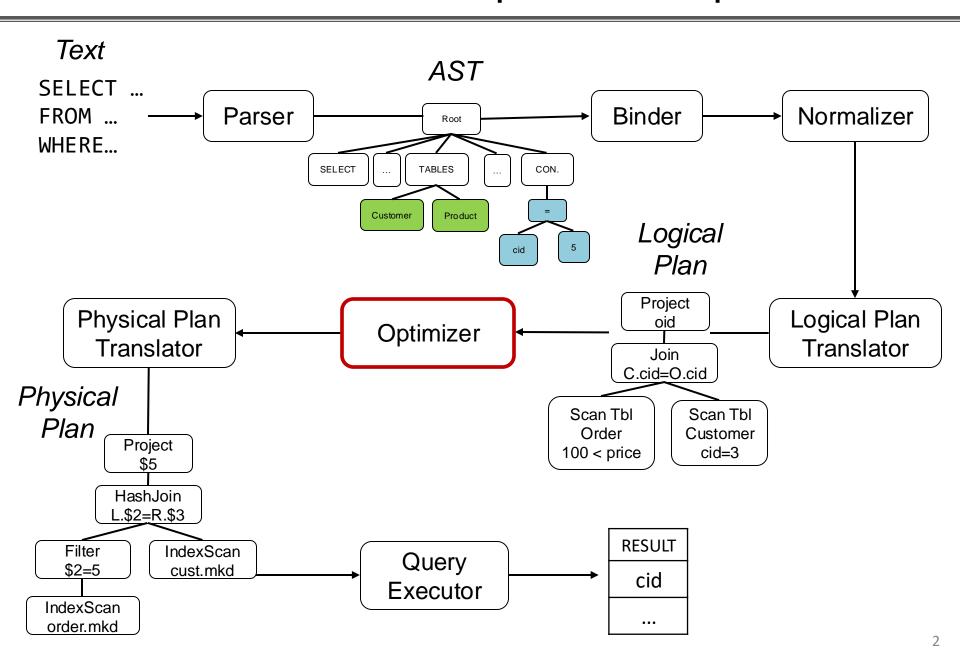
CS 348 Lectures 19-20 Query Optimization

Semih Salihoğlu

March 17-19 2025

Recall: Overview of Compilation Steps



Outline For Today

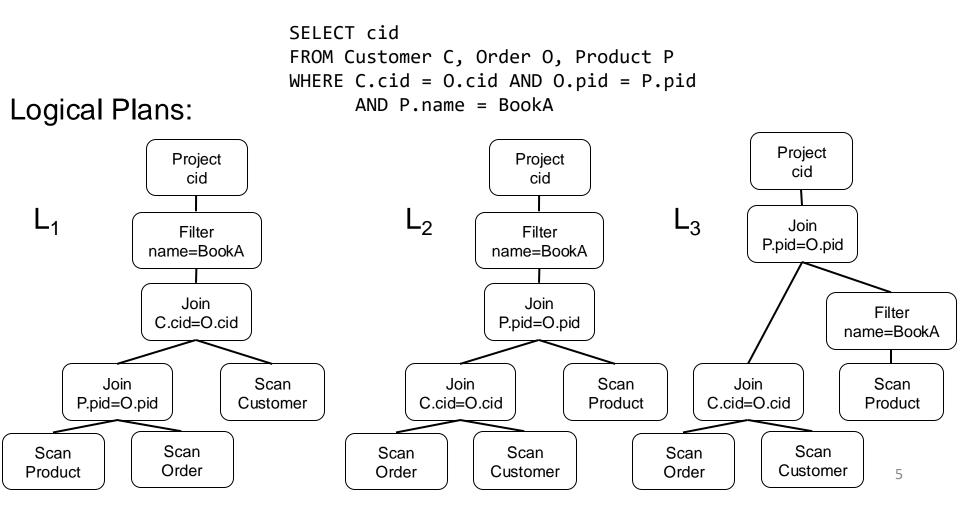
- 1. Goal of Query Optimization and Overview of Techniques
- 2. Cost-based Optimization Principles
- 3. Cost-based DP Logical Join Plan Optimizer
- 4. Cardinality Estimation Techniques
- 5. Rule-based Optimizations/Transformations
- 6. Final Remarks on Query Optimization & Query Processing

Outline For Today

- 1. Goal of Query Optimization and Overview of Techniques
- 2. Cost-based Optimization Principles
- 3. Cost-based DP Logical Join Plan Optimizer
- 4. Cardinality Estimation Techniques
- 5. Rule-based Optimizations/Transformations
- 6. Final Remarks on Query Optimization & Query Processing

Goal of Query Optimization (1)

- Recall ultimately a physical plan executes to answer a query
- Given a query Q, many equivalent physical plans exist:
 - 1. Many equivalent logical plans exist

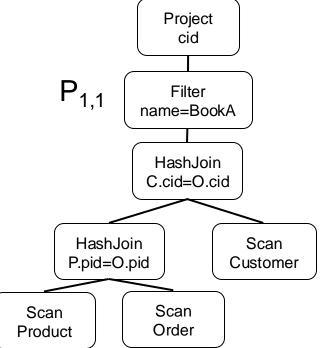


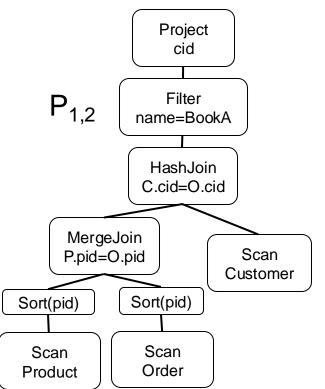
Goal of Query Optimization (1)

- Recall ultimately a physical plan executes to answer a query
- Given a query Q, many equivalent physical plans exist:
 - 1. Many equivalent logical plans exist
 - 2. Each logical plan can have many equivalent physical plans.

