
CS 348 Lectures 12-13

Entity-Relationship Model for

Relational Database Design

Semih Salihoğlu

Feb 12-24 2025

1

Motivating Example

2

It has these requirements …
Zero or more sections of a course are offered each
term. Courses have names and numbers. In each
term, the sections of each course are numbered
starting with 1.
Most course sections are taught on-site, but a few
are taught at off-site locations.
Students have student numbers and names. Each
course section is taught by a professor. A professor
may teach more than one section in a term, but if a
professor teaches more than one section in a term,
they are always sections of the same course. Some
professors do not teach every term.
Up to 50 students may be registered for a course
section. Sections with 5 or fewer students are
cancelled.
A student receives a mark for each course in which
they are enrolled. Each student has a cumulative
grade point average (GPA) which is calculated from
all course marks the student has received.

I know how to use
SQL now!

What tables do you
want me to create?

What are the primary
keys, constraints,

queries, …..?

I want to have a registrar’s
database. Can you help?

We still need to learn about
database design ☺

Database Design

Step 1: Understand the real-world domain being modeled

→Specify it using a database design model
• E.g., Entity/Relationship (E/R) model, Object Definition Language

(ODL), UML (Unified Modeling Language)

Step 2: Translate specification to the data model of DBMS
• Relational, XML, object-oriented, etc.

→ Create DBMS schema

3

Conceptual
Design

Conceptual
Schema

(E/R model)

Logical
Design

Logical
Schema

(Relational
model)

Database Design

• Entity-Relationship (E/R) model

• Translating E/R to relational schema

4

Database Design

• Entity-Relationship (E/R) model

• Translating E/R to relational schema

5

Entity-relationship (E/R) model

• Historically and still very popular

• Primarily a design model—not directly
implemented by DBMS

• Designs represented by E/R diagrams
• We use the style of E/R diagram covered by the textbook

book; there are other styles/extensions

• Very similar to UML diagrams

6

E/R basics

• Entity: a “thing,” like an object

• Entity set: a collection of things of the same type,
like a relation of tuples or a class of objects
• Represented as a rectangle

• Relationship: an association among entities

• Relationship set: a set of relationships of the same
type (among same entity sets)
• Represented as a diamond

• Attributes: properties of entities or relationships,
like attributes of tuples or objects
• Represented as ovals

7

An example E/R diagram

• Users are members of groups

• A key of an entity set is represented by underlining
all attributes in the key
• A key is a set of attributes whose values can belong to at

most one entity in an entity set—like a key of a relation

8

Users Groups

gid

name

IsMemberOf

uid

name

Attributes of relationships

• Example: a user belongs to a group since a
particular date

• Where do the dates go?
• With Users?

• But a user can join multiple groups on different dates

• With Groups?
• But different users can join the same group on different dates

• With IsMemberOf!

9

Users Groups

gid

name

IsMemberOf

uid

name

fromDate

More on relationships

• There could be multiple relationship sets between
the same entity sets
• Example: Users IsMemberOf Groups; Users Likes Groups

• In a relationship set, each relationship is uniquely
identified by the entities it connects
• Example: Between Bart and “Dead Putting Society”,

there can be at most one IsMemberOf relationship and at
most one Likes relationship

10

Users Groups

gid

name

IsMemberOf

uid

name

Likes

More on relationships

• There could be multiple relationship sets between
the same entity sets
• Example: Users IsMemberOf Groups; Users Likes Groups

• In a relationship set, each relationship is uniquely
identified by the entities it connects
• Example: Between Bart and “Dead Putting Society”,

there can be at most one IsMemberOf relationship and at
most one Likes relationship

What if Bart joins DPS, leaves, and rejoins? How can we
modify the design to capture historical membership
information?
Make an entity set of MembershipRecords

11

Multiplicity of relationships

• 𝐸 and 𝐹: entity sets

• Many-many: Each entity in 𝐸 is related to 0 or more
entities in 𝐹 and vice versa

• Example:

• Many-one: Each entity in 𝐸 is related to 0 or 1 entity in
𝐹, but each entity in 𝐹 is related to 0 or more in 𝐸

• Example:

• One-one: Each entity in 𝐸 is related to 0 or 1 entity in 𝐹
and vice versa

• Example:

