational Algebra & SQL (2)

- Recursion: Can be considered a weak point for SQL
 - Not an elegant way to express recursive computations
 - E.g.: Try to express finding shortest paths in a graph
 - GraphDB query languages: better but minor additional support
 - Datalog: (I think) better declarative logic-based language for recursive programming
 - Some DBMSs implement it. Good for coffee/OH chat

```
Example Datalog Program
Parent(A, B) is an external relation w/ tuples (e.g., (Alice, Bob))
Ancestor(X, Y) :- parent(X, Y)
Ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y)
```

There are alg. (e.g., "semi-naïve datalog algorithm") that can find "fixed point" states of any set of Datalog rules

Lectures on Relational Algebra & SQL (3)

- SQL Programming Interfaces
 - SLQ programming is almost always through a programming language (PL) or framework.
 - Frameworks (e.g., Ruby on Rails) give basic functionality with no explicit SQL coding
 - For somewhat complex apps, need direct SQL through a PL

Lectures on Relational Algebra & SQL (4)

Primary Takeaway:

SQL is very high-level and a very different style of programming data

processing tasks than standard procedural PLs.

Little needs to be known algorithmically to perform tasks.

Next 2 Lectures: Relational Database Design Theory

Theory of Normal Forms (TNF): Given a set of constraints about the real-world facts that an app will store, how can we formally separate "good" and "bad" relational db schemas?

	InstDep					
ilD	name	salary	depName	bldng	budget	
111	Alice	5000	CS	DC	20000	
222	Bob	4000	Physics	РНҮ	30000	
333	Carl	5200	CS	DC	20000	
444	Diana	5500	CS	DC	20000	

Design 1

Design 2

Inst

salary

5000

4000

....

depName

CS

Physics

• • •

iID

111

222

...

name

Alice

Bob

...

Dep				
depName	bldng	budget		
CS	DC	20000		
Physics	РНҮ	30000		

If given a depName: (bldng, budget) is unique, i.e., determined,

Design 1, intuitively, is a bad design with redundancy.

> Goal of TNF: make the above intuition formal.

Following 2 Lectures: Entity/Relationship (ER) Model

- Often users do not directly design relational tables
- ER Model: An even higher-level data model
- Close to object-oriented programming
 - \succ In turn, it is close to modeling data as a graph
 - How complex dbs are modeled in practice
 - Analogous to programming frameworks

Following 2 Lectures: Entity/Relationship (ER) Model

Upshot: Does not guarantee good designs as in TNF.

Still need to ensure final relations adhere to the principles of TNF

Outline For Today

- 1. Application Constraints and Decompositions
- 2. Functional Dependencies
- 3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.
- 4. Dependency Preservation and 3rd Normal Form
- 5. Multi-valued Dependencies and 4th Normal Form

Outline For Today

- 1. Application Constraints and Decompositions
- 2. Functional Dependencies
- 3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.
- 4. Dependency Preservation and 3rd Normal Form
- 5. Multi-valued Dependencies and 4th Normal Form

Application Constraints

Consider a simple university DB:

> Independent of stored data: there will be external app. constraints. E.g.

- Each instructor has 1 name, salary, and department
- Each department has 1 building
- Each student can have 1 advisor from each department
- Instructor i's set of addresses are independent of the departments of i

High-level idea: A "good" DB makes such constraints explicit

Application Constraints

- Instructors: iIDs, names, salaries, departments (w/ unique iIDs)
- Departments: names, building, budget (w/ unique names) b/c iID is key

Constraint 1: Each instructor has 1 name, salary, and department

Constraint 2: Each department has 1 building and 1 associated budget

b/c depName is not key

Possible Design: 1 large table InstDep with one row for each instructor

InstDep						
iID	name	salary	depName	bldng	budget	
111	Alice	5000	CS	DC	20000	
222	Bob	4000	Physics	РНҮ	30000	
333	Carl	5200	CS	DC	20000	
444	Diana	5500	CS	DC	20000	

Problem: redundant data replication. (CS, DC, 20000) repeated k times if there are k instructors in CS.

Problems of Redundancy

InstDep						
iID	name	salary	depName	bldng	budget	
111	Alice	5000	CS	DC	20000	
222	Bob	4000	Physics	РНҮ	30000	
333	Carl	5200	CS	DC	20000	
444	Diana	5500	CS	DC	20000	

> Harder to keep db consistent when facts are stored multiple times. E.g.

