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Announcements

» Assignment 3:

> Out Mar 9" night (this Sunday)
» Due Mar 30" midnight

> Note: these were announced as Mar 7 — Mar 28 In Lecture 2

» Because we skipped one lecture, moving by 2 days



Outline For Today

1. High-level DBMS Architecture

2. Storage Manager and Physical File Organization Designs
» Physical Operators/Storage Interface
» Fundamental Property of Storage Devices & Potential Goals of
Physical Design
Row-oriented Physical Design
Colum-oriented Physical Design
Hybrid (PAX) Physical Design

Designs for Variable-length Fields

vV V VYV VY VY

Designs for NULLSs



Outline For Today

1. High-level DBMS Architecture



High-level DBMS Architecture Overview
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> Physical Plan

» Captures overall structure. Many details are system-specific.

Figure from Database Management Systems, Ramakrishnan & Gehrke 3" edition
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Parser

»Parses text query into an abstract syntax tree based on SQL grammar

»EXx: Snippets from MySQL’s SQL grammar

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

a=r

1002
1003
1004
1005
1006
1007

parser grammar MySqlParser;

options { tokenVocab=MySqllLexer; }

// Top Level Description

root
: sqlStatements? (MINUS MINUS)? EOF

sqlStatements
(sglStatement (MINUS MINUS)? SEMI? | emptyStatement)*
(sqlStatement ((MINUS MINUS)? SEMI)? | emptyStatement)

sqlStatement
: ddlStatement | dmlStatement | transactionStatement
| replicationStatement | preparedStatement
| administrationStatement | utilityStatement

querySpecification
: SELECT selectSpeck selectElements selectIntoExpression?

fromClause? groupByClause? havingClause? orderByClause? limitClause?

| SELECT selectSpecx selectElements

836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851

selectStatement

: querySpecification lockClause?
| queryExpression lockClause?
| querySpecificationNointo unionStatement+
(
UNION unionType=(ALL | DISTINCT)?
(querySpecification | queryExpression)
)?
orderByClause? limitClause? lockClause?
| queryExpressionNointo unionParenthesis+
(
UNION unionType=(ALL | DISTINCT)?
queryExpression
)?

orderByClause? limitClause? lockClause?

fromClause? groupByClause? havingClause? orderByClause? limitClause? selectIntoExpression?

’



Parser

SELECT cid
FROM Customer C, Order O, Product P

WHERE C.cid = O.cid AND 0.pid = P.pid
AND P.name = BookA

Root

[ SELECT }[ FIELDS 1[FROM} [ TABLES 1 [ WHERE 1 [CONDITIONS}

cid [Customer} [ Product } [ AND }

“oner
[ AND J

B ") pmame |[Booa |
“cen [ osa | opia |[ P |




Parser

» Catches syntax errors

FROM Customer C, Order O, Product P

SELECT cid

WHERE C.cid = O.cid AND O.pid = P.pid
AND P.name = BookA

42601 syntax error at or near "from"

10



Overview of Complilation Steps
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Binder

»Binds type information to columns and expressions
»Uses a system component called Database Catalog
» Keeps “metadata” about database tables and indexes

» Ex Metadata: Column names and types, constraints, etc.

12



Binder

%
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Binder

» Catches type errors

SELECT cid
FROM Customer C, Order 0O, Product P
WHERE |C.cid|AND O.pid = P.pid

AND P.name = BookA

42804 argument of WHERE must be type boolean, not type integer

SELECT cid

FROM Customer C, _Order O, Product P

WHERE |C.cid + false|= 0.cid AND O.pid = P.pid
AND P.name = BookA

42883 operator does not exist: integer + boolean




Overview of Complilation Steps
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Normalizer

»Normalizes the ast according to several rules
»Examples:
»Convert all comparisons to < or <=.
»Perform all constant arithmetic: 5 + 10 => 15
» Simplify bool expressions that are guaranteed to be true or false.