• “One” (0 or 1) is represented by an arrow
12

Users GroupsIsMemberOf

Groups UsersIsOwnedBy

Users TwitterUsersIsLinkedTo

𝐸 𝐹

𝐸 𝐹

𝐸 𝐹

General cardinality constraints

• General cardinality constraints determine lower and
upper bounds on the number of relationships of a
given relationship set in which a component entity
may participate

• Example:

13

Roles in relationships

• An entity set may participate more than once in a
relationship set

May need to label edges to distinguish roles

• Examples
• Users may be parents of others; label needed

• Users may be friends of each other; label not needed

14

Users IsParentOf

parent

child

IsFriendOf

Next: two special relationships

15
http://blogs.library.duke.edu/renovation/files/2012/08/Rubenstein-Library-First-Floor-Floorplan.jpg
http://www.sharky-jones.com/Sharkyjones/Artwork/taxonomy%20artwork/Class1.jpg

… is part of/belongs to …

… is a kind of …

Weak entity sets

• If entity E is existence dependent on entity F, then
• F is a dominant entity

• E is a subordinate entity

• Example: Rooms inside Buildings are partly identified by
Buildings’ name

• Weak entity set: containing subordinate entities
• Drawn as a double rectangle

• The relationship sets are called supporting
relationship sets, drawn as double diamonds

• A weak entity set must have a many-to-one or
one-to-one relationship to a distinct entity set

• Strong entity set: containing no subordinate entities
16

Rooms

Buildings

InImplies
(1,1)

Weak entity set examples

• Seats in rooms in building

• Attributes of weak entity sets only form key relative to a
given dominant entity → discriminator (dotted underline)

• Primary key of a weak entity set: discriminator + primary key
of entity set for dominant entities

17

Rooms In Buildings

name

year

Rnumber

capacity

In

Seats

Snumber

L/R?

Discriminator of a weak entity set: set of
attributes that distinguish subordinate entities
of the set, for a particular dominant entity

Key: (Rnumber,
building.name)

Key: ?

ISA relationships

• Similar to the idea of subclasses in object-oriented
programming: subclass = special case, fewer
entities, and possibly more properties
• Represented as a triangle (direction is important)

• Example: paid users are users, but they also get
avatars (yay!)

18

Users Groups

gid

name

IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Automatically “inherits” key, attributes,
relationships

More on ISA relationships

• Two constraints:
1. Overlapping vs Disjoint:

• Overlapping: An entity may belong to multiple subclass

• Disjoint: An entity can belong to at most 1 subclass

2. Partial vs Total:
• Partial: An entity of a superclass does not have to belong to any

subclass (can only belong to a superclass)

• Total: An entity of a superclass has to belong to a subclass.

More on ISA relationships

• Ex: Student must be either undergrad or grad

Student

ISA

Undergrad Grad

Disjoint + Total

• Ex: If students can be both undergrad + grad, then
Overlaps + Total
• (e.g., Waterloo CS’s accelerated MMath CS degree)

More on ISA relationships

• Ex: Some users can be either Silver or Gold (but not
both) but they can also just be “regular” users.

Users

ISA

SilverUsers GoldUsers

Disjoint + Partial

• By default: Disjoint + Partial.

• But good practice to explicitly state as in the above
examples.

Other extensions to E/R models

• Generalization: several entity sets can be abstracted by a
more general entity set
• Example: “ a vehicle abstracts the notion of a car and a truck”

22

Other extensions to E/R models

• Specialized entity sets are usually disjoint but can be
declared to have entities in common

• By default, specialized entity sets are disjoint.
• Example: We may decide that nothing is both a car and a truck.

• However, we can declare them to overlap (to accommodate utility
vehicles, perhaps).

23

OVERLAPS

Other extensions to E/R models

• Structured attributes:
• Composite attributes: composed of fixed number of

other attributes
• E.g. Address

• Multi-valued attributes: attributes that are set-valued
• e.g. Hobbies (double edges)

24

Other extensions to E/R models

• Aggregation: relationships can be viewed as high-
level entities

• Example: “accounts are assigned to a given student
enrollment”

25

Summary of E/R concepts

• Entity sets
• Keys
• Weak entity sets

• Relationship sets
• Attributes of relationships
• Multiplicity
• Roles
• Supporting relationships (related to weak entity)
• ISA relationships

• Other extensions:
• Generalization
• Structured attributes
• Aggregation

26

Designing an E/R schema

• Usually many ways to design an E-R schema

• Points to consider
• use attribute or entity set?