- If CS's building changed to E4 => need to update 3 rows
- Suppose Bob is the only instructor in Physics and retires (a delete):
 - Deletion of Bob's tuple: Physics department, which might exist, is deleted unless extra work is done
- If new department (w/out yet an instructor) is added: new row w/ NULLs

Redundancy Is Determined By App. Constraints

Courses: cID, term, iID, capacity

Course						
cID	cID term iID capac					
CS348	F21	Semih	100			
CS341	F21	Lap Chi	80			
CS348	S21	Xi	100			
CS348	W20	Xi	100			
CS350	W19	Salem	130			

- > Unclear if this is redundant or not. Depends on external app constraint:
- If courses have 1 associated capacity (independent of term): Redundant
- > O.w repetition may be necessary and reflects similarity across entities.

Redundancy Is Determined By App. Constraints

Courses: cID, term, iID, capacity

Course						
cID	cID term iID capacity					
CS348	F21	Semih	100			
CS341	F21	Lap Chi	80			
CS348	S21	Xi	100			
CS348	W20	Xi	100			
CS350	W19	Salem	130			
CS348	W22	David	200			

- Unclear if this is redundant or not. Depends on external app constraint:
- If courses have 1 associated capacity (independent of term): Redundant
- O.w repetition may be necessary and reflects similarity across entities.
- Takeaway: Constraints are external to the db/app and need to be inputs in a db design theory.

Solution To Redundancy: Decompositions

Desiderata for Decompositions (1)

> D1 (Lossless): If R is decomposed into R1 and R2, then:

 $R = R1 \bowtie R2$

 \bowtie

Lossless-ness achieved by decomposing on an appropriate key

Inst					
iID	name	salary	depName		
111	Alice	5000	CS		
222	Bob	4000	Physics		
333	Carl	5200	CS		
444	Diana	5500	CS		

Dep				
depName	bldng	budget		
CS	DC	20000		
Physics	РНҮ	30000		

RESULT						
iID name salary depName bldng budget						
111	Alice	5000	CS	DC	20000	
222	Bob	4000	Physics	PHY	30000	
333	Carl	5200	CS	DC	20000	
444	Diana	5500	CS	DC	20000	

InstDep					
iID	name	salary	depName	bldng	budget
111	Alice	5000	CS	DC	20000
222	Bob	4000	Physics	PHY	30000
333	Carl	5200	CS	DC	20000
444	Diana	5500	CS	DC	20000

Example Lossy Decomposition

X

RESULT						
<u>ID</u>	name	salary	depName	bldng	budget	
111	Alice	5000	CS	DC	20000	
111	Bob	5200	CS	PHY	30000	
	•••					

Can't tell what's fact and what's not.

Desiderata for Decompositions (2)

- D2 (Locality of Constraints): If the app had a constraint C, we would prefer to check C in a single relation
- ➢ Will discuss more in 3rd Normal Form. Stay tuned.

Outline For Today

- 1. Application Constraints and Decompositions
- 2. Functional Dependencies
- 3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.
- 4. Dependency Preservation and 3rd Normal Form
- 5. Multi-valued Dependencies and 4th Normal Form

Functional Dependencies (FDs): Generalized Uniqueness Constraints

- ➤ Informally: Let X, Y be sets of attributes. A functional dependency X → Y holds if for each possible value of attributes X there is only 1 possible Y value, i.e. X "determines" Y uniquely (independent of other values in a tuple).
- Formally: Let t[A] be a tuple t's projection on attributes A
 Dfn: Let X, Y be sets of attributes. An fd X → Y holds in a relation R, if given
 t₁ and t₂ ∈ R s.t. t₁[X] = t₂[X], then t₁[Y] = t₂[Y] holds.

> Captures generalized uniqueness constraints (beyond keys):

InstDep							
iID	name	salary	depName	bldng	budget		
111	Alice	5000	CS	DC	20000		
222	Bob	4000	Physics	РНҮ	30000		
333	Carl	5200	CS	DC	20000		
444	Diana	5500	CS	DC	20000		

Constraint 1: Each iID has 1 name and salary

 \succ iID \rightarrow name, salary

Constraint 2: Each depName has 1 building & 1 associated budget

- \blacktriangleright depName \rightarrow bldng, budget
- Key constraints: Each iID, depName is unique in InstDep
 - \succ iID, depName \rightarrow name, salary, bldgn, budget

Some FD Vocabulary

- > We take FDs as given, i.e., cannot be inferred from a relation instance.
- > FDs limit legal instances of a relation $R(A_1, ..., A_m)$
- ➤ Given a set \mathcal{F} of fds on R, on all *legal instances of R*, each F ∈ \mathcal{F} hold.