»Convert WHERE expression to Conjunctive Normal Form (ANDs
of ORS)

> etc.
age )
Customer Literal
int int

5
Literal
int

age
Customer
int




Overview of Complilation Steps
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Logical Plan Translator

»Maps normalized ast or other in-memory representation to an initial
(unoptimized) logical query plan
»Logical Query Plan: Consists of “high-level” operators:
»Table Scan, Filter, Projection, Join, Group By-And Aggregate, etc.
»Many but not all operators are based on relational algebra

»Some are not: e.g: LIMIT, SKIP, Order By, etc.

18



Logical Plan Translator

SELECT cid
FROM Customer C, Order O, Product P

WHERE C.cid = O.cid AND O.pid = P.pid
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Overview of Complilation Steps

Text

SELECT ..

FROM ... —{ Parser

WHERE...

Logical
Plan

[

Physical Plan l
Translator |

Physical

Plan _
Project
[ $5 ]

[ HashJoin ]
L.$2=R.$3
/

[ Filter ] [IndexScan
$2 5 cust.db

L Optimizer

]4 oid

[ IndexScan ]
order.db

f Query

| Executor

RESULT
‘—’ cid

) [l

C.cid=0O.cid

Scan Thl Scan Thl

Order Customer
100 < price cid=3

Ar[ Binder }—{ Normalizer}

\ 4

Logical Plan
Translator

20



Optimizer

»Optimizes initial logical plan using a set of rules and estimated costs
»Example Optimizations:

»Pushing filters down in the query plan

»Pushing projections down

»Changing the order of the joins

»Replacing sub-plans with views

»ldentifying and reusing common sub-plans

> etc..

21



Example Optimization: Filter Pushdown

4 )
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Overview of Complilation Steps
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Physical Plan Translator

» Translates logical operators into physical operators

»Logical operators: placeholders to describe the overall query

processing algorithm

»Physical operators: classes in the implementation language of DBMS

(e.g. C++) that have functions that operate on in-memory tuples

»Each logical op might be implemented with multiple physical ops
»Scan Table => FileScan or IndexFileScan

»Join => Hash Join, Merge Join, Index Nested Loop Join, etc.



Physical Plan Translator
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Overview of Complilation Steps
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Query Executor

» Executes physical plans

»Could be single threaded but all modern systems parallelize queries
» They implement a task scheduling mechanism.

»Pool of worker threads execute plans in parallel and coordinate

27



Outline For Today

2. Storage Manager and Physical File Organization Designs

» Physical Operators/Storage Interface

28



Persistent Data Storage

»DBMSs store data persistently on durable storage devices
»Hard disks or flash disks or more recently non-volatile memory
»Hence our drawing of DBMSs as disks Ej

»But query processing is computation and all computation ultimately

happens in memory.

29



Physical Operator/Storage Interface

»RDBMSs store data in table/index files on disk (indices next lecture)

» Several physical operators access data in files

»Most importantly scans but sometimes also joins

Recall: Physical operators: classes
In the implementation language of
DBMS (e.g. C++) that have
functions that operate on in-

memory tuples

File accesses happen via classes

implemented in StorageManager ? / / —
i
component (aka FileManager, _D e

FileAccessMethods etc.)

memory [ PfOJgCt } \
Cl

HashJom
P.pid=0. p|d

/
HashJoin
L.$3=R.2

FlleScan FileScan [ Ingreoxdsucc"’;n }
Order Customer name= BookA

= Table files, index files

S —

Disk_




Physical Operator/Storage Interface

Class ScanTable : public PhysicalOperator {

string tableFilename;

DBFileHandle* dbFH; // Interface to access storage

int nextRecordID;

// Assume parent operator has access to outTuple as well
Tuple* outTuple;

void init() {
dbFH = new DBFileHandle(tableFilename); // e.g., order.db
nextRecordID = 0;}

// each operator in the tree calls its child to get next Tuple
Tuple* getNextTuple() {

if (nextRecordId < dbFH.maxRecordID) {
dbFH.readRecord(&outTuple, nextRecordID);
nextRecordID++;

return &tuple; .
} P will show a sample pseudocode later

T

31



File Access Functions

» Functions such as readRecord in DBFileHandle-like classes that form

the operator/storage interface know about physical data organizations
(and operators don't):

1. Record layout in files

2. Page/Block layout of records in files
Question 1: Why is there another unit of data called page/block?
Question 2: Potential goals of DBMS implementors when designing
physical layouts?