• use entity set or relationship set?

• degrees of relationships?

• extended features?

27

Attributes or Entity Sets?

• Example: How to model employees’ phones?

• Rules of thumb:
• Is it a separate object?

• Do we maintain information about it?

• Can several of its kind belong to a single entity?

• Does it make sense to delete such an object?

• Can it be missing from some of the entity set’s entities?

• Can it be shared by different entities?

→ An affirmative answer to any of the above suggests a new entity set.
28

Employees
PhoneNumber

Employees Phonesowns

Entity Sets or Relationships?

• Instead of representing accounts as entities, we
could represent them as relationships

29

relationships

Binary vs. N-ary Relationships?

30

3-ary
relationships

Binary vs. N-ary Relationships (cont’d)

• We can always represent a relationship on n entity
sets with n binary relationships

31

A simple methodology

1. Recognize entity sets

2. Recognize relationship sets and participating entity sets

3. Recognize attributes of entity and relationship sets

4. Define relationship types and existence dependencies

5. Define general cardinality constraints, keys and
discriminators

6. Draw diagram

• For each step, maintain a log of assumptions
motivating the choices, and of restrictions imposed
by the choices

32

Case study 1

33

Design a database representing cities, counties, and states
• For states, record name and capital (city)
• For counties, record name, area, and location (state)
• For cities, record name, population, and location (county and

state)

Assume the following:
• Names of states are unique
• Names of counties are only unique within a state
• Names of cities are only unique within a county
• A city is always located in a single county
• A county is always located in a single state

What are the entity sets, relationship sets, and their
attributes? What are the types of relationships and

cardinality constraints, keys, discriminators?

Case study 1

34

Design a database representing cities, counties, and states
• For states, record name and capital (city)
• For counties, record name, area, and location (state)
• For cities, record name, population, and location (county and

state)

Assume the following:
• Names of states are unique
• Names of counties are only unique within a state
• Names of cities are only unique within a county
• A city is always located in a single county
• A county is always located in a single state

What are my entity
sets? (slide 26)

Cities

Counties States

Case study 1

35

Design a database representing cities, counties, and states
• For states, record name and capital (city)
• For counties, record name, area, and location (state)
• For cities, record name, population, and location (county and

state)

Assume the following:
• Names of states are unique
• Names of counties are only unique within a state
• Names of cities are only unique within a county
• A city is always located in a single county
• A county is always located in a single state

What are my
relationship sets?

Cities

Counties

In

In States

Case study 1

36

Design a database representing cities, counties, and states
• For states, record name and capital (city)
• For counties, record name, area, and location (state)
• For cities, record name, population, and location (county and

state)

Assume the following:
• Names of states are unique
• Names of counties are only unique within a state
• Names of cities are only unique within a county
• A city is always located in a single county
• A county is always located in a single state Add attributes!

Cities

Counties

In

In States name

IsCapitalOf

name

area

name

population

Case study 1

37

Design a database representing cities, counties, and states
• For states, record name and capital (city)
• For counties, record name, area, and location (state)
• For cities, record name, population, and location (county and

state)

Assume the following:
• Names of states are unique
• Names of counties are only unique within a state
• Names of cities are only unique within a county
• A city is always located in a single county
• A county is always located in a single state Relationship types?

Cities

Counties

In

In States name

IsCapitalOf

name

area

name

population

Case study 1

38

Design a database representing cities, counties, and states
• For states, record name and capital (city)
• For counties, record name, area, and location (state)
• For cities, record name, population, and location (county and

state)

Assume the following:
• Names of states are unique
• Names of counties are only unique within a state
• Names of cities are only unique within a county
• A city is always located in a single county
• A county is always located in a single state

Cardinality constraints
of relationship sets?