InstDep										
ilD	name	salary	depName	bldng	budget					
111	Alice	5000	5000 CS		20000					
111	Alice	5000	Biology	BIO	50000					
222	Bob	4000	Physics	РНҮ	30000					
333	Carl	5200	CS	DC	20000					
444	Diana	5500	CS	DC	20000					

- > Suppose \mathcal{F} : (i) iID \rightarrow name, salary; (ii) depName \rightarrow bldng, budget
- > E.g: The above instance is a legal instance
- \succ E.g: iID \rightarrow name, salary holds on the above instance.
- > Won't need this vocabulary much in lecture. May see in assignments.

Implied FDs: Armstrong's Axioms

- > A set of fds can imply other fds via 3 intuitive rules: Armstrong's Axioms
- 1. Reflexivity: If $Y \subseteq X$, then $X \to Y$ (trivially)
 - \succ iID, name → iID
 - English: Each iID and name value takes a unique iID value
- 2. Augmentation: if $X \rightarrow Y$, then $XZ \rightarrow YZ$ (trivially)
 - ➢ If iID → salary then iID, bldng → salary, bldng
 - English: if each iID takes a unique salary value, then each (iID, bldng) value pair takes a unique (salary, bldng) value

InstDep										
<u>iID</u>	name	salary	depName	bldng	budget					
111	Alice	5000	CS	DC	20000					
222	Bob	4000	Physics	РНҮ	30000					
333	Carl	5200	CS	DC	20000					
	•••									

Implied FDs: Armstrong's Axioms

- 3. Transitivity: if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
 - Suppose each instructor can be in a single department and each dep has a single budget
 - ▶ FD1: iID \rightarrow depName FD2: depName \rightarrow budget, then

 $iID \rightarrow budget$

English: If each iID value takes a unique depName value, which in turn takes a unique budget value, then each iID value takes a unique budget value.

InstDep									
<u>iID</u>	name	salary	depName	bldng	budget				
111	Alice	5000	CS	DC	20000				
222	Bob	4000	Physics	РНҮ	30000				
333	Carl	5200	CS	DC	20000				
	•••	•••							

Other Rules Implied by Armstrong's Axioms

- 1. Decomposition: If $X \to YZ$, then $X \to Y$ and $X \to Z$ Proof:
 - i. $X \rightarrow YZ$
 - ii. $YZ \rightarrow Y$ (by reflexivity)
 - iii. $X \rightarrow Y$ (by transitivity)
- 2. Union: If $X \to Y$ and $X \to Z$ then $X \to YZ$ (Prove as exercise)
- 3. Pseudo-transitivity: If $X \rightarrow Y$ and $YZ \rightarrow T$ then $XZ \rightarrow T$ (Prove as exercise)

\mathcal{F}^+ : Closure of \mathcal{F}

Dfn: Let ${\mathcal F}$ be a set of fds. The closure ${\mathcal F}^+$ of ${\mathcal F}$ is the set of all fds implied

by ${\mathcal F}.$

- > Ex: \mathcal{F} : iID→name, depName & depName→bldng
- $\succ \mathcal{F}^+$: $\mathcal{F} \cup iID \rightarrow iID$; iID, $email \rightarrow name$, email (trivial ones) ... \cup

iID→bldng (transitivity) etc..

	InstDep							
iID	name	email	depName	bldng				
111	Alice	alice@gmail	CS	DC				
111	Alice	alice@hotmail	CS	DC				
222	Bob	bob@gmail	Physics	РНҮ				
222	Bob	bob@hotmail	Physics	PHY				
333	Carl	carl@gmail	CS	DC				
	•••							

Exercise Showing an FD is in \mathcal{F}^+

Consider an Inst_Proj relation of instructors and their research projects

InstProj									
iID	name	projID	projName	projDep	hours	funds			

- > (i) iID → name; (ii) projID → projName, projDep;
 (iii) iID = namilD = herman (iv) namiDam herma
 - (iii) iID, projID \rightarrow hours; (iv) projDep, hours \rightarrow funds;
- > Prove iID, projID \rightarrow funds
- 1. iID, projID \rightarrow hours (by fd iii)
- 2. $projID \rightarrow projName$, projDep (by fd ii)
- 3. iID, projID \rightarrow hours, projName, projDep (by pseudo-transitivity of 1 & 2)
- 4. iID, projID \rightarrow funds (by transitivity of 3, and fd iv) (+ decomposition)

 $F^+ = F$ **repeat for each** functional dependency f in F^+ apply reflexivity and augmentation rules on fadd the resulting functional dependencies to F^+ **for each** pair of functional dependencies f_1 and f_2 in F^+ **if** f_1 and f_2 can be combined using transitivity add the resulting functional dependency to F^+ **until** F^+ does not change any further

Figure 8.7 A procedure to compute F^+ .

