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Outline For Today

Database Indices

➢ 5 Index Designs in Increasing Level of Robustness

➢ Using Indices In Practice

2



Outline For Today

Database Indices

➢ 5 Index Designs in Increasing Level of Robustness

➢ Using Indices In Practice

3



Functionality of Indices (1)
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➢ Indices are the primary mechanism to:

1. retrieve records quickly

2. search records in sort order

SELECT * FROM Students WHERE ID = 912;

SELECT * FROM Students WHERE ID > 100;

➢ Default way to find records: sequential scans

➢ Read each page and each record

➢ Can be very slow for large tables

➢ If a file is sorted on some columns: 

➢ Can now do binary search

➢ Key Question: How to sort a file efficiently?
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Functionality of Indices (2)
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➢ Indices: are persistent data structures that are stored along with table files 

that allow fast search.

➢ An example of a simple index: can be much smaller than the original table.

students.db

name.ind

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123 Milhouse 10

142 Bart 10

279 Jessica 10

345 Martin 8

456 Ralph 8

512 Nelson 10

679 Sherri 10

697 Terri 10

857 Lisa 8

912 Windel 8

997 Jessica 8



Naïve Approach for Keeping a Table Sorted
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➢ Sorting: primary technique to find things & data quickly! 

➢ Once a file is sorted, we can do binary search on the pages of the file.

➢ How to keep a relation file in sorted order (e.g., students.db)?

➢ Assume a sequence of insertions. 2 records/page. Sort on ID

➢ Simple/naïve approach: Shift-based (index-less) sorting



Naïve Approach for Keeping a Table Sorted
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857 Lisa 8

Next Insertion PAGES



Naïve Approach for Keeping a Table Sorted
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512 Nelson 10

Next Insertion PAGES
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Naïve Approach for Keeping a Table Sorted
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279 Jessica 10

Next Insertion PAGES
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Naïve Approach for Keeping a Table Sorted
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912 Windel 8

Next Insertion PAGES
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Naïve Approach for Keeping a Table Sorted
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345 Martin 8

Next Insertion PAGES
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Naïve Approach for Keeping a Table Sorted
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697 Terri 10

Next Insertion PAGES
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345 Martin 8

512 Nelson 10
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912 Windel 8
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Naïve Approach for Keeping a Table Sorted

13

123 Milhouse 10

Next Insertion PAGES

279 Jessica 10

345 Martin 8

512 Nelson 10

697 Terri 10

857 Lisa 8

912 Windel 8
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Naïve Approach for Keeping a Table Sorted
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123 Milhouse 10

279 Jessica 10

Next Insertion PAGES

345 Martin 8

512 Nelson 10

697 Terri 10

857 Lisa 8

912 Windel 8
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➢ Pro: Very simple to implement

➢ Con: Each insertion could require up to 2xb many I/Os (to read and right 

pages) if the table has b pages.

➢ Will not scale. Not practical.



2nd Approach: Single-level Dense Index
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➢ Lookup: find the record in index & 

follow pointer (page & offset)

➢ If index file is disk-based:

➢ Con: Same problem as naïve 

solution

➢ Pro: But at a smaller scale b/c the 

index is smaller (a projection).

➢ If index is in memory:

➢ Pro: Optimal I/O. Only store the 

record in the relation file but no 

sorting (called unclustered index)

➢ Con: Index cannot get very large.

students.db

name.idx

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123 Milhouse 10

142 Bart 10

279 Jessica 10

345 Martin 8

456 Ralph 8

512 Nelson 10

679 Sherri 10

697 Terri 10

857 Lisa 8

912 Windel 8

997 Jessica 8



3rd Approach: Single-level Sparse Index w/ Overflows
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➢ Suppose the sort column keys have a relatively stable domain and the table 

is not expected to grow significantly.

➢ Can do an initial sort upon data ingestion and keep a sparse-index

➢ Below: Just showing the sort column not entire rows

➢ Lookup: Find page, follow pointer, scan page (& overflow pages (soon))

100, 123, 192, 200 901, 996

Sparse 
Index pages

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…

192, 197,
…

200, 202,
…
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n
d

➢ Need the data pages sorted (called clustered index)

➢ Advantage over dense index: much smaller (can be a few orders of magn.)

➢ Insertions require chaining & deletions can lead to empty pages (soon)

pg1 pg2 pg5 pg6pg4pg3



Note on Clustered Indices
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➢ When a relation file has a clustered index, i.e., when pages are sorted, the 

pages themselves do not necessarily need the pages to be stored 

sequentially on disk in sort order.

➢ It is not practical to  store pages on disk sequentially in sort order (and this 

does not decrease I/O, though can make I/Os more “sequential”)
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100, 108,
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3rd Approach: Single-level Sparse Index w/ Overflows
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➢ Handling Insertions

100, 123, 192, 200 901, 996

Sparse 
Index pages

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…

Data pages (original relation)

192, 197,
…

200, 202,
…

st
u

d
en

ts
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b

ID
.id

x

Example: insert  tuple with key 107

107 Overflow block

Example: delete tuple with key 129

➢ Overflow chains and empty data blocks degrade performance

➢ If there is significant data distribution skew: records can go into one 

long chain, so lookups require scanning all data in worst-case.