Cities

Counties

In

In States name

IsCapitalOf

name

area

name

population

Case study 1

39

Design a database representing cities, counties, and states
• For states, record name and capital (city)
• For counties, record name, area, and location (state)
• For cities, record name, population, and location (county and

state)

Assume the following:
• Names of states are unique
• Names of counties are only unique within a state
• Names of cities are only unique within a county
• A city is always located in a single county
• A county is always located in a single state

Keys, discriminator of
entity sets?

Cities

Counties

In

In States name

IsCapitalOf

name

area

name

population

Case study 1: final design

• Technically, nothing in this design prevents a city in
state 𝑋 from being the capital of another state 𝑌,
but oh well…

40

Cities

IsCapitalOf

name

population

Counties

name

area

name

In

In States

Case study 1: why not good?

• County area information is repeated for every city
in the county
Redundancy is bad

• State capital should really be a city
Should “reference” entities through explicit

relationships
41

Cities In States

name

capital

name

population

county_area

county_name

Case study 2

42

Design a database consistent with the following:
• A station has a unique name and an address, and is either an

express station or a local station
• A train has a unique number and an engineer, and is either an

express train or a local train
• A local train can stop at any station
• An express train only stops at express stations
• A train can stop at a station for any number of times during a day
• Train schedules are the same everyday

What are the entity sets, relationship sets, and their
attributes? What are the types of relationships and

cardinality constraints, keys, discriminators?

Case study 2: first design

43

Design a database consistent with the following:
• A station has a unique name and an address, and is either an express

station or a local station
• A train has a unique number and an engineer, and is either an express

train or a local train
• A local train can stop at any station
• An express train only stops at express stations
• A train can stop at a station for any number of times during a day
• Train schedules are the same everyday

Trains StopsAt Stations

name

address

number

E/L?

engineer

E/L? time

Why not
good?

Cannot prevent
express trains

from stopping at
any local stations

Unintended constraint: A
train can stop at a station
only ONCE during a day!

(slide 12)

Case study 2: second design

44

Trains Stations

name

address

number

engineer

ExpressTrains

LocalTrains LocalStations

ExpressStations

ISA ISA

• A station has a unique name and an address, and is either an express
station or a local station

• A train has a unique number and an engineer, and is either an
express train or a local train

• …..

Total Total

Case study 2: second design

45

Trains Stations

name

address

number

engineer

time

ExpressTrains

LocalTrains LocalStations

ExpressStations

ISA

LocalTrainStops

ISA

time

ExpressTrainStops

• …
• A local train can stop at any station
• An express train only stops at express stations
• A train can stop at a station for any number of times during a day
• …

Total Total

Case study 2: second design

46

Trains Stations

name

address

number

engineer

time

ExpressTrains

LocalTrains LocalStations

ExpressStations

ISA

LocalTrainStops

ISA

time

ExpressTrainStops

Is the extra complexity worth it?

No double-diamonds here
because train number + time
uniquely determine a stop

Total Total

Database Design

• Entity-Relationship (E/R) model

• Translating E/R to relational schema

47

Translating entity sets

• An entity set translates directly to a table
• Attributes → columns

• Key attributes → key columns

48

Users Groups

gid

name

IsMemberOf

uid

name

fromDate

User (uid, name) Group (gid, name)

Translating weak entity sets
• Remember the “borrowed” key attributes

• Watch out for attribute name conflicts

• Foreign key from weak to dominating entity set

49

Rooms In Buildings

name

year

Rnumber

capacity

In

Seats

Snumber

L/R?
Building (name, year)

Room (building_name, room_number, capacity)

Seat (building_name, room_number, seat_number, left_or_right)

Translating relationship sets

• A relationship set translates to a table
• Keys of connected entity sets → columns

• Attributes of the relationship set (if any) → columns

• Multiplicity of relationship set determines primary key:

50

Users Groups

gid

name

IsMemberOf

uid

name

fromDate

Member (uid, gid, fromDate)

• If we can deduce the general cardinality constraint (0,1) for a component
entity set E, then take the primary key attributes for E

• Otherwise, choose primary key attributes of each component entity

Translating relationship sets

• A relationship set translates to a table
• Keys of connected entity sets → columns

• Attributes of the relationship set (if any) → columns

• Multiplicity of relationship set determines primary key:

51

Users Groups

gid

name

IsOwnerOf

uid

name

fromDate

Owner (uid, gid, fromDate)

• If we can deduce the general cardinality constraint (0,1) for a component
entity set E, then take the primary key attributes for E

• Otherwise, choose primary key attributes of each component entity

(0,1)

Translating relationship sets

• Also for each entity set E, whose primary key
appears in the relationship table, add a foreign key
back to E

52

More examples

53

Users IsParentOf

parent

child

Parent (parent_uid, child_uid)

Translating double diamonds?