Outline For Today

- 1. Application Constraints and Decompositions
- 2. Functional Dependencies
- 3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.
- 4. Dependency Preservation and 3rd Normal Form
- 5. Multi-valued Dependencies and 4th Normal Form

Boyce-Codd Normal Form (BCNF)

Dfn (BCNF): Given a set of fds \mathcal{F} , a relation R is in BCNF iff:

 $\forall X \rightarrow Y \in \mathcal{F}^+$ s.t. $XY \subseteq R$, one of the following two conditions hold:

- 1. $X \rightarrow Y$ is trivial (i.e., $Y \subseteq X$)
- 2. X is a super key of R (i.e., $X \rightarrow R$)
- Q: Why does $X \rightarrow R$ imply X is super key?

Example Relations in BCNF and not in BCNF (1)

- \succ Note we only need to look at the schema of R and \mathcal{F}^+
- > As before suppose \mathcal{F} : (i) iID \rightarrow name,salary; (ii) depName \rightarrow bldng,budget

InstDep							
iID	name	salary	depName	bldng	budget		

- Q: Is InstDep in BCNF?
- A: No b/c iID is not key. Can check by computing $\mathcal{F}^+ = \mathcal{F} \cup all trivial fds. B/c$
- can't apply transitivity to the fds in $\mathcal F$ to generate more non-trivial fds.

Example Relations in BCNF and not in BCNF (2)

→ As before suppose \mathcal{F} : (i) iID→name,salary; (ii) depName→bldng,budget

R1							
iID	name	salary	depName				

Q: Is R1 in BCNF?

A: Yes

A: No b/c iID is still not key.

	R2	
depName	bldng	budget

Q: Is R2 in BCNF?

A: Yes b/c depName is key.

R3			R4		
iID	name	salary	ilD	depName	depName

R2 epName bldng budget

Q: Is R3 in BCNF? Q: Is R4 in BCNF?

A: Yes b/c no non-trivial FDs

Greedy BCNF Decomposition Algorithm (1)

- Very High-level
- Input: R, \mathcal{F}^+
- rels = { R }
- 1. find an fd X \rightarrow Y violating BCNF on a relation $R_{\rm i}$ \in rels
- 2. Split R_i into $R_{i1} = X \cup (R_i Y)$ and $R_{i2} = X \cup Y$; rels = (rels - R_i) $\cup R_{i1} \cup R_{i2}$
- 3. repeat 1-2 until no such fd can be found.
- Several properties of the alg (won't formally prove):
- 1. Always returns a set of relations $R_1, ..., R_k$ s.t. R_j is in BCNF and this is a lossless decomposition of R, i.e., $R_1 \bowtie ... R_j = R$. (Why? Stay tuned.)
- The output is *not* unique. (Exercise: show a simple example with a relation and two fds to demonstrate this)

Greedy BCNF Decomposition Algorithm (2)

- \succ \mathcal{F} : (i) iID \rightarrow name,salary; (ii) depName \rightarrow bldng,budget
- \succ \mathcal{F}^+ = \mathcal{F} ∪ all trivial fds.

Why Do We Consider \mathcal{F}^+ instead of \mathcal{F} ?

- > After a split some non-trivial direct or implied fds from \mathcal{F} (through transitivity) could remain and cause redundancy
- \succ Ex: \mathcal{F} : (i) iID \rightarrow depName; (ii) depName \rightarrow bldng

Why is BCNF A Lossless Decomposition? (1)

Very High-level

- Input: R, \mathcal{F}^+
- rels = { R }
- 1. find an fd $X \rightarrow Y$ violating BCNF on a relation $R_i \in rels$ s.t. $XY \in attr(R_i)$ (attr(R_i) is the <u>attributes</u>/cols of R_i)
- 2. Split R_i into $R_{i1} = X \cup (R_i Y)$ and $R_{i2} = XY$; result = (result - R_i) $\cup R_{i1} \cup R_{i2}$
- 3. repeat 1-2 until no such fd can be found.
- ➢ By construction of the algorithm, X, which are the join attributes or R_{i1} and R_{i2}, i.e., R_{i1} ∩ R_{i2}, is a key in one of the split relations.
- \succ Since it's a key, the join is 1-1:
 - \succ i.e., each tuple t in R_{i1} will join with 1 tuple t' in R_{i2}.