SELECT cid
FROM Customer C, Order O, Product P
WHERE C.cid = O.cid AND O.pid = P.pid
 AND P.name = BookA

Physical Plans:

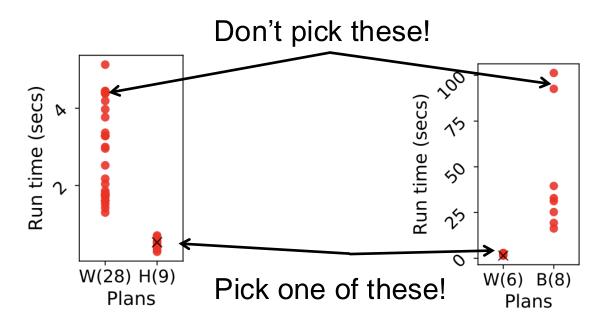




6

Goal of Query Optimization (2)

- Ultimately: Given Q, pick the "best" physical plan for Q:
 - Best: often means fastest, could mean "cheapest"
- > DBMS developers are more humble:
 - Pick a reasonably good plan. Do not pick a very bad plan!
 - Example plan spectrum of join-heavy queries



Overview of Query Opt. Techniques

1. Enumerate a logical plan space (often

enumerates all join orders) (extended) relational algebraic expressions
$$L_1, L_2, ..., L_k$$

2. For one or more of L_i, (optionally) enumerate a physical plan space:

$$P_{i,1}, P_{i,2}, ..., P_{i,t}$$

- 3. Pick the best P_{i,1} A common approach:
 - Step 1 is cost-based or hybrid
 - Step 2 is rule-based

Options for steps 1 & 2:

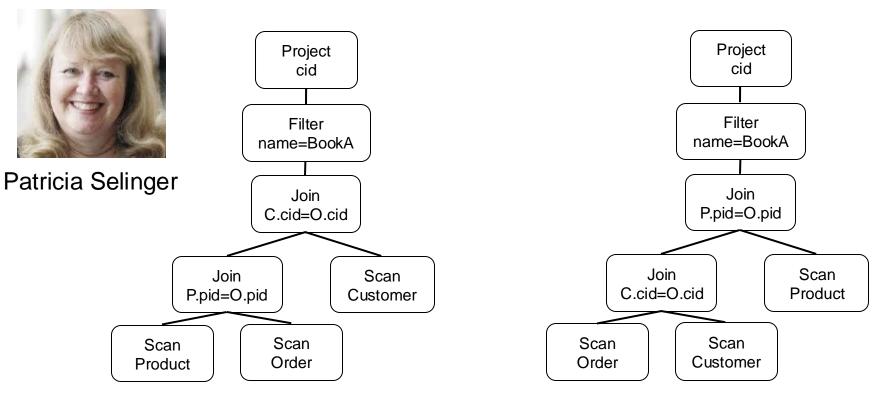
- i. Rule-based
- ii. Cost-based
- iii. Hybrid rule/cost-based

Outline For Today

- 1. Goal of Query Optimization and Overview of Techniques
- 2. Cost-based Optimization Principles
- 3. Cost-based DP Logical Join Plan Optimizer
- 4. Cardinality Estimation Techniques
- 5. Rule-based Optimizations/Transformations
- 6. Final Remarks on Query Optimization & Query Processing

Cost-based Optimization Principles

System R ('70s): First prototype relational DBMS (from IBM)



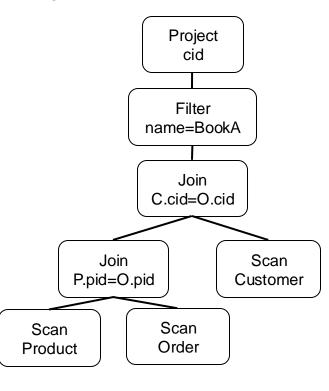
- Give each enumerated log/phy plan, e.g., L_i, a Cost(L_i) = c_i
- Cost is the estimate of the system for how good/bad Li is.
- > Pick min cost plan

Cost-based Optimization Principles (1)

Naturally: cost definition is broken into costs of operators.

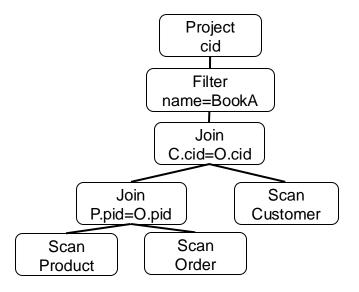
i.e:
$$Cost(L_i) = \sum_j cost(o_j \in L_i)$$

- Example cost metrics or components:
 - > # I/Os a plan will make
 - # tuples that will pass through operators
 - # runtime of algorithm o_i is running
 - > e.g., nested loop join of R, S: |R|*|S|
 - Combination of above
- For any reasonable metric:
 - Need to estimate cardinality, i.e., size, of tuples o_i will process
 - Cardinality estimation is a notoriously difficult problem



2 Components of Cost-based Optimization

- What is the cost metric?
 - > Can be complicated, e.g., different ops could have different costs
 - ➤ But inevitably depends on cardinality, i.e., number, of tuples processed by each operator
- 2. How do we estimate cardinality of tables processed by each op?
 - Need a "cardinality estimation technique to estimate cardinality

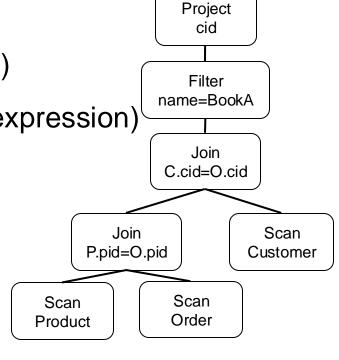


Cardinality Estimation

- Given a database
 - 1. D: $R_1(A_{1,1},...,A_{1,m1}), ..., R_n(A_{n,1},...,A_{n,mn})$
 - 2. A (sub-) query Q (a relational algebra expression)

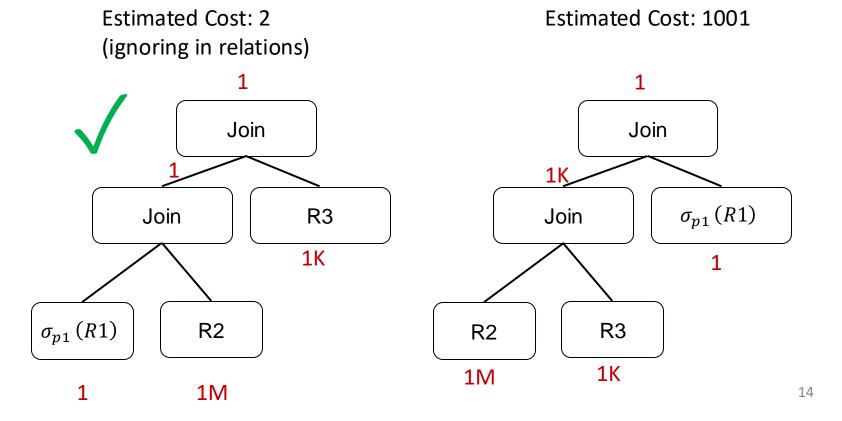
What is the |Q|?