• No need to translate because the relationship is
implicit in the weak entity set’s translation

54

Rooms In Buildings

name

year

number

capacity

In

Seats

number

L/R?

RoomInBuilding
 (room_building_name, room_number,
 building_name)

is subsumed by
Room (building_name, room_number, capacity)

Translating subclasses & ISA:

• 3 approaches (see next slides)

• Each can be more appropriate depending on
whether the sub-superclass relationship is
especially in terms of capturing “foreign key
relationships”.
• Disjoint or Overlapping

• Partial or Total

• Ultimately you have a choice here and need to
weigh pros and cons though I’ll make a
recommendation as well.

55

Translating subclasses & ISA: approach 1

• Entity-in-all-superclasses approach (“E/R style”)
• An entity is represented in the table for each subclass to

which it belongs
• A table includes only the attributes directly attached to

the corresponding entity set, plus the inherited key
• Reasonable for Partial ISA relationships

56

Users Groups

gid

name

IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Group (gid, name)
User (uid, name)
Member (uid, gid, from_date)

〈142, Bart〉
〈456, Ralph〉

∈

〈456, ☺〉 ∈ PaidUser (uid, avatar)
Also add foreign key: From
PaidUser to User

Translating subclasses & ISA: approach 2

• Entity-in-most-specific-class approach (“OO style”)
• An entity is only represented in one table (the most

specific entity set to which the entity belongs)
• A table includes the attributes attached to the

corresponding entity set, plus all inherited attributes
• Reasonable for Total and Disjoint cases

57

Users Groups

gid

name

IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Group (gid, name)
User (uid, name)
Member (uid, gid, from_date)
PaidUser (uid, name, avatar)

〈142, Bart〉

〈456, Ralph, ☺〉

∈

∈

More on Entity-in-most-specific approach

• In this case, since each user has to be either Paid or
Unpaid, might makes sense to compile to:
• PaidUsers(uid, name, avatar)

• UnpaidUsers(uid, name, campaignID)

58

Users

uid

name

avatar PaidUsers

ISA

UnpaidUsers

campaignID

DISJOINT + TOTAL

Problem with Entity-in-most-specific approach

• Foreign keys of relationship sets:
• Consider the foreign key of IsMemberOf to User.

• We can no longer add this constraint because some
users are only represented in PaidUsers

59

Users Groups

gid

name

IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Possible Solution: Keep superclass tables with PKs

• We can still keep User(uid) to capture FKs of
IsMemberOf.

• Not “really” entity-in-most-specific-class anymore
but attributes of an entity are all in superclasses

60

Translating subclasses & ISA: approach 3

• All-entities-in-one-table approach (“NULL style”)
• One relation for the root entity set, with all attributes found in

the network of subclasses
• (plus a “type” attribute when needed)

• Use a special NULL value in columns that are not relevant for a
particular entity

61

Users Groups

gid

name

IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Group (gid, name)
User (uid, name)
Member (uid, gid, from_date)

〈142, Bart , NULL〉
〈456, Ralph, ☺〉

∈
Group (gid, name)
User (uid, name, avatar)
Member (uid, gid, from_date)

Comparison of three approaches

• Entity-in-all-superclasses
• User (uid, name), PaidUser (uid, avatar)
• Pro:
• Con:

• Entity-in-most-specific-class
• User (uid, name), PaidUser (uid, name, avatar)
• Pro:
• Con:

• All-entities-in-one-table
• User (uid, [type,]name, avatar)
• Pro:
• Con:

62

All users are found in one table

Attributes of paid users are scattered in different tables

All attributes of paid users are found in one table

Users are scattered in different tables & May lose FKs of
the relationshipsets of the superclass.