Why is BCNF A Lossless Decomposition? (2)

			_								
						-	InstDep	-			
		iID	name	salary	depName	bldng	budg	get			
				111	Alice	5000	CS	DC	2000	00	
				222	Bob	4000	Physics	PHY	3000	00	
				333	Carl	5200	CS	DC	2000	00	
				444	Diana	5500	CS	DC	2000	00	
				555	Ed	2500	Physics	DC	2000	00	
					<u>use: a</u>	lepinam	ne→blang,b	pudget		→	
			R1							R2	
	ilD	name	salary	dep	Name			depN	ame	bldng	budget
	111	Alice	5000		CS			C	S	DC	20000
	222	Bob	4000	Ph	ysics			Phys	sics	PHY	30000
	333	Carl	5200		CS						
	444	Diana	5500		CS						
	555	Ed	2500	Ph	ysics						

Since CS is key in R2, each R1 tuple can join with only 1 R2 tuple.

Why is BCNF Decomp Alg. *Not* "Depend. Preserving"?

- > Decomposing on non-trivial fd_1 can "break" a non-trivial fd_2
- > Ex: fd_1 : iID \rightarrow depName: an instructor belongs to 1 dep

fd₂: sID, depName \rightarrow iID: a student has 1 advisor from each dep.

 \succ Can no longer check fd₂ in a single relation. Need to join R1 and R2.

Outline For Today

- 1. Application Constraints and Decompositions
- 2. Functional Dependencies
- 3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.
- 4. Dependency Preservation and 3rd Normal Form
- 5. Multi-valued Dependencies and 4th Normal Form

Dfn (Restriction): Let \mathcal{F} be a set of fds. The restriction of \mathcal{F} to a relation R_i is the set of fds in \mathcal{F}^+ that contain all its attributes in R_i . Dfn (Dependency Preservation): Let \mathcal{F} be a set of fds on a relation R. Let $D=\{R_1, ..., R_k\}$ be a decomposition of R with F_1 ', ..., F_k ' as the restrictions of \mathcal{F} onto R_i for i=1,...,k. Let $\mathcal{F}'=F_1$ ' $\cup ... \cup F_k$ '. D is dependency preserving iff $\mathcal{F}^+ = \mathcal{F}'^+$.

➢ Note some fds ∈ F⁺ may not be "localized" in a single relation in D but every fd ∈ F⁺ must be implied by a set of fds that are localized to a single relation.

Dependency Preservation (2)

 \succ $\mathcal{F} = \mathrm{fd}_1$: iID \rightarrow depName: an instructor belongs to 1 dep

 fd_2 : sID \rightarrow iID: a student has 1 advisor.

▶ Note \mathcal{F}^+ contains sID → depName.

- > Cannot check sID \rightarrow depName in a single relation but that's OK.
- > We can still check it without any joins:
 - \succ fd₁: iID \rightarrow depName can be checked in R2
 - Fd₂: sID → iID can be checked in R1
 - \succ fd₁ and fd₂ imply sID \rightarrow depName

3rd Normal Form (3NF): Relaxation of BCNF To Allow Some "Reasonable" Redundancy

- Dfn: Given a set of fds \mathcal{F} , a relation R is in 3NF iff:
- $\forall X \rightarrow Y \in \mathcal{F}^+$ s.t. $XY \subseteq R$, one of the following three conditions hold:
- 1. $X \rightarrow Y$ is trivial (i.e., $Y \subseteq X$)
- 2. X is a super key of R (i.e., $X \rightarrow R$)
- 3. Each attribute in Y X is part of a candidate key
- Recall candidate key K: a set of "minimal" attributes K that form a key for R, i.e., no proper subset of K is a key for R.

3NF Example

Recall non-BCNF example:

 fd_1 : iID \rightarrow depName: an instructor belongs to 1 dep

fd₂: sID, depName \rightarrow iID: a student has 1 advisor from each dep.

DeptAdvisor							
sID	iID	depName					
s1	111	CS					
s1	555	Physics					
s2	111	CS					

 \succ ∉ BCNF but ∈ 3NF b/c iID → depName is a non-trivial, non-key fd but:

- > sID,depName -> iID is a key. Moreover a *candidate key.*
- > B/c: depName nor sID alone is a key (check \mathcal{F}^+)

Key point: 3NF relations can have redundant repetition (e.g., due to iID \rightarrow depName) that BCNF does not.