3rd Approach: Single-level Sparse Index w/ Overflows
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➢ Pros: Index size smaller than dense index (1 key/ptr in index per page), so 

can be larger

➢ Cons: 

➢ Can still become very large (GBs) for large tables.

➢ Need overflows, which is not robust, if table grows significantly over time 

(e.g., most pages can become overflows, leading to large scans)

➢ Can lead to empty pages (but less of an issue in practice)

100, 123, 192, 200 901, 996

Sparse 
Index pages

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…

192, 197,
…

200, 202,
…
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107 Overflow block

Address w/ multi-
level indices

Address w/ 
splitting/merging



4th Approach: Multi-level Indices
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st
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ID

.id
x

107 Overflow block

100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, …    

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…

… … …

Data blocks

192, 197,
…

200, 202,
…

Example: look up 197

➢ If an index is too large, can put other layers of sparse indices on the index

➢ Forms a tree & the system can keep higher-levels of the index in memory

➢ Cand do depth-1 many I/Os in lookups (ignoring overflows)



5th Approach: B/B+ Tree Indices
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➢ Multi-level sparse indices on a first level of pages that is either:

➢ actual relation pages (if clustered)

➢ dense index on the relation pages (if unclustered)

➢ First level consists of chained pages

➢ Forms a k-ary balanced tree

➢ Instead of overflow pages uses splitting and merging of pages at any layer
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Max fan-out: 4

1
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1
5

0

1
8

0

to keys 

100 ≤ 𝑘 < 120
to keys

120 ≤ 𝑘 < 150
to keys

150 ≤ 𝑘 < 180
to keys

180 ≤ 𝑘

Non-leaf
1
2
0

1
3

0

to records with these 𝑘 values;

or, store records directly in leaves

to next leaf node in sequenceLeaf

to keys

100 ≤ 𝑘

Sample B+-tree Nodes



➢Height constraint: all leaves at the same lowest level

➢Fan-out constraint: all nodes at least half full 
(except root)

       Max #   Max #  Min #  Min #
     pointers keys     active pointers  keys 

Non-leaf 𝑓 𝑓 − 1  ⌈𝑓/2⌉   ⌈𝑓/2⌉ − 1

Root  𝑓 𝑓 − 1  2  1

Leaf  𝑓 𝑓 − 1  ⌊𝑓/2⌋  ⌊𝑓/2⌋

23

B+-tree Balancing Properties



SELECT * FROM R WHERE k = 179;

SELECT * FROM R WHERE k = 32;
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• SELECT * FROM R WHERE k > 32 AND k < 179;
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Look up 32…

And follow next-leaf pointers until you hit upper bound

3
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Range Query



➢Insert a record with search key value 32
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Insertion



• Insert a record with search key value 152
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Another Insertion Example
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Need to add to parent node a pointer 

to the newly created node

Now this node 

becomes full!

Node Splitting
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Need to add to parent node a pointer 

to the newly created node

➢In the worst case, node splitting can “propagate” all the way 
up to the root of the tree (not illustrated here)
➢Splitting the root introduces a new root of fan-out 2 and causes the 

tree to grow “up” by one level (this is why roots can have < f/2-1 keys)

More Node Splitting



➢Delete a record with search key value 130
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Look up the key
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And delete it

Node is too empty!

If a sibling has more

than enough keys,

steal one!

Deletions
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Stealing From a Sibling Node

➢ If you are hacker, encourage you to implement the deletion 

subroutine of an external B+ tree. Quite challenging!



➢Delete a record with search key value 179
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Cannot steal from siblings

Then merge (coalesce) with a sibling!

Another Deletion Example



➢Deletion can “propagate” all the way up to the root of the 
tree (not illustrated here)
➢When the root becomes empty, the tree “shrinks” by one level
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appropriate key from parent

Merging



➢How many I/O’s are required for each operation?

➢ℎ, the height of the tree

➢Plus one or two to manipulate actual records

➢Plus 𝑂 ℎ  for reorganization (rare if 𝑓 is large)

➢Minus one if we cache the root in memory

➢How big is ℎ?

➢Roughly logfanout 𝑁, where 𝑁 is the number of records

➢Fan-out is typically large (in hundreds)—many keys and 
pointers can fit into one block

➢A 4-level B+-tree is enough for many tables (e..g, if f=200, 
then you can accommodate 1.6B rows)

34

Performance analysis of B+-tree 
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How to Keep A Table Sorted?

➢ Recall this key question

➢ Recall further note on clustered indices and page order.

100, 123, 192, 200 901, 996

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…

Data pages (original relation)

200, 202,
…

192, 197,
…
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d
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How to Keep A Table Sorted?

➢ Recall this key question

➢ Recall further note on clustered indices and page order.