Everything is in one table

Lots of NULL’s; complicated if class hierarchy is complex

General Recommendations
• Try to choose entity-in-all-superclasses:

• Compared to Entity-in-most-specific-class: can lead to
attributes of entities to be distributed

• But there is value in terms of data cleanness for adding
foreign keys if superclasses participate in relationships
(recall the foreign key problem of entity-in-most-specific-
class approach)

• Compared to all-entities-in-one-table: NULLs are also a
nightmare in data cleanness. So you should specialize
when possible.

63

General Recommendations
• Don’t recommend choosing entity-in-most-specific

if OVERLAPPING sub-classes exist

64

• name replicated for a student who is both
undergrad & grad

• Ultimately these are rules of thumb. Need to weigh
pros/cons of each approach.

Student

ISA

Undergrad Grad

Overlaps + Total

Undergrad(sid, name, coop-term)
Grad(sid, name, advisor)

name

sid

coop-term advisor

A complete example

65

Trains Stations

name

address

number

engineer

time

ExpressTrains

LocalTrains LocalStations

ExpressStations

ISA

LocalTrainStops

ISA

time

ExpressTrainStops

Total Total

A complete example

66

Trains Stations

name

address

number

engineer

time

ExpressTrains

LocalTrains LocalStations

ExpressStations

ISA

LocalTrainStops

ISA

time

ExpressTrainStops

Train (number, engineer)
LocalTrain (number)
ExpressTrain (number)

Station (name, address)
LocalStation (name)
ExpressStation (name)

LocalTrainStop (local_train_number, time)

ExpressTrainStop (express_train_number, time)

LocalTrainStopsAtStation (local_train_number, time, station_name)

ExpressTrainStopsAtStation (express_train_number, time,
 express_station_name)

merge

merge

Total Total

Simplifications and refinements

Train (number, engineer), LocalTrain (number), ExpressTrain (number)
Station (name, address), LocalStation (name), ExpressStation (name)
LocalTrainStop (local_train_number, station_name, time)
ExpressTrainStop (express_train_number, express_station_name, time)

• Eliminate LocalTrain table
• Redundant: can be computed as

 𝜋𝑛𝑢𝑚𝑏𝑒𝑟 𝑇𝑟𝑎𝑖𝑛 − 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑇𝑟𝑎𝑖𝑛

• Slightly harder to check that local_train_number is
indeed a local train number

• Eliminate LocalStation table
• It can be computed as 𝜋𝑛𝑎𝑚𝑒 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 − 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑆𝑡𝑎𝑡𝑖𝑜𝑛

67

An alternative design

Train (number, engineer, type)

Station (name, address, type)

TrainStop (train_number, station_name, time)

• Encode the type of train/station as a column rather
than creating subclasses

• What about the following constraints?
• Type must be either “local” or “express”

• Express trains only stop at express stations

They can be expressed/declared explicitly as database
constraints in SQL

Arguably a better design because it is simpler!

68

Design principles

• KISS
• Keep It Simple, Stupid

• Avoid redundancy

• Capture essential constraints, but don’t introduce
unnecessary restrictions

• Use your common sense
• Warning: mechanical translation procedures given in this

lecture are no substitute for your own judgment

69
http://ungenius.files.wordpress.com/2010/03/thehomer.jpg

• Representing aggregation
• No separate relation for aggregation A

• Represent tables and relationships in R as before (including FKs)

• To represent relationship set, say CourseAccount, involving an aggregation A,
treat A as an entity set whose PK is the PK of its defining relationship (EnrolledIn
in this case). Also apply the rules of simplifying the PK of CourseAccount if any of
its participating entity sets have (0,1) multiplicity

More examples

70

EnrolledIn(StudentNum,CouseNum)

Student (StudentNum)
Couse(CourseNum)
Account(UserID)

CouseAccount(UserId, StudentNum, CourseNum, ExpirationDate)

One-to-one relationships → We can simply take
UserId or (StudentNum, CourseNum) as the key

More examples (Exercise)

• ER Diagram

71

Relational Schema

?

