
CS 348 Lecture 15

DBMS Architecture Overview &

Physical Data Organization

Semih Salihoğlu

Mar 3rd 2025

1

User/Administrator Perspective

DBMS Architect/Implementer
Perspective

Primary Database Management
System Features

• Data Model: Relational Model
• High Level Query Language:

Relational Algebra & SQL
• Integrity Constraints
• Indexes/Views
• Transactions

• Physical Record Design
• Query Planning and Optimization
• Indexes
• Transactions

Other (Last Lecture)

• Graph or RDF DBMSs

CS 348 Diagram

Relational Database Design
• E/R Models
• Normal Forms

How To Program A DBMS (0.5-1 lecture)
• Embedded vs Dynamic SQL
• Frameworks

Announcements

➢ Assignment 3:

➢ Out Mar 9th night (this Sunday)

➢ Due Mar 30th midnight

➢ Note: these were announced as Mar 7 – Mar 28 in Lecture 2

➢ Because we skipped one lecture, moving by 2 days

Outline For Today

1. High-level DBMS Architecture

2. Storage Manager and Physical File Organization Designs

➢ Physical Operators/Storage Interface

➢ Fundamental Property of Storage Devices & Potential Goals of

Physical Design

➢ Row-oriented Physical Design

➢ Colum-oriented Physical Design

➢ Hybrid (PAX) Physical Design

➢ Designs for Variable-length Fields

➢ Designs for NULLs

4

Outline For Today

1. High-level DBMS Architecture

2. Storage Manager and Physical File Organization Designs

➢ Physical Operators/Storage Interface

➢ Fundamental Property of Storage Devices & Potential Goals of

Physical Design

➢ Row-oriented Physical Design

➢ Colum-oriented Physical Design

➢ Hybrid (PAX) Physical Design

➢ Designs for Variable-length Fields

➢ Designs for NULLs

5

High-level DBMS Architecture Overview

6
Figure from Database Management Systems, Ramakrishnan & Gehrke 3rd edition

➢Captures overall structure. Many details are system-specific.

Transformations of

Query’s Structure

➢ Text

➢ An In-Memory

Representation

➢ Logical Plan

➢ Physical Plan

Overview of Compilation Steps

7

SELECT …
FROM …
WHERE…

Parser Binder Normalizer

Logical Plan

Translator
Optimizer

Physical Plan

Translator

Query

Executor

Root

SELECT … TABLES … CON.

Customer Product
=

cid 5

RESULT

cid

…

AST
Text

Logical

Plan

Physical

Plan

Join

C.cid=O.cid

Scan Tbl

Order

100 < price

Project

oid

Scan Tbl

Customer

cid=3

HashJoin

L.$2=R.$3

Filter

$2=5

IndexScan

order.db

IndexScan

cust.db

Project

$5

Parser

8

➢Parses text query into an abstract syntax tree based on SQL grammar

➢Ex: Snippets from MySQL’s SQL grammar

Parser

9

SELECT cid
FROM Customer C, Order O, Product P
WHERE C.cid = O.cid AND O.pid = P.pid
 AND P.name = BookA

Root

SELECT FIELDS FROM TABLES WHERE CONDITIONS

cid Customer

Order

Product AND

AND =

P.name `BookA`= =

O.pid P.pidC.cid O.cid

Parser

10

FROM Customer C, Order O, Product P
SELECT cid
WHERE C.cid = O.cid AND O.pid = P.pid
 AND P.name = BookA

➢Catches syntax errors

42601 syntax error at or near "from"

Overview of Compilation Steps

11

SELECT …
FROM …
WHERE…

Parser Binder Normalizer

Logical Plan

Translator
Optimizer

Physical Plan

Translator

Query

Executor

Root

SELECT … TABLES … CON.