But this repetition allows us to verify every fd without any joins.

Intuition Behind 3rd Rule in 3NF (1)

- > BCNF requires that in the final relations fds are either *trivial* or *keys*.
- > Trivial fds can't lead to repetition. Neither can keys by definition.
- ➢ If an fd is non-trivial and non-key, a relation R needs to be decomposed
- > Problem: Not every relation R and \mathcal{F}^+ has a dependency preserving decomposition into BCNF. i.e., a decomposition using fd₁ can "break" the attributes of another non-trivial fd₂ into 2 relations so a join is required.

> 3NF's 3rd condition allows non-trivial, non key fds $X \rightarrow Y$ if each attribute

 $A_i \in Y-X$ is part of a candidate key.

> E.g., depName is part of a cand. key, so we don't need to decompose.

Intuition Behind 3rd Rule in 3NF (2)

Question: Why does the 3rd condition guarantee every relation has a dependency preserving decomposition?

3rd cond: fd*: $X \rightarrow Y$ is OK if each $A_i \in Y - X$ is part of a candidate key.

High-level Intuition: Y - X are the "repeated" values due to fd*.

Let $A_i \in Y - X$. If A_i is part of a candidate key in the relation R, then:

 \exists an fd_{ck}: Z, A_i \rightarrow R. So if we decompose according to fd*:

R will split, so we need a join to check fd_{ck}.

The 3rd rule allows us to not split in these cases.

Note: This is not a proof.

A simpler proof for Question: study a 3NF decomposition alg. (next slide) and observe that it is dependency preserving by construction and is guaranteed to output relations in 3NF.

3NF and BCNF Venn Diagram

 \succ Every relation in BCNF is in 3NF but not vice versa.

3NF Bottom-Up Decomp. Alg (1): Minimal/Canonical Covers

- \blacktriangleright A set of FDs \mathcal{F} is minimal if:
 - 1. Every right-hand side of a FD in \mathcal{F} is a single attribute
 - 2. For no $X \rightarrow A$ is the set $\mathcal{F} \{X \rightarrow A\}$ equivalent to \mathcal{F} , i.e., Let $\mathcal{F}' = \mathcal{F} - \{X \rightarrow A\}$, then $\mathcal{F}'^+ = \mathcal{F}^+$.
 - 3. For no $X \rightarrow B$ and Z a proper subset of X is the set $(\mathcal{F} - \{X \rightarrow B\}) \cup \{Z \rightarrow B\}$ equivalent to \mathcal{F}
- Ex: R(A, B, C, D, E, F, G)

Fails Condition 2: e.g., fd_2 and fd_4 imply fd_3

Fails Condition 3: difficult to directly see, but you can try that having instead $fd_5: D \rightarrow G$ has the same closure, i.e., is the same set of fds.

3NF Bottom-Up Decomp. Alg (2)

let F_c be a canonical cover for F; i := 0;**for each** functional dependency $\alpha \rightarrow \beta$ in F_c i := i + 1: $R_i := \alpha \beta;$ if none of the schemas R_j , j = 1, 2, ..., i contains a candidate key for Rthen i := i + 1; $R_i :=$ any candidate key for R_i ; /* Optionally, remove redundant relations */ repeat if any schema R_i is contained in another schema R_k then /* Delete R_i */ $R_i := R_i;$ i := i - 1: **until** no more R_i s can be deleted **return** $(R_1, R_2, ..., R_i)$

Figure 8.12 Dependency-preserving, lossless decomposition into 3NF.

Outline For Today

- 1. Application Constraints and Decompositions
- 2. Functional Dependencies
- 3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.
- 4. Dependency Preservation and 3rd Normal Form
- 5. Multi-valued Dependencies and 4th Normal Form

Restatement of FDs: Conditional Independence Among Attribute Sets (1)

- ➢ Recall the informal dfn of FDs: Let X, Y be sets of attributes. A functional dependency X → Y holds if for each possible value of attributes X there is only 1 possible value Y value. I.e. X "determines" Y uniquely (independent of other values in a tuple).
- ➢ Equivalently: Let "RST= R- (X ∪ Y). X → Y means given a set of X values (x₁, ..., x_k):
 - 1. Y values of tuples w/ $(x_1, ..., x_k)$: are independent of values in RST.
 - 2. And there is only 1 set of Y values.