More examples

• ER Diagram

72

Relational Diagram

More examples

• ER Diagram

73

Relational DDL Commands
CREATE TABLE Course
(CourseNum INTEGER PRIMARY KEY,
 CourseName CHAR(50));

CREATE TABLE Professor
(ProfNum INTEGER PRIMARY KEY,
 ProfName CHAR(50));

CREATE TABLE Student
(StudentNum INTEGER PRIMARY KEY,
StudentName CHAR(50),
GPA FLOAT);

CREATE TABLE Section
(CourseNum INTEGER NOT NULL REFERENCES Course(CourseNum),
SectionNum INTEGER NOT NULL,
Term INTEGER NOT NULL,
PRIMARY KEY(CourseNum, SectionNum, Term),
ProfNum INTEGER NOT NULL REFERENCES Professor(ProfNum));

CREATE TABLE Off-SiteSection
(CourseNum INTEGER NOT NULL,
SectionNum INTEGER NOT NULL,
Term INTEGER NOT NULL,
FOREIGN KEY(CouseNum,SectionNum,Term) REFERENCES
 Section(CouseNum,SectionNum,Term),
Location CHAR(50));

CREATE TABLE EnrolledIn
(CourseNum INTEGER NOT NULL,
SectionNum INTEGER NOT NULL,
Term INTEGER NOT NULL,
StudentNum INTEGER NOT NULL REFERENCES Student(StudentNum),
FOREIGN KEY(CouseNum,SectionNum,Term) REFERENCES
 Section(CouseNum,SectionNum,Term),
Primary Key(CouseNum,SectionNum,Term,StudentNum),
Mark INTEGER);

	Slide 1
	Slide 2: Motivating Example
	Slide 3: Database Design
	Slide 4: Database Design
	Slide 5: Database Design
	Slide 6: Entity-relationship (E/R) model
	Slide 7: E/R basics
	Slide 8: An example E/R diagram
	Slide 9: Attributes of relationships
	Slide 10: More on relationships
	Slide 11: More on relationships
	Slide 12: Multiplicity of relationships
	Slide 13: General cardinality constraints
	Slide 14: Roles in relationships
	Slide 15: Next: two special relationships
	Slide 16: Weak entity sets
	Slide 17: Weak entity set examples
	Slide 18: ISA relationships
	Slide 19: More on ISA relationships
	Slide 20: More on ISA relationships
	Slide 21: More on ISA relationships
	Slide 22: Other extensions to E/R models
	Slide 23: Other extensions to E/R models
	Slide 24: Other extensions to E/R models
	Slide 25: Other extensions to E/R models
	Slide 26: Summary of E/R concepts
	Slide 27: Designing an E/R schema
	Slide 28: Attributes or Entity Sets?
	Slide 29: Entity Sets or Relationships?
	Slide 30: Binary vs. N-ary Relationships?
	Slide 31: Binary vs. N-ary Relationships (cont’d)
	Slide 32: A simple methodology
	Slide 33: Case study 1
	Slide 34: Case study 1
	Slide 35: Case study 1
	Slide 36: Case study 1
	Slide 37: Case study 1
	Slide 38: Case study 1
	Slide 39: Case study 1
	Slide 40: Case study 1: final design
	Slide 41: Case study 1: why not good?
	Slide 42: Case study 2
	Slide 43: Case study 2: first design
	Slide 44: Case study 2: second design
	Slide 45: Case study 2: second design
	Slide 46: Case study 2: second design
	Slide 47: Database Design
	Slide 48: Translating entity sets
	Slide 49: Translating weak entity sets
	Slide 50: Translating relationship sets
	Slide 51: Translating relationship sets
	Slide 52: Translating relationship sets
	Slide 53: More examples
	Slide 54: Translating double diamonds?
	Slide 55: Translating subclasses & ISA:
	Slide 56: Translating subclasses & ISA: approach 1
	Slide 57: Translating subclasses & ISA: approach 2
	Slide 58: More on Entity-in-most-specific approach
	Slide 59: Problem with Entity-in-most-specific approach
	Slide 60: Possible Solution: Keep superclass tables with PKs
	Slide 61: Translating subclasses & ISA: approach 3
	Slide 62: Comparison of three approaches
	Slide 63: General Recommendations
	Slide 64: General Recommendations
	Slide 65: A complete example
	Slide 66: A complete example
	Slide 67: Simplifications and refinements
	Slide 68: An alternative design
	Slide 69: Design principles
	Slide 70: More examples
	Slide 71: More examples (Exercise)
	Slide 72: More examples
	Slide 73: More examples