- > E.g:
 - $\triangleright \sigma_{name=BookA}(Product)$?
 - ▶ Product ⋈ Order?
 - $\triangleright \sigma_{name=BookA}(Product \bowtie Order \bowtie Customer)?$



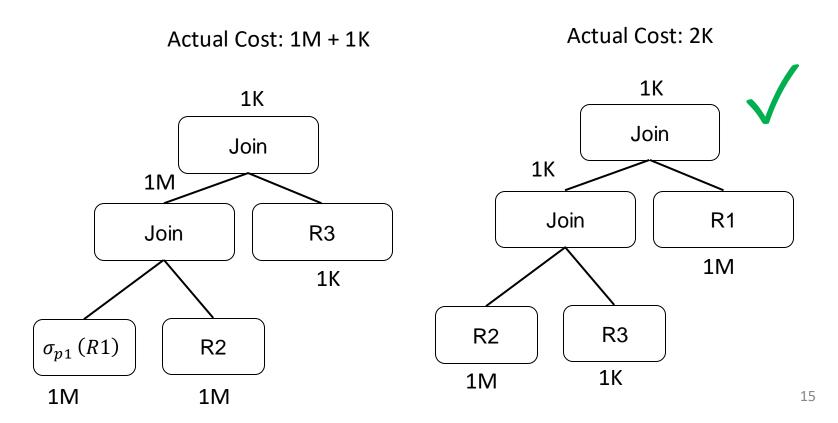
Example Poor Optimizer Choice

- Suppose cost(o_i): # input tuples processed.
- $\triangleright \ \sigma_{p1}(R1) \bowtie R2 \bowtie R3$
- > Suppose $\sigma_{p1}(R1) = 1M$ but DBMS underestimates as 1
- ➤ Suppose |R2| = 1M and |R3| = 1K
- > Suppose output of join has the size of the minimum input relation



Example Poor Optimizer Choice

- Suppose cost(o_i): # input tuples processed.
- $\triangleright \ \sigma_{p1}(R1) \bowtie R2 \bowtie R3$
- > Suppose $\sigma_{p1}(R1) = 1M$ but DBMS underestimates as 1
- \rightarrow Suppose |R2| = 1M and |R3| = 1K
- > Suppose output of join has the size of the minimum



Outline For Today

- 1. Goal of Query Optimization and Overview of Techniques
- 2. Cost-based Optimization Principles
- 3. Cost-based DP Logical Join Plan Optimizer
- 4. Cardinality Estimation Techniques
- 5. Rule-based Optimizations/Transformations
- 6. Final Remarks on Query Optimization & Query Processing

Widely Adopted Join Order Optimizer

Recall:

1. Enumerate a logical plan space (often enumerates all join orders)

$$L_1, L_2, \ldots, L_k$$

A widely used optimization algorithm is to use dynamic programming:

Consider a join only query:

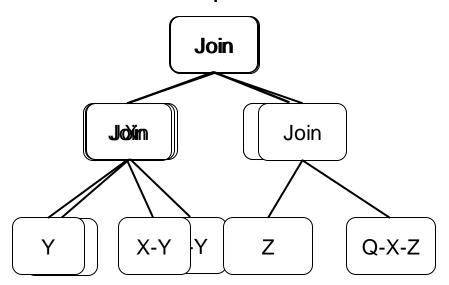
SELECT *

FROM R1 NATURAL JOIN R2 NATURAL JOIN ... NATURAL JOIN Rn

- \triangleright Q = R1 \bowtie R2 \bowtie ... \bowtie Rn
- Note not-necessarily a ``chain" query. It could be in any form, e.g.
 - ightharpoonup R1(A, B) \bowtie R2(B, C) \bowtie R3(C, A) \bowtie R4(A, B, C)

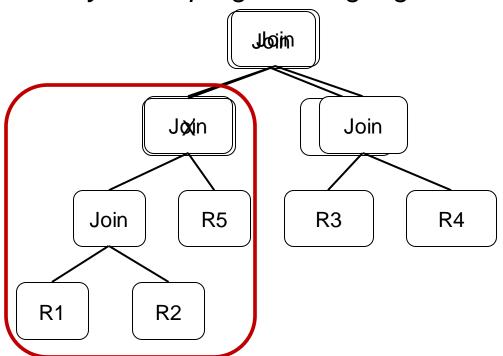
Plan Space

- ➤ In its most general form Plan Space=All possible join plan ``trees"
- ➤ In practice: If possible you'd avoid plans that do Cartesian Products
- ➤ Thought experiment: What does optimal tree L* look like?



Optimal Sub-Join Tree Structure in L*

- ➤ In L*: What can we say about the sub-tree LX starting from X?
- \triangleright Must be the best plan for the sub-query $Q^X = \bowtie_{\forall Ri \in X} Ri$
 - \triangleright E:g: red-box must be the best plan for R1 \bowtie R2 \bowtie R5 (o.w. just replace L^X with the best plan for Q^X: L^{X*}.)
- > Therefore can use dynamic programming algorithm to find join order.



Cost-based DP Join Plan Optimizer

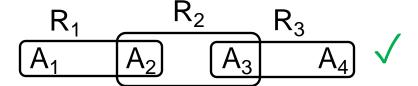
```
Input Q: R1 ⋈ R2 ⋈ ... ⋈ Rn
Output Optimal Join Plan P:
OptPlans[]: a map that takes a sub-query Q<sub>+</sub> and stores the already
computed optimal plan:
for int t = 2 ... n // size of sub-queries
                                                                Optimization 1:
                                                    can enumerate over sub-queries that
    for each Q_t \subseteq Q with t relations
                                                     are ``connected" to avoid Cartesian
         P*_{Ot}: // best plan found so far
                                                                   Products
         for each ``split', X, Q_t - X:
             P_{x}^{*} = OptPlans[X]; P_{Ot-X}^{*} = OptPlans[Q_{t}-X];
              P_{ot}: P_{x}^{*} \bowtie P_{ot-X}^{*}; // Possible plan when split as X and Q_{t}-X
                                                               Optimization 2:
             P_{0t}^* = \begin{bmatrix} min cost of P_{0t}^*, P_{0t} \end{bmatrix}
                                                              enumerate only if
         OptPlans[Q_t] = P*_{ot}
                                                         X and Q_+-X have common
                                                       attributes; otherwise the
                                                    possible plan would Cartesian
             where cardinality estimation of Q<sub>t</sub>
                                                                   product
                       would happen
```

Example Chain-based Join Optimizer (A3)

- > A3: specialized version of DP Join Optimizer on ``chain queries``:
 - Q: $R_0(A_0, A_1) \bowtie R_1(A_1, A_2) \bowtie ... \bowtie R_{n-1}(A_{n-1}, A_n)$
- > Opt 1: Do not need to enumerate any dis-connected sub-query:
 - $ightharpoonup Q_{t1}$: $R_0(A_0, A_1) \bowtie R_2(A_2, A_3) \bowtie R_6(A_6, A_7)$ X No common attributes

$$\begin{array}{cccc}
R_0 & R_2 & R_6 \\
\hline
A_0 & A_1 & A_2 & A_3 & A_6 & A_7
\end{array}$$