Customer Product
=

cid 5

RESULT

cid

…

AST
Text

Logical

Plan

Physical

Plan

Join

C.cid=O.cid

Scan Tbl

Order

100 < price

Project

oid

Scan Tbl

Customer

cid=3

HashJoin

L.$2=R.$3

Filter

$2=5

IndexScan

order.db

IndexScan

cust.db

Project

$5

Binder

12

➢Binds type information to columns and expressions

➢Uses a system component called Database Catalog

➢ Keeps “metadata” about database tables and indexes

➢ Ex Metadata: Column names and types, constraints, etc.

Binder

13

Root

SELECT FIELDS FROM TABLES WHERE CONDITIONS

cid

int
Customer

Order

Product AND

AND =

P.Name

Product

String

`BookA`

Literal

String

= =

O.Pid

Order

int

P.Pid

Product

int

C.cid

Cust.

int

O.cid

Order

int

Binder

14

➢Catches type errors

SELECT cid
FROM Customer C, Order O, Product P
WHERE C.cid AND O.pid = P.pid
 AND P.name = BookA

SELECT cid
FROM Customer C, Order O, Product P
WHERE C.cid + false = O.cid AND O.pid = P.pid
 AND P.name = BookA

42883 operator does not exist: integer + boolean

42804 argument of WHERE must be type boolean, not type integer

Overview of Compilation Steps

15

SELECT …
FROM …
WHERE…

Parser Binder Normalizer

Logical Plan

Translator
Optimizer

Physical Plan

Translator

Query

Executor

Root

SELECT … TABLES … CON.

Customer Product
=

cid 5

RESULT

cid

…

AST
Text

Logical

Plan

Physical

Plan

Join

C.cid=O.cid

Scan Tbl

Order

100 < price

Project

oid

Scan Tbl

Customer

cid=3

HashJoin

L.$2=R.$3

Filter

$2=5

IndexScan

order.db

IndexScan

cust.db

Project

$5

Normalizer

16

>

age

Customer

int

5

Literal

int

<

age

Customer

int

5

Literal

int

➢Normalizes the ast according to several rules

➢Examples:

➢Convert all comparisons to < or <=.

➢Perform all constant arithmetic: 5 + 10 => 15

➢Simplify bool expressions that are guaranteed to be true or false.

➢Convert WHERE expression to Conjunctive Normal Form (ANDs

of ORs)

➢etc.

Overview of Compilation Steps

17

SELECT …
FROM …
WHERE…

Parser Binder Normalizer

Logical Plan

Translator
Optimizer

Physical Plan

Translator

Query

Executor

Root

SELECT … TABLES … CON.

Customer Product
=

cid 5

HashJoin

L.$2=R.$3

Filter

$2=5

IndexScan

order.db

IndexScan

cust.db

Project

$5

RESULT

cid

…

AST
Text

Logical

Plan

Physical

Plan

Join

C.cid=O.cid

Scan Tbl

Order

100 < price

Project

oid

Scan Tbl

Customer

cid=3

Logical Plan Translator

18

➢Maps normalized ast or other in-memory representation to an initial

(unoptimized) logical query plan

➢Logical Query Plan: Consists of “high-level” operators:

➢Table Scan, Filter, Projection, Join, Group By-And Aggregate, etc.

➢Many but not all operators are based on relational algebra

➢Some are not: e.g: LIMIT, SKIP, Order By, etc.

Logical Plan Translator

19

SELECT cid
FROM Customer C, Order O, Product P
WHERE C.cid = O.cid AND O.pid = P.pid
 AND P.name = BookA

Join

P.pid=O.pid

Scan Table

Product

Scan Table

Order

Join

C.cid=O.cid

Scan Table

Customer

Project

cid

Filter

name=BookA

Overview of Compilation Steps

20

SELECT …
FROM …
WHERE…

Parser Binder Normalizer

Logical Plan

Translator
Optimizer

Physical Plan

Translator

Query

Executor

Root

SELECT … TABLES … CON.