Question 3: Common record and page layouts?



Outline For Today

2. Storage Manager and Physical File Organization Designs

» Fundamental Property of Storage Devices & Potential Goals of

Physical Design

33



Potential Goals of Physical Data Design

1. Minimize I/O!

I. Packrecords into few number of pages (see next slide)

. Keep related data close in storage devices!

li. Cache pages of data that is likely to be used
2. Maximize sequential reads/writes from storage devices! (see later)
3. Simplicity/speed of accessing values

» E.g., don’t compress using a complex compression scheme

These are general guidelines and not necessarily independent.



Why organize records in pages?

» OS reads/writes data from/to disk in pages (e.g., 4K)
» DBMS should also read/write data in pages (multiple of OS
page sizes, 4K, 8K, 12K etc. but not 2K)

35



On Sequential Reads/Writes: Fundamental
Property of Storage Devices

Random I/O is slow! Sequential 1/O is fast!
Take this very seriously!
» Holds for RAM, magnetic disks, or flash disks.
» Examples: Read 1GB of 64bit ints randomly in RAM vs sequentially

and you might get ~80x difference.
> EXxercise: Test this and let me know the exact answer.

» Worse diff. depending on read size in hard/flash disks (e.g. ~1000x)

36



Why is Random 1/O Slow on Disks?

Tracks

Platter

Platter

Platter

- \-) “Moving parts” are slow

Arm mivement Spindli rotation |

Time To Read X bytes] Seek tim& +|rotational delay|+|transfer time
v r\

~4-5ms each 1MB in ~3-4ms




Why Is Random Reads/Writes Slow for RAM?

What Every Programmer Should Know About Memory

Ulrich Drepper
Red Hat, Inc.

drepper@redhat . com

November 21, 2007

Abstract

As CPU cores become both faster and more numerous, the limiting factor for most programs is
now, and will be for some time, memory access. Hardware designers have come up with ever
more sophisticated memory handling and acceleration techniques—such as CPU caches-but
these cannot work optimally without some help from the programmer. Unfortunately, neither
the structure nor the cost of using the memory subsystem of a computer or the caches on CPUs
is well understood by most programmers. This paper explains the structure of memory subsys-
tems in use on modern commodity hardware, illustrating why CPU caches were developed, how
they work, and what programs should do to achieve optimal performance by utilizing them.

1 Introduction

In the early days computers were much simpler. The var-
ious components of a system, such as the CPU, memory,
mass storage, and network interfaces, were developed to-
gether and, as a result, were quite balanced in their per-
formance. For example, the memory and network inter-
faces were not (much) faster than the CPU at providing
data.

This situation changed once the basic structure of com-
puters stabilized and hardware developers concentrated
on optimizing individual subsystems. Suddenly the per-
formance of some components of the computer fell sig-
nificantly behind and bottlenecks developed. This was
especially true for mass storage and memory subsystems
which, for cost reasons, improved more slowly relative
to other components.

The slowness of mass storage has mostly been dealt with
using software techniques: operating systems keep most
often used (and most likely to be used) data in main mem-
ory, which can be accessed at a rate orders of magnitude
faster than the hard disk. Cache storage was added to the
storage devices themselves, which requires no changes in
the operating system to increase performance.! For the
purposes of this paper, we will not go into more details
of software optimizations for the mass storage access.

Unlike storage subsystems, removing the main memory
as a bottleneck has proven much more difficult and al-
most all solutions require changes to the hardware. To-

Changes are needed, however, to guarantee data integrity when
using storage device caches.

Copyright © 2007 Ulrich Drepper
Al rights reserved. No redistribution allowed.

day these changes mainly come in the following forms:

* RAM hardware design (speed and parallelism).
* Memory controller designs.
* CPU caches.

« Direct memory access (DMA) for devices.

For the most part, this document will deal with CPU
caches and some effects of memory controller design.
In the process of exploring these topics, we will explore
DMA and bring it into the larger picture. However, we
will start with an overview of the design for today’s com-
modity hardware. This is a prerequisite to understand-
ing the problems and the limitations of efficiently us-
ing memory subsystems. We will also learn about, in
some detail, the different types of RAM and illustrate
why these differences still exist.