Restatement of FDs: Conditional Independence Among Attribute Sets (2)

≻ Let "RST= R- (X ∪ Y). X → Y means given a set of X values ($x_1, ..., x_k$):

- 1. Y values of tuples w/ $(x_1, ..., x_k)$: are independent of values in RST.
- 2. And there is only 1 set of Y values.

InstDep									
iID	name	salary	depName	bldng	budget				
111	Alice	5000	CS	DC	20000				
222	Bob	4000	Physics	РНҮ	30000				
333	Carl	5200	CS	DC	20000				
444	Diana	5500	CS	DC	20000				

- \blacktriangleright Ex: depName \rightarrow bldng, budget
 - ➢ RST: iID, name, salary

MVDs remove uniqueness constraint: given X, Y is independent of RST.
Dfn (MVD): Let X, Y be sets of attributes. An MVD X ->> Y holds in R,

if given t_1 and $t_2 \in R$ s.t. $t_1[X] = t_2[X]$ and $t_1[Y] \neq t_2[Y]$,

then $\exists t_{3,} t_4$ s.t:

1.
$$t_1[X] = t_2[X] = t_3[X] = t_4[X]$$

2. $t_3[Y] = t_1[Y]$ and $t_3[RST] = t_2[RST]$

3. $t_4[Y] = t_2[Y]$ and $t_4[RST] = t_1[RST]$

	Х	Υ	RST	
t1	x*	y ₁	rst ₁	
t ₂	x*	y ₂	rst ₂	

MVDs remove uniqueness constraint: given X, Y is independent of RST. Dfn (MVD): Let X, Y be sets of attributes. An MVD X ->>> Y holds in R,

if given t_1 and $t_2 \in R$ s.t. $t_1[X] = t_2[X]$ and $t_1[Y] \neq t_2[Y]$,

then $\exists t_{3,} t_4$ s.t:

1. $t_1[X] = t_2[X] = t_3[X] = t_4[X]$

2. $t_3[Y] = t_1[Y]$ and $t_3[RST] = t_2[RST]$

3. $t_4[Y] = t_2[Y]$ and $t_4[RST] = t_1[RST]$

	Х	Υ	RST
t ₁	x*	y ₁	rst ₁
t ₂	x*	У ₂	rst ₂
t ₃	x*	y ₁	rst ₂
t ₄	x*	y ₂	rst ₁

- Example Constraint: given an instructor i, i's emails are independent of the departments and buildings of these departments (but not unique).
 - ➢ iID → email

InstDep				
iID	name	email depName		bldng
111	Alice	alice@gmail	CS	DC
111	Alice	alice@hotmail	CS	DC
111	Alice	alice@uw.ca	Physics	PHY
222	Bob	bob@hotmail	Physics	PHY
333	Carl	carl@gmail	CS	DC
	•••			

Let x* be a set of values for X

attributes (possibly > 1)

for any X values , R contains exactly:

 $\{x^*\} X \{\Pi_Y(\sigma_{X=x^*}(\mathsf{R})\} X \{\Pi_{\mathsf{RST}}(\sigma_{X=x^*}(\mathsf{R})\}$

Cartesian Product

- > Example Constraint: given an instructor i, i's emails are independent of the departments and buildings of these departments (but not unique).
 - ➢ iID → email

	InstDep				
ilD	name	email	depName	bldng	Let x* he a set of values for X
111	Alice	alice@gmail	CS	DC	
111	Alice	alice@hotmail	CS	DC	attributes (possibly > 1)
111	Alice	alice@uw.ca	Physics	PHY	for any X values R contains exactly.
222	Bob	bob@hotmail	Physics	PHY	
333	Carl	carl@gmail	CS	DC	$ \{\mathbf{X}^*\} \times \{\mathbf{\Pi}_{Y}(\boldsymbol{\sigma}_{X=X^*}(R)\} \times \{\mathbf{\Pi}_{RST}(\boldsymbol{\sigma}_{X=X^*}(R)\} $
111	Alice	alice@uw.ca	CS	DC	
111	Alice	alice@gmail	Physics	РНҮ	
111	Alice	alice@hotmail	Physics	PHY	Cartesian Product

Note: *E BCNF b/c InstDep has no non-trivial, non-key fds. Yet has repetition.*

- More formal way to see FDs are specialized MDs (i.e., other than the informal definition that says MDs remove the uniqueness constraints)
- Dfn (MVD): Let X, Y be sets of attributes. An MVD X \rightarrow Y holds in a relation
 - R, if given t_1 and $t_2 \in R$ s.t. $t_1[X] = t_2[X]$ and $t_1[Y] \neq t_2[Y]$, then $\exists t_{3,} t_4$ s.t:

1.
$$t_1[X] = t_2[X] = t_3[X] = t_4[X]$$

2.
$$t_3[Y] = t_1[Y]$$
 and $t_3[RST] = t_2[RST]$

3.
$$t_4[Y] = t_2[Y]$$
 and $t_4[RST] = t_1[RST]$

- Suppose X → Y holds, then by dfn if t₁[X] = t₂[X] then t₁[Y] = t₂[Y], so the condition of MVD trivially holds.
- I.e. no non-trivial Cartesian product needs to be taken since {Π_Y(σ_{X=x*}(R)} has size 1)

Closure of MVDs

- Given a set of mvds D, D's closure D⁺ is the set of mvds logically implied by D.
- > Similar to Armstrong's Axioms, there are a set of inference rules to compute D^+ .
- More rules than Armstrong's 3 axioms. See Appendix B.1.1 of the text book's 6th edition <u>here</u> (or C.1.1 of 7th edition).

4NF: Avoiding All Repetition Due to MVDs

Dfn (4NF): Given a set of mvds *D* (which by dfn include all fds), a relation R is in 4NF iff:

 $\forall X \rightarrow Y \in D^+$ s.t. $XY \subseteq R$, one of the following two conditions hold:

- 1. $X \twoheadrightarrow Y$ is trivial (i.e., $Y \subseteq X$)
- 2. X is a super key of R (i.e., $X \rightarrow R$)

4th Normal Form Decomposition Algorithm

- Simply replace FDs in the BCNF Decomposition Alg with MVDs
- Very High-level
- Input: R, D⁺
- rels = $\{R\}$
- 1. find an mvd X \rightarrow Y violating 4NF on a relation $R_i \in rels$ s.t. XY $\in attr(R_i)$ (attr(R_i) is the attributes/cols of R_i)
- 2. Split R_i into $R_{i1} = X \cup (R_i Y)$ and $R_{i2} = XY$; result = result - $R_i \cup R_{i1} \cup R_{i2}$
- 3. repeat 1-2 until no such mvd can be found.

4NF Decomposition Example

	InstDep					
iID	name	email	depName	bldng		
111	Alice	alice@gmail	CS	DC		
111	Alice	alice@hotmail	CS	DC		
111	Alice	alice@uw.ca	Physics	РНҮ		
222	Bob	bob@hotmail	Physics	РНҮ		
333	Carl	carl@gmail	CS	DC		
111	Alice	alice@uw.ca	CS	DC		
111	Alice	alice@gmail	Physics	PHY		
111	Alice	alice@hotmail	Physics	PHY		

iID → email

		R1	
iID	name	depName	bldng
111	Alice	CS	DC
111	Alice	Physics	РНҮ
222	Bob	Physics	РНҮ
333	Carl	CS	DC

R2					
ilD	email				
111	alice@gmail				
111	alice@hotmail				
111	alice@uw.ca				
222	bob@hotmail				
333	carl@gmail				

Venn Diagram of Normal Forms

> Every relation in 4NF is in BCNF but not vice versa (see previous slide).

Enforcing FDs/MVDs in Practice

- Key constraints are specialized fds that RDBMSs can enforce
- But no direct support in RDBMSs for general FDs and MVDs.
- But can use table level CHECKs and triggers to enforce these
- There is also little support for specifying fds/mvds and decomposing relations in practice.
- Users manually decompose relations if they observe repetition in design
- But TNF is very useful when thinking about application constraints and their implications for redundancy
- Try to target relations in 4NF or BCNF in practice. Often many natural designs are already in these forms.

Summary

- Theory of Normal Forms (TNF): Given a specification of the real-world facts that an app will store, how can we formally separate "good" and "bad" relational db schemas?
- Ultimate Goal: Remove redundancy/repetition in design by factoring out "conditionally" independent parts.
- Redundancy depends on app constraints. Same exact relation can sometimes be redundant or not depending on app constraints.
- FDs: Generalized Uniqueness Constraints
- BCNF: Using FDs and the schema of R, can formally state whether R has redundant repetition due to uniqueness constraints.
- > 3NF: Allows some redundancy to "localize" checking of fds to 1 relation
- ANF: Most strict. Also does not allow repetition due to non-unique conditional independence relationships.