Customer Product
=

cid 5

HashJoin

L.$2=R.$3

Filter

$2=5

IndexScan

order.db

IndexScan

cust.db

Project

$5

RESULT

cid

…

AST
Text

Logical

Plan

Physical

Plan

Join

C.cid=O.cid

Scan Tbl

Order

100 < price

Project

oid

Scan Tbl

Customer

cid=3

Optimizer

21

➢Optimizes initial logical plan using a set of rules and estimated costs

➢Example Optimizations:

➢Pushing filters down in the query plan

➢Pushing projections down

➢Changing the order of the joins

➢Replacing sub-plans with views

➢Identifying and reusing common sub-plans

➢etc..

Example Optimization: Filter Pushdown

22

Join

P.pid=O.pid

Scan Table

Product

Scan Table

Order

Join

C.cid=O.cid

Scan Table

Customer

Project

cid

Filter

name=BookA

Join

C.cid=O.cid

Scan Table

Order

Scan Table

Customer

Join

P.pid=O.pid

Scan Table

Product

Project

cid

Filter

name=BookA

Overview of Compilation Steps

23

SELECT …
FROM …
WHERE…

Parser Binder Normalizer

Logical Plan

Translator
Optimizer

Physical Plan

Translator

Query

Executor

Root

SELECT … TABLES … CON.

Customer Product
=

cid 5

HashJoin

L.$2=R.$3

Filter

$2=5

IndexScan

order.db

IndexScan

cust.db

Project

$5

RESULT

cid

…

AST
Text

Logical

Plan

Physical

Plan

Join

C.cid=O.cid

Scan Tbl

Order

100 < price

Project

oid

Scan Tbl

Customer

cid=3

Physical Plan Translator

24

➢Translates logical operators into physical operators

➢Logical operators: placeholders to describe the overall query

processing algorithm

➢Physical operators: classes in the implementation language of DBMS

(e.g. C++) that have functions that operate on in-memory tuples

➢Each logical op might be implemented with multiple physical ops

➢Scan Table => FileScan or IndexFileScan

➢Join => Hash Join, Merge Join, Index Nested Loop Join, etc.

Physical Plan Translator

25

Join

C.cid=O.cid

Scan Table

Order

Scan Table

Customer

Join

P.pid=O.pid

Scan Table

Product

name=BookA

Project

cid

Filter

name=BookA
HashJoin

L.$3=R.2

FileScan

Order

FileScan

Customer

HashJoin

L.$3=R.$3

IndexScan

Product

name=BookA

Project

cid

Overview of Compilation Steps

26

SELECT …
FROM …
WHERE…

Parser Binder Normalizer

Logical Plan

Translator
Optimizer

Physical Plan

Translator

Query

Executor

Root

SELECT … TABLES … CON.

Customer Product
=

cid 5

HashJoin

L.$2=R.$3

Filter

$2=5

IndexScan

order.db

IndexScan

cust.db

Project

$5

RESULT

cid

…

AST
Text

Logical

Plan

Physical

Plan

Join

C.cid=O.cid

Scan Tbl

Order

100 < price

Project

oid

Scan Tbl

Customer

cid=3

Query Executor

27

➢Executes physical plans

➢Could be single threaded but all modern systems parallelize queries

➢They implement a task scheduling mechanism.

➢Pool of worker threads execute plans in parallel and coordinate

Outline For Today

1. High-level DBMS Architecture

2. Storage Manager and Physical File Organization Designs

➢ Physical Operators/Storage Interface

➢ Fundamental Property of Storage Devices & Potential Goals of

Physical Design

➢ Row-oriented Physical Design

➢ Colum-oriented Physical Design

➢ Hybrid (PAX) Physical Design

➢ Designs for Variable-length Fields

➢ Designs for NULLs

28

Persistent Data Storage

29

➢DBMSs store data persistently on durable storage devices

➢Hard disks or flash disks or more recently non-volatile memory

➢Hence our drawing of DBMSs as disks

➢But query processing is computation and all computation ultimately

happens in memory.