This document is in no way all inclusive and final. It is
limited to commodity hardware and further limited to a
subset of that hardware. Also, many topics will be dis-
cussed in just enough detail for the goals of this paper.
For such topics, readers are recommended to find more
detailed documentation.

When it comes to operating-system-specific details and
solutions, the text exclusively describes Linux. At no
time will it contain any information about other OSes.
The author has no interest in discussing the implications
for other OSes. If the reader thinks s/he has to use a
different OS they have to go to their vendors and demand
they write documents similar to this one.

One last comment before the start. The text contains a
number of occurrences of the term “usually” and other,
similar qualifiers. The technology discussed here exists

Fundamentally because of better CPU

cache utilization, i.e., L1/L2 caches In

modern CPUs

38


https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

Latency Numbers Every Programmer Should
Know

Latency Comparison Numbers

L1l cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 25 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 3,000 ns
Send 1K bytes over 1 Gbps network 10,000 ns
Read 4K randomly from SSD* 150,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Read 1 MB sequentially from SSD* 1,000,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns

Send packet CA->Netherlands->CA 150,000,000

Notes

1l ns = 10"-9 seconds

1l us = 10"-6 seconds = 1,000 ns

1l ms = 10"-3 seconds = 1,000 us = 1,000,000 ns
Credit

By Jeff Dean:

ns

3
10

150

250

500
1,000
10,000
20,000
150,000

us
us
us
us
us
us
us
us
us

10
20
150

http://research.google.com/people/jeff/

Originally by Peter Norvig: http://norvig.com/21l-days.html#answers

ms
ms
ms
ms

1l4x L1 cache

20x L2 cache, 200x L1 cache
~1GB/sec SSD

~1GB/sec SSD, 4X memory
20x datacenter roundtrip
80x memory, 20X SSD
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Q3: Common Record and Page Layouts

Row-oriented
Column-oriented
Hybrid (PAX) Row & Column-oriented Fixed-length Values

Designs for Variable-length Values

G &> W b

Designs for NULL Values

40



Several Simplification Assumptions

V VYV VYV V

Each field/column is of constant size

No compression

Assume files are broken into pages of size H (e.g., 4K)
Assume each field and entire rows of each table easily fit into a
page << H (e.g., fields ~10s of bytes rows 100s of bytes)

» Assume each row takes T many bytes

41



Outline For Today

» Row-oriented Physical Design
» Colum-oriented Physical Design

» Hybrid (PAX) Physical Design

42



Row-Oriented N-ary Storage Model (NSM)

» Each page contains ~ H/T many rows and all fields of each row

Customer

cid : int64 (8 bytes) | name : string (60 chars) | isGoldMember : bool (1 byte)

101 | Alice Munro\0O\0\0...\O | 1 | 201 | Carl Sagan\0\0O\0..\O | O
103 Bob \0\0\0....\0 1

(Example Disk Page, e.g., in file customer.db)

» Note: because records are fixed length, can read any field with
simple arithmetic (*not a consequence of NSM*)

> E.g: 5 records name field at offsets: 4*(8+60+1) + 8 = 284 to 344



Pros/Cons of NSM

» Pro: Good for queries that access multiple or all fields of tuples
» Con: If queries access a single field, e.g., counting
numGoldMembers, “effective read size” can be small
» E.g. 1/69 bytes read is useful, in columnar storage you can do
69x less 1/O to do the same count.
» Con: For some workloads higher # 1/0 => lower (buffer) cache

utilization (next slide)

44



Buffer Manager & Ex Op/Storage Interface Code

» DBMSs have a buffer manager (BM) component that keeps a set of
file pages in memory to reduce I/0.
» Goal of BM: keep pages that are likely to be accessed in memory

» Implement a caching alg, e.g., Least-Recently Used (LRU)

class DatabaseFileHandle : { Buffer Pool/Frames
string filename; // e.g., order.db

int tuplelLen; // e.g., 69 RAM m

BufferManager bm;

void readRecord(Tuple* outTuple, int recordID) ({ — —
(pageldx, offset)= calculatePageInfo(recordID) Disk File/Pages
Frame* frame = bm.pinPage(pageldx);
memcpy (outTuple, frame>bytes[offset], tuplelLen)
bm.unpin(frame); }} Disk