 $ightharpoonup Q_{t2}: R_1(A_1, A_2) \bowtie R_2(A_2, A_3) \bowtie R_3(A_3, A_4)$



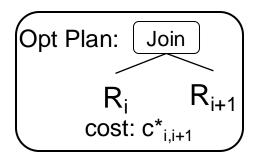
- ➤ Enumerate plans only for "consecutive": R_i ⋈ R_{i+1} ⋈ ... ⋈ R_i
- Enumerate only j-i``split points" for each k: i...j-1:
 - $ightharpoonup R_i \bowtie R_{i+1} \bowtie ... \bowtie R_k \text{ and } R_{k+1} \bowtie R_{k+2} \bowtie ... \bowtie R_i$

Simulation

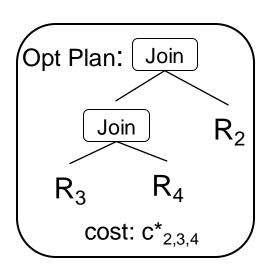
Opt Plans for 1-size sub-queries R_i:

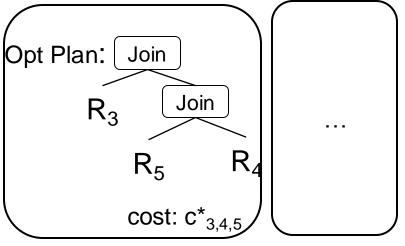
Opt Plan: R_i cost: |R_i|

Opt Plans for 2-size sub-queries $R_i \bowtie R_{i+1}$:

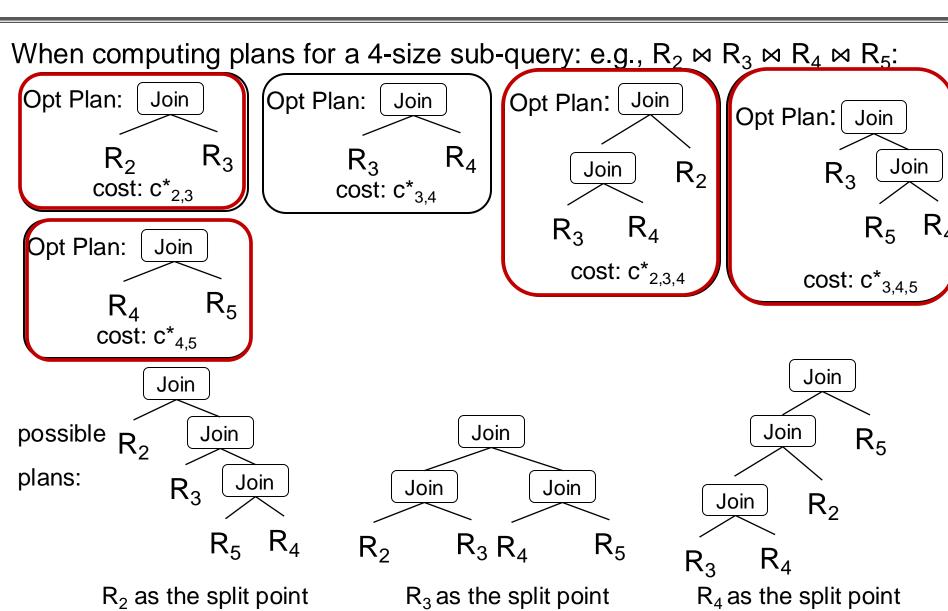


Opt Plans for 3-size sub-queries (using 1- and 2-size opt. plans):





Simulation

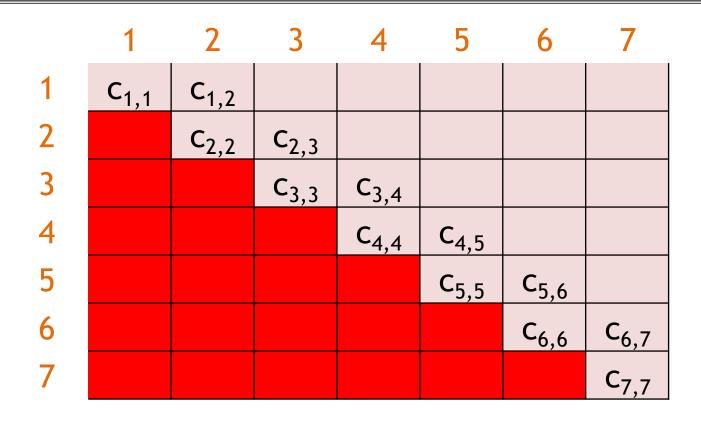


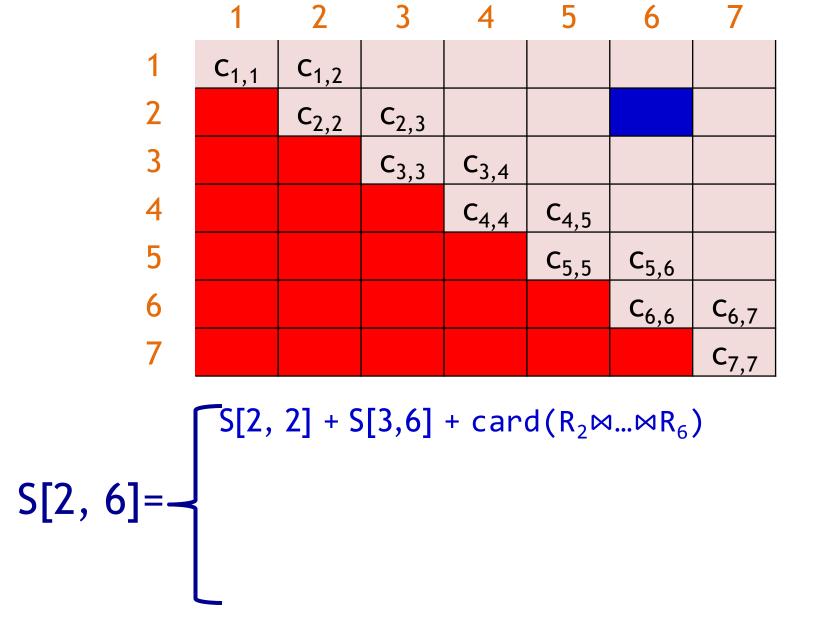
if left/right child matters compare 2x more plans