Physical Operator/Storage Interface

30

➢RDBMSs store data in table/index files on disk (indices next lecture)

➢Several physical operators access data in files

➢Most importantly scans but sometimes also joins

HashJoin

L.$3=R.2

FileScan

Order

FileScan

Customer

HashJoin

P.pid=O.pid

IndexScan

Product

name=BookA

Project

cid

Table files, index files

Recall: Physical operators: classes

in the implementation language of

DBMS (e.g. C++) that have

functions that operate on in-

memory tuples

File accesses happen via classes

implemented in StorageManager

component (aka FileManager,

FileAccessMethods etc.)

Memory

Disk

Physical Operator/Storage Interface

31

Class ScanTable : public PhysicalOperator {

string tableFilename;
DBFileHandle* dbFH; // Interface to access storage
int nextRecordID;
// Assume parent operator has access to outTuple as well
Tuple* outTuple;

void init() {
 dbFH = new DBFileHandle(tableFilename); // e.g., order.db
 nextRecordID = 0;}

// each operator in the tree calls its child to get next Tuple
Tuple* getNextTuple() {
 if (nextRecordId < dbFH.maxRecordID) {
 dbFH.readRecord(&outTuple, nextRecordID);
 nextRecordID++;
 return &tuple;
 }
}}

will show a sample pseudocode later

File Access Functions

32

➢Functions such as readRecord in DBFileHandle-like classes that form

the operator/storage interface know about physical data organizations

(and operators don’t):

1. Record layout in files

2. Page/Block layout of records in files

Question 1: Why is there another unit of data called page/block?

Question 2: Potential goals of DBMS implementors when designing

physical layouts?

Question 3: Common record and page layouts?

Outline For Today

1. High-level DBMS Architecture

2. Storage Manager and Physical File Organization Designs

➢ Physical Operators/Storage Interface

➢ Fundamental Property of Storage Devices & Potential Goals of

Physical Design

➢ Row-oriented Physical Design

➢ Colum-oriented Physical Design

➢ Hybrid (PAX) Physical Design

➢ Designs for Variable-length Fields

➢ Designs for NULLs

33

Potential Goals of Physical Data Design

34

1. Minimize I/O!

i. Pack records into few number of pages (see next slide)

ii. Keep related data close in storage devices!

iii. Cache pages of data that is likely to be used

2. Maximize sequential reads/writes from storage devices! (see later)

3. Simplicity/speed of accessing values

➢ E.g., don’t compress using a complex compression scheme

These are general guidelines and not necessarily independent.

Why organize records in pages?

35

➢ OS reads/writes data from/to disk in pages (e.g., 4K)

➢ DBMS should also read/write data in pages (multiple of OS

page sizes, 4K, 8K, 12K etc. but not 2K)

On Sequential Reads/Writes: Fundamental

Property of Storage Devices

36

Random I/O is slow! Sequential I/O is fast!

Take this very seriously!

➢ Holds for RAM, magnetic disks, or flash disks.

➢ Examples: Read 1GB of 64bit ints randomly in RAM vs sequentially

and you might get ~80x difference.

➢ Exercise: Test this and let me know the exact answer.

➢ Worse diff. depending on read size in hard/flash disks (e.g. ~1000x)

37

Spindle rotation

Platter

Platter

Sp
in

d
le

Platter

Tracks

Arm movement

Disk arm

Disk head

“Moving parts” are slow

Why is Random I/O Slow on Disks?

Time To Read X bytes: Seek time + rotational delay + transfer time

~4-5ms each 1MB in ~3-4ms

38

Why Is Random Reads/Writes Slow for RAM?