➢ Again assume leaf nodes are tuples

➢ Many RDBMSs use “B+ tree files” to store the tables, i.e., entire file is a B+ 

tree index, with leaf nodes storing tuples (instead of pointers to tuples)

100, 123, 192, 200 901, 996

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…

B+ tree file

200, 202,
…

192, 197,
…
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b

100, 901
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Difference Between B and B+ Tree

➢B-tree stores pointers to records in non-leaf nodes too (and does 

not store these search keys in other non-leaf or leaf nodes)

➢Pro: These records can be accessed with fewer I/O’s

➢Cons:

➢Storing more data in nodes decrease fan-out and increases ℎ

➢Records in leaves require more I/O’s to access

➢Vast majority of the records live in leaves!



➢ No one really knows!

➢ But Edward M. McCreight, co-inventor with Rudolf Bayer, has 
a video that says:

➢They never resolved what B is but they had in mind:

➢ Boeing, Bayer, and Balance

38

What Does B Stand For?

https://en.wikipedia.org/wiki/Edward_M._McCreight
https://en.wikipedia.org/wiki/Rudolf_Bayer


Other Common Indices

39

➢ 2 Classes of Indices Overall

1. Tree-based: can do both lookups and 

range queries

➢ B/B+ Trees, R Trees, Radix Tree

2. Hash-based

➢ Can only do look ups. Cannot do 

range queries.

➢ In practice: handle collisions

3. Many other indices: bitmap indices, 

probabilistic indices, suffix arrays, GiST 

or Inverted Index for different 

applications and data types.

123 Milhouse 10

142 Bart 10

279 Jessica 10

345 Martin 8

456 Ralph 8

512 Nelson 10

679 Sherri 10

697 Terri 10

857 Lisa 8

912 Windel 8

997 Jessica 8

0 Windel

1

2 Sherri

3 Martin

4

5 Ralph, Bart

6

7 Nelson

8 Milhouse

9 Terri

10 Lisa

11 Jessica

Hash Table

students.db
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Using Indices In Practice (1)

41

➢ Indices can be defined on one ore more attributes:

➢ CREATE INDEX NameIndex ON User(Lastname,Firstname);

➢ I.e., B+’s keys are (Lastname, Firstname) pairs and tuples are sorted 

first by LastName and then Firstname.

➢ This index would be useful for these queries:

select * from User where Lastname = ‘Smith’
select * from User where Lastname = ‘Smith’ and Firstname=‘John’

➢ But not this query:
select * from User where Firstname=‘John’

➢ Many systems use indices by default on the primary key

➢ Many systems use indices to implement UNIQUE constraints

CREATE TABLE Students(
 studentID int, 
 sinNumber varchar(16) UNIQUE
 PRIMARY KEY (studentID))

Will create 2 B+ indices: 

1) on studentID; 

2) 2) on sinNumber



Using Indices In Practice (2)

42

➢ Users only create indices. They do not refer to indices in queries.

➢ Pro: Some user queries will get much faster 

➢ B/c RDBMSs use indices during query evaluation

➢ Ex: IndexScan operators, or IndexMergeJoin (in Oracle) or 

IndexNestedLoopJoin etc.

Join

C.cid=O.cid

Scan Table

Order

Scan Table

Customer

Join

P.pid=O.pid

Scan Table

Product

name=BookA

Project

cid

Filter

name=BookA
HashJoin

L.$3=R.2

FileScan

Order

FileScan

Customer

HashJoin

L.$3=R.$3

IndexScan

Product

name=BookA

Project

cid

Recall Plan Transformation 
during Query Optimization



Using Indices In Practice (3)

➢ Con: Updates will get slower because indices need to be maintained

➢ Q: How should users pick indices given a workload W (i.e., the set of queries 

an application asks and their frequencies)

➢ General Guideline:

➢ Profile slow queries. Check if they have =, <, ≤, >, ≥  predicates

  SELECT * FROM R WHERE A = value;
  SELECT * FROM R WHERE A = value AND B = 27;

 SELECT * FROM R, S WHERE R.A = S.C;

 SELECT * FROM S WHERE D > 50;

➢ E.g., above indices on R.A, R.A and R.B multicolumn, S.C, S.D are 

possible indices that can speed queries

➢ But one should weigh these benefits against slow downs due to updates

43



Using Indices In Practice (4)

➢ Many RDBMSs have “Physical Design Advisor” (PDA) tool

➢ Input: Database D (w/ existing indices), workload W

➢ Output: A set of recommended indices

➢ Internally PDA does a “what if” analysis: 

➢ Uses Query Optimizer & inspects the estimated runtimes/costs of plans 

the system would use for queries in W with & without additional indices

44

Query Optimizer

W = {<Q1, f1>,…, <Qk, fk>}

D = {R1, …, Rn},

           {Ind1, …, Indz}

Indz+1? 

Generate Plans  
for each Qi

Inspects the costs of these 
generated plans to recommend a 

set of indices to develop

can include updates


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