» Pin: put disk page into buffer pool until further notice m

order.db

N ~— e

» possibly evicts an existing page

» Unpin: can now remove the page from buffer pool if needed 45



Column-Oriented Storage Design

» Each field organized in separate consecutive pages (~H/field-size per page):

101 | 201 | 103 | 330

Alice Munro\0\0....\0

1/{0(1{0({0|0

clD.db

Carl Sagan\0\0\0....\0

Bob \0\0\0....\0

name.db

IsGoldMember.db

» Pros: Good for queries that access few columns

» Can reduce I/O significantly

» Better sequential reads when pages are in memory

» Pros: Easier to apply compression;each page is more “homogenous”

» Pros: Easier to insert/remove columns from records.

» Cons: Bad for queries that access all columns (1 I/O in row-oriented

storage could be done with # cols 1/O).

Select count(*)
from customer
where isGoldMember



PAX Hybrid Storage Design

» PAX: Partition Attributes Across
» All fields of a row in the same page

» But pages internally organized by columns

101 | 201 | 103 | 330

Alice Munro\0\0....\0 Carl \0\0\0....\0 Bob \0\0\0....\0

customer.db

» Better sequential reads for queries that read a single column
» Gives the advantage of having all fields of a row in the same page

» But still more I/O than pure columnar storage for some queries


http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.8416

Outline For Today

» Designs for Variable-length Fields
» Designs for NULLs

48



Variable-length Values

» Pages are often more complex than examples in these slides
» One complexity: variable-length fields
» Assume row-oriented NSM storage

» Approaches to encode var-length fields, e.g., var-len strings, in pages

— Both:
1. Delimiters (i) put first fixed-len fields and then var-len fields
/ .
| when encoding each row
2. Field Offsets (i) require storing page-level offset of each row

3. Pointers to Overflow Pages



Delimiter Approach

» Example Delimiter: \O character

0

21

101

Alice Munro\0

201

Carl\O

35

48

103

Bob\0 ||

48

35

21

— page-level offsets

customer.db

» Why are page offsets at the end and fields in the beginning of pages?
» Can grow them separately without sliding data within pages.
» Advantage of storing fixed-len fields and then var-len fields:
» Can read fixed-len fields w/ page-level offsets +arithmetic
> e.g., isGoldMember of rowlID 2: offset[-2] + 8 = 35+8=43. (offset[-2] is
the 2 offset from last)
» Nno need to scan over var-len fields



Field Offsets Approach

» Suppose there is a second var-len field called address

» Page structure stays same except each row would be encoded as:

offset of end of

name /
0 \ 1 13/

101 Alice Munro | Univ. Ave. Waterloo
cid | name address

IsGoldMember

51



Overflow Pages

» Keep variable length fields, in particular strings, fixed length

» Any overflow points to separate overflow pages
» E.g., Assume pointers are 8 bytes: 4 bytes for cID, 1 byte for isGoldMember

» Pro: original pages are simpler; Con: More I/O for reading large strings

0 13
101 | ptr | 1 201 | ptr | O

26 Alice Munro\0Ca rI\C))'Bob\O
103 ptr 1 sse see sese name.ovf




NULL Values

» Most popular approach is to store NULL bits in the page
» Assume columnar storage and fixed-len names that can be NULL
» 1 means NULL O means NULL

Alice Munro\0\0....\0

XXXO0OOXXXXXOXXX |— grbitrary value

Bob \0\0\0....\0

0l 1| 0 |[— NULL bits
name.db




Summary of Physical Data Design Alternatives

» High-level: row-oriented vs columnar but row-oriented can be hybrid (PAX)
» Variable-length fields and fields that can be NULL require more
sophisticated design
» For any physical design we showed, other alternatives are possible
» In practice physical design is principled art!
» Many tradeoff, choices, and complications exist:
» Deletions of tuples (can leave gaps in pages or shift tuples)
» Fields larger than page sizes
» Tuple versions (some systems, e.g., Postgres, support multiple version
of tuples so users can keep track of how each record changed)
» Compression
» Some crazy ideas put rows from multiple tables into same pages

» Many other designs
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