Text

Description automatically generated

Fundamentally because of better CPU

cache utilization, i.e., L1/L2 caches in

modern CPUs

https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

39

Latency Numbers Every Programmer Should
Know

Q3: Common Record and Page Layouts

40

1. Row-oriented

2. Column-oriented

3. Hybrid (PAX) Row & Column-oriented Fixed-length Values

4. Designs for Variable-length Values

5. Designs for NULL Values

Several Simplification Assumptions

41

➢ Each field/column is of constant size

➢ No compression

➢ Assume files are broken into pages of size H (e.g., 4K)

➢ Assume each field and entire rows of each table easily fit into a

page << H (e.g., fields ~10s of bytes rows 100s of bytes)

➢ Assume each row takes T many bytes

Outline For Today

1. High-level DBMS Architecture

2. Storage Manager and Physical File Organization Designs

➢ Physical Operators/Storage Interface

➢ Fundamental Property of Storage Devices & Potential Goals of

Physical Design

➢ Row-oriented Physical Design

➢ Colum-oriented Physical Design

➢ Hybrid (PAX) Physical Design

➢ Designs for Variable-length Fields

➢ Designs for NULLs

42

Row-Oriented N-ary Storage Model (NSM)

43

➢ Each page contains ~ H/T many rows and all fields of each row

Customer

cid : int64 (8 bytes) name : string (60 chars) isGoldMember : bool (1 byte)

101 Alice Munro\0\0\0….\0 1 201 Carl Sagan\0\0\0…\0 0

103 Bob \0\0\0….\0 1 … … …

➢ Note: because records are fixed length, can read any field with

simple arithmetic (*not a consequence of NSM*)

➢ E.g: 5th records name field at offsets: 4*(8+60+1) + 8 = 284 to 344

(Example Disk Page, e.g., in file customer.db)

Pros/Cons of NSM

44

➢ Pro: Good for queries that access multiple or all fields of tuples

➢ Con: If queries access a single field, e.g., counting

numGoldMembers, “effective read size” can be small

➢ E.g. 1/69 bytes read is useful, in columnar storage you can do

69x less I/O to do the same count.

➢ Con: For some workloads higher # I/O => lower (buffer) cache

utilization (next slide)

Buffer Manager & Ex Op/Storage Interface Code

45

➢ DBMSs have a buffer manager (BM) component that keeps a set of

file pages in memory to reduce I/O.

➢ Goal of BM: keep pages that are likely to be accessed in memory

➢ Implement a caching alg, e.g., Least-Recently Used (LRU)

P1

P4

P7

P2 P3

P5 P6

P8 P9

order.db

Disk

RAM

Buffer Pool/Frames

P1 P3 P8

class DatabaseFileHandle : {
string filename; // e.g., order.db
int tupleLen; // e.g., 69
BufferManager bm;
void readRecord(Tuple* outTuple, int recordID) {
 (pageIdx, offset)= calculatePageInfo(recordID)
 Frame* frame = bm.pinPage(pageIdx);
 memcpy(outTuple, frame>bytes[offset], tupleLen)
 bm.unpin(frame); }}

➢ Pin: put disk page into buffer pool until further notice

➢ possibly evicts an existing page

➢ Unpin: can now remove the page from buffer pool if needed

Disk File/Pages

Column-Oriented Storage Design

46

➢ Each field organized in separate consecutive pages (~H/field-size per page):

101 201 103 330

cID.db

… … … …

name.db

Carl Sagan\0\0\0….\0

Alice Munro\0\0….\0

Bob \0\0\0….\0

1 0 1 0 0 0

isGoldMember.db

… … … … … …

➢ Pros: Good for queries that access few columns

➢ Can reduce I/O significantly

➢ Better sequential reads when pages are in memory

➢ Pros: Easier to apply compression;each page is more “homogenous”

➢ Pros: Easier to insert/remove columns from records.

➢ Cons: Bad for queries that access all columns (1 I/O in row-oriented

storage could be done with # cols I/O).