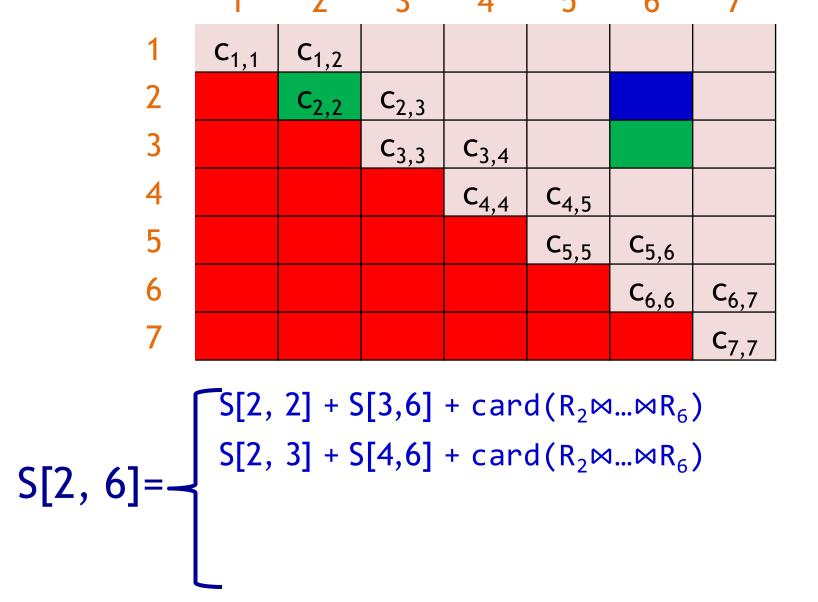
Solution (w/ wrong index accesses)

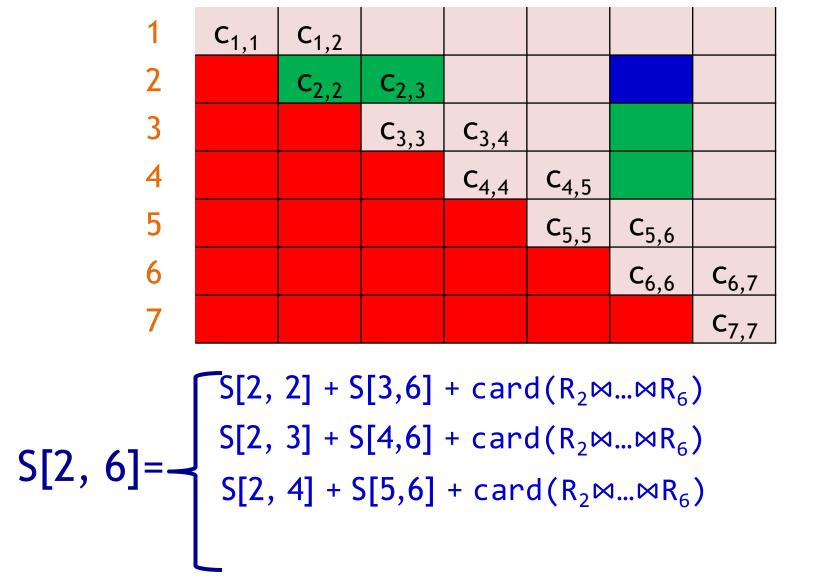
Let S[][] be an n by n array storing opt costs of to sub-queries Note: For simplicity: we take cost(P_{i,i}) is the cost of left & right subplans + card($R_i \bowtie ... \bowtie R_i$). Do this simplification in your solution as well. S[i][j] is min cost of joining R_i, ..., R_i procedure DP-Join-Order(R₁ ... R_n): Base Cases: $S[i][i] = |R_i|; S[i][i+1] = |R_i| + |R_{i+1}| + card(R_i \bowtie R_{i+1})$ for $i = 1 \dots n$ Looks wrong! for j = 1 ... n $min_{i,i} = +\infty$ for k = i, ... j-1 $\min_{i,j} = \min(\min_{i,j} S[i][k] + S[k+1][j] + card(R_i \bowtie ... \bowtie R_i)$ $S[i][j] = min_{i,i}$ return S[1][n] Ex: i=1, j=n, k=2

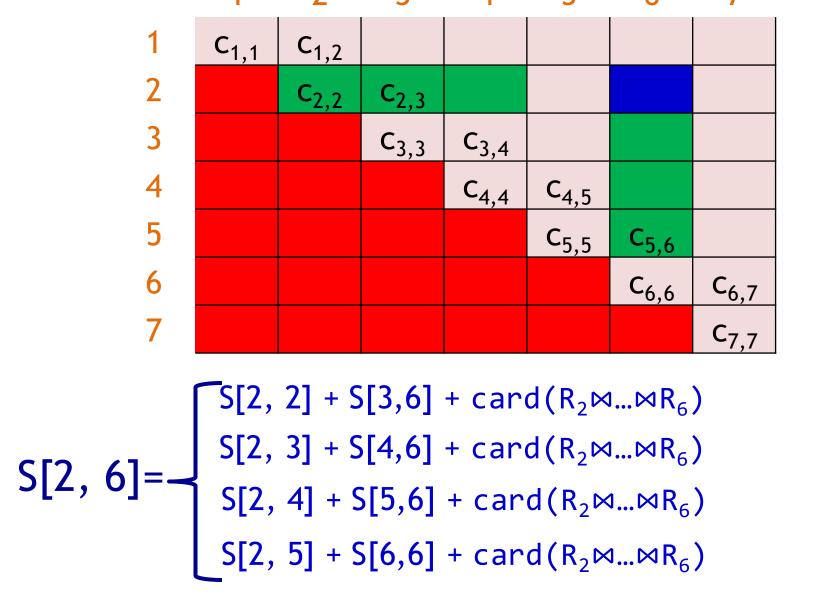
We access S[2][n] => not yet computed

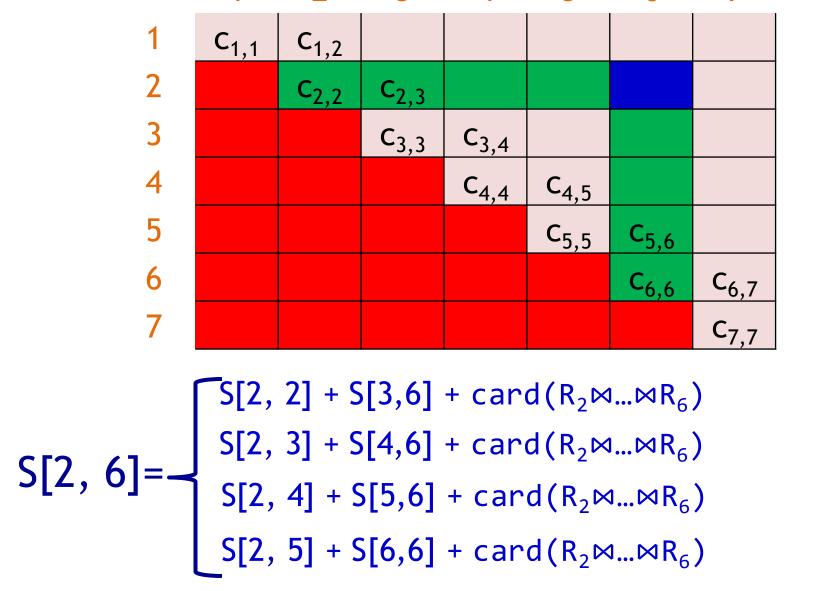


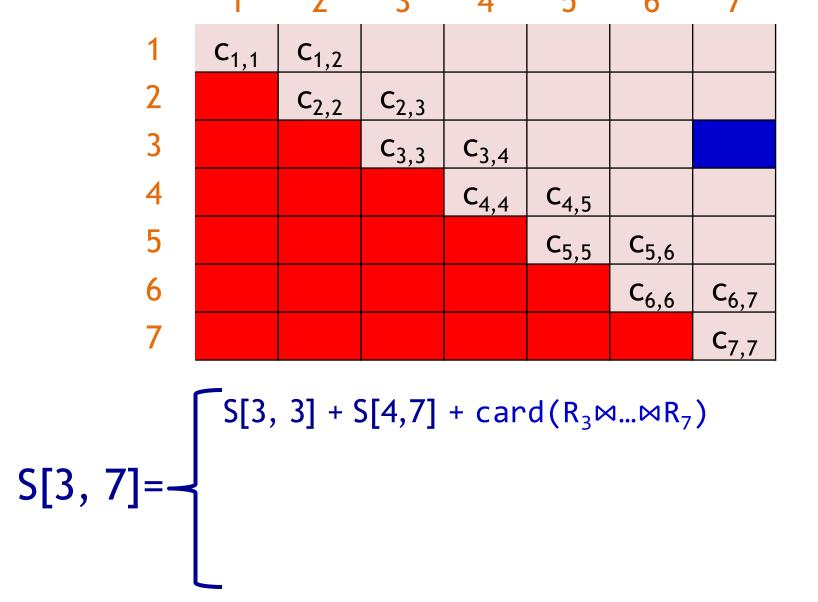


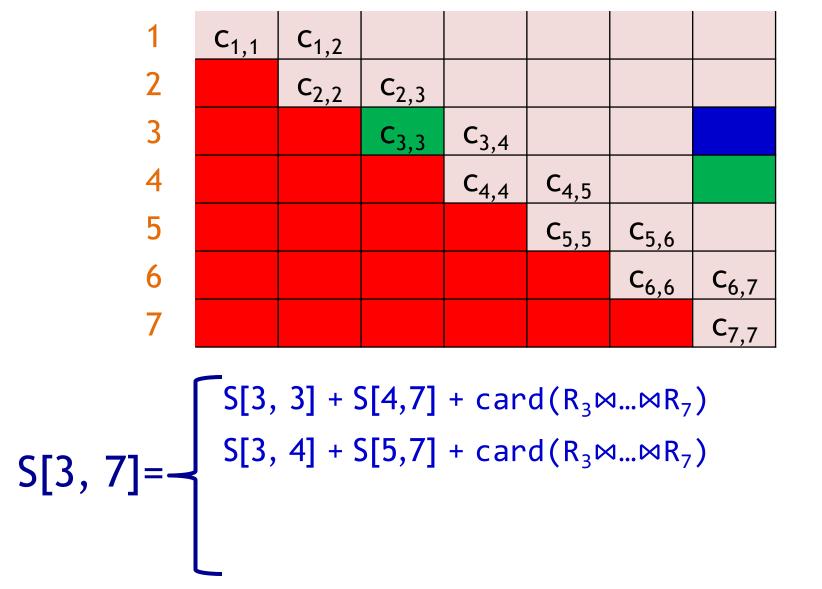


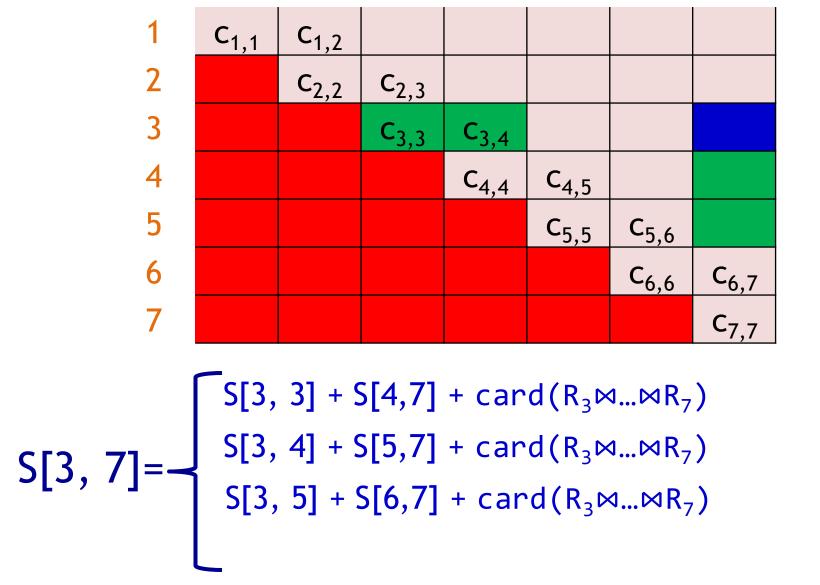


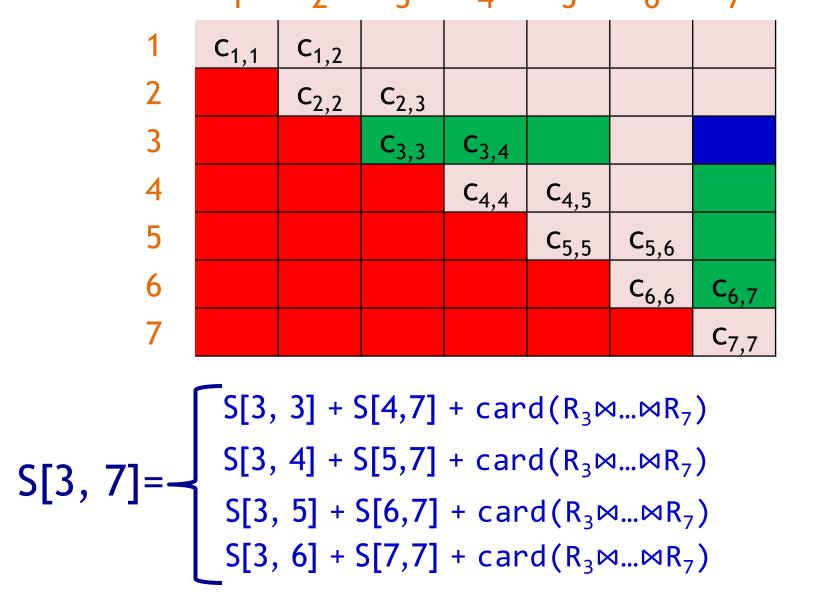


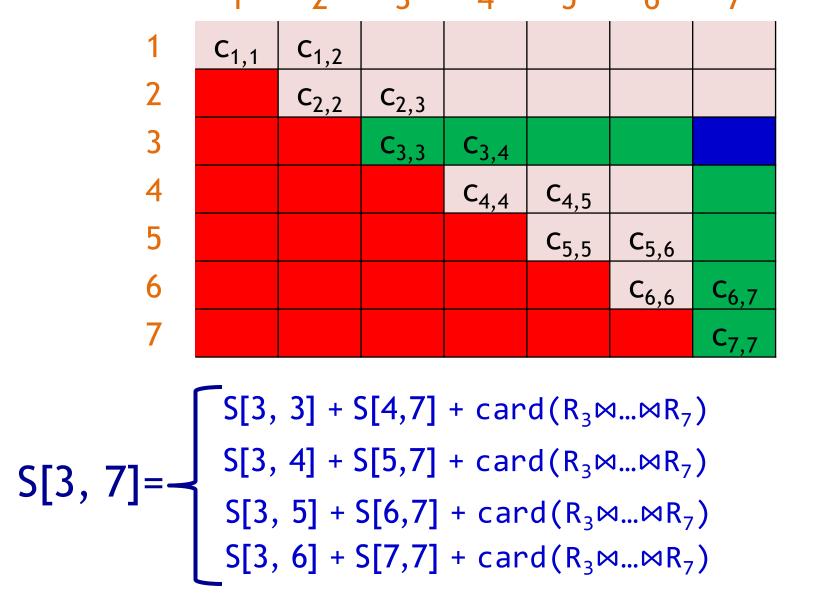




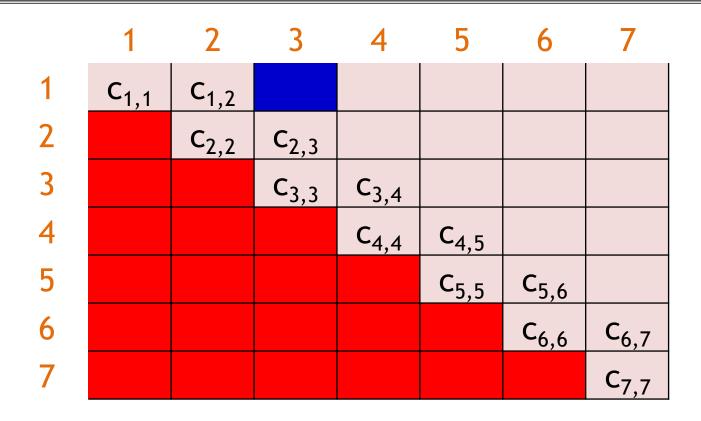




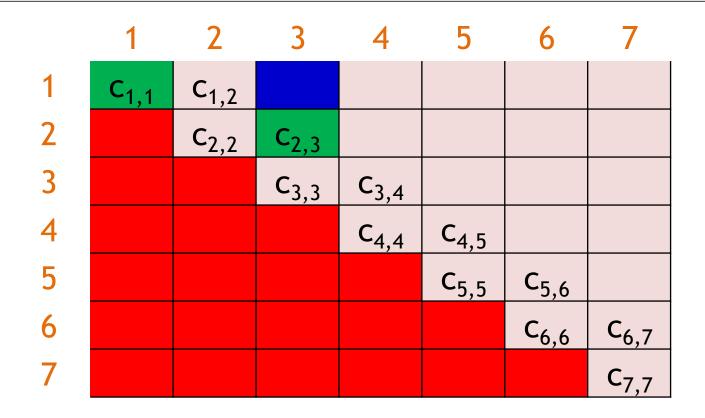


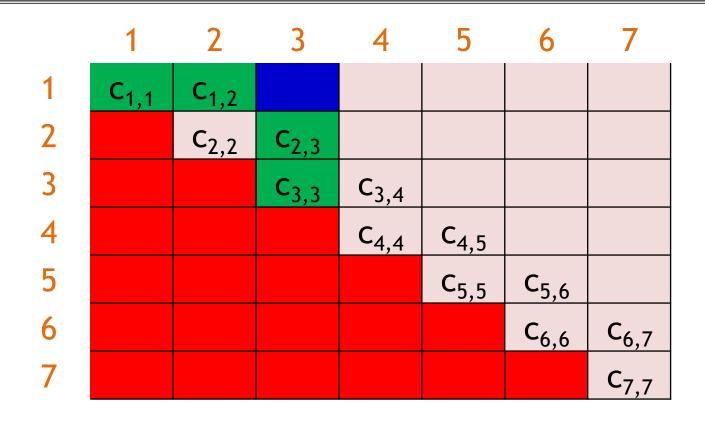


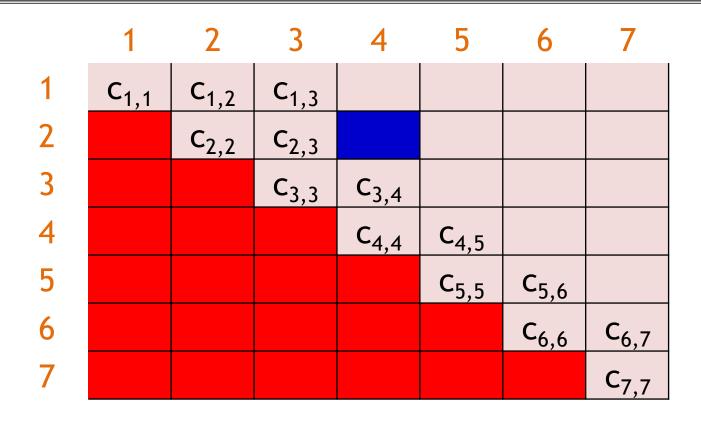
Correct Way to Traverse

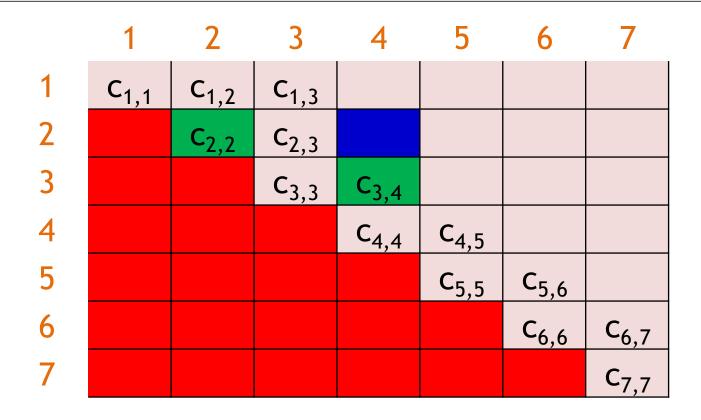


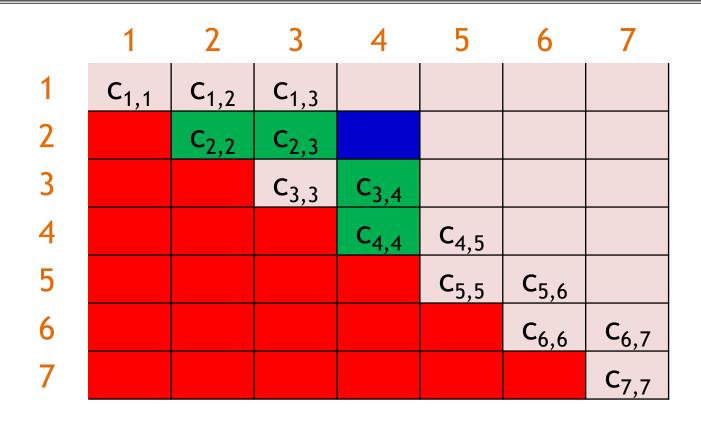
The Way We Should Traverse

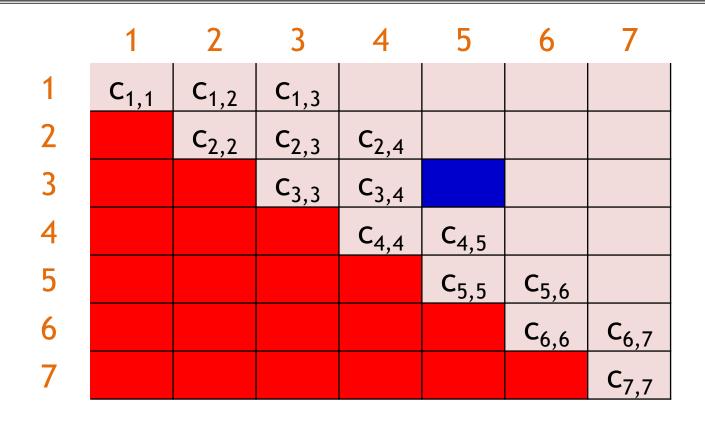


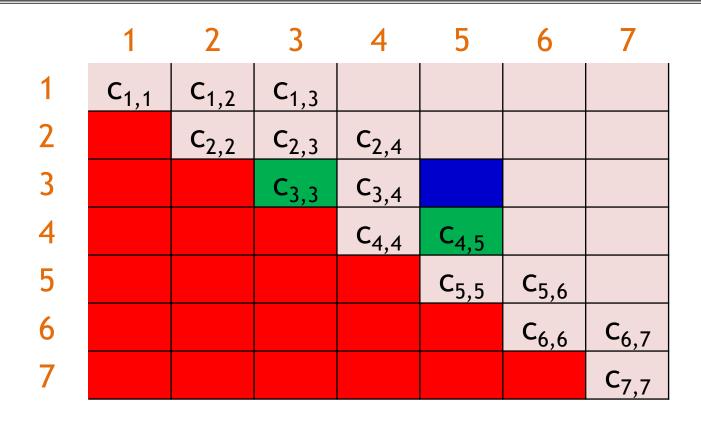


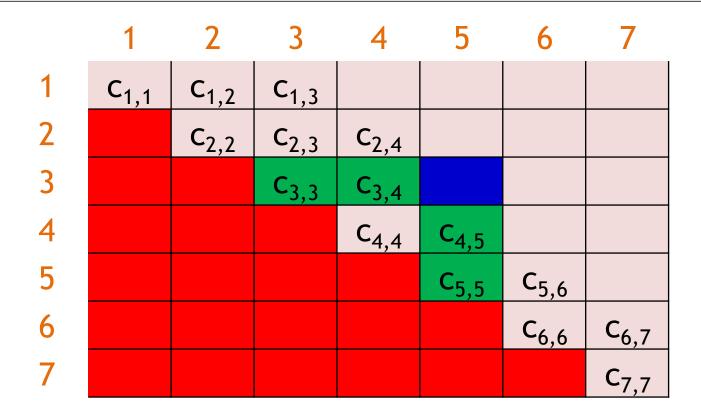


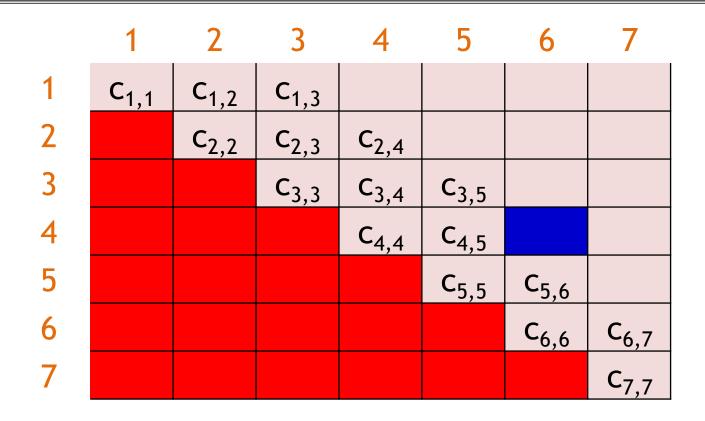


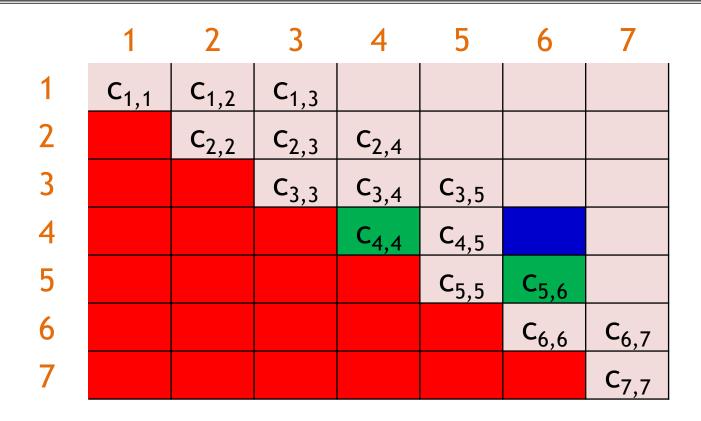