Select count(*)
from customer
where isGoldMember

PAX Hybrid Storage Design

47

➢ PAX: Partition Attributes Across

➢ All fields of a row in the same page

➢ But pages internally organized by columns

customer.db

A black and white photo of a
document

Description automatically generated
with low confidence

101 201 103 330 … …

Carl \0\0\0….\0Alice Munro\0\0….\0 Bob \0\0\0….\0 …

1 0 1 0 0 0 … …

➢ Better sequential reads for queries that read a single column

➢ Gives the advantage of having all fields of a row in the same page

➢ But still more I/O than pure columnar storage for some queries

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.8416

Outline For Today

1. High-level DBMS Architecture

2. Storage Manager and Physical File Organization Designs

➢ Physical Operators/Storage Interface

➢ Fundamental Property of Storage Devices & Potential Goals of

Physical Design

➢ Row-oriented Physical Design

➢ Colum-oriented Physical Design

➢ Hybrid (PAX) Physical Design

➢ Designs for Variable-length Fields

➢ Designs for NULLs

48

Variable-length Values

49

➢ Pages are often more complex than examples in these slides

➢ One complexity: variable-length fields

➢ Assume row-oriented NSM storage

➢ Approaches to encode var-length fields, e.g., var-len strings, in pages

1. Delimiters

2. Field Offsets

3. Pointers to Overflow Pages

Both:

(i) put first fixed-len fields and then var-len fields

when encoding each row

(ii) require storing page-level offset of each row

Delimiter Approach

50

101 1 Alice Munro\0

48 35 21 0

… … …

customer.db

201 0 Carl\0

➢ Why are page offsets at the end and fields in the beginning of pages?

➢ Can grow them separately without sliding data within pages.

➢ Advantage of storing fixed-len fields and then var-len fields:

➢ Can read fixed-len fields w/ page-level offsets +arithmetic

➢ e.g., isGoldMember of rowID 2: offset[-2] + 8 = 35+8=43. (offset[-2] is

the 2nd offset from last)

➢ no need to scan over var-len fields

103 1 Bob\0

0 21

35 48

page-level offsets

➢ Example Delimiter: \0 character

Field Offsets Approach

51

101 1 15 26 44 Alice Munro Univ. Ave. Waterloo

➢ Suppose there is a second var-len field called address

➢ Page structure stays same except each row would be encoded as:

cid

isGoldMember

offset of

name

offset of

address

end of

address

name address

0 8 9 11 13 15 26

Overflow Pages

52

➢ Keep variable length fields, in particular strings, fixed length

➢ Any overflow points to separate overflow pages

➢ E.g., Assume pointers are 8 bytes: 4 bytes for cID, 1 byte for isGoldMember

➢ Pro: original pages are simpler; Con: More I/O for reading large strings

Alice Munro\0Carl\0Bob\0

name.ovf

101 ptr 1

… … …

201 ptr 0

103 ptr 1

0 13

26

NULL Values

53

➢ Most popular approach is to store NULL bits in the page

➢ Assume columnar storage and fixed-len names that can be NULL

➢ 1 means NULL 0 means NULL

name.db

xxxxxxxxxxxxxxxxxxxx

Alice Munro\0\0….\0

Bob \0\0\0….\0

0 1 0 NULL bits

arbitrary value

Summary of Physical Data Design Alternatives

54

➢ High-level: row-oriented vs columnar but row-oriented can be hybrid (PAX)

➢ Variable-length fields and fields that can be NULL require more

sophisticated design

➢ For any physical design we showed, other alternatives are possible

➢ In practice physical design is principled art!

➢ Many tradeoff, choices, and complications exist:

➢ Deletions of tuples (can leave gaps in pages or shift tuples)

➢ Fields larger than page sizes

➢ Tuple versions (some systems, e.g., Postgres, support multiple version

of tuples so users can keep track of how each record changed)

➢ Compression

➢ Some crazy ideas put rows from multiple tables into same pages

➢ Many other designs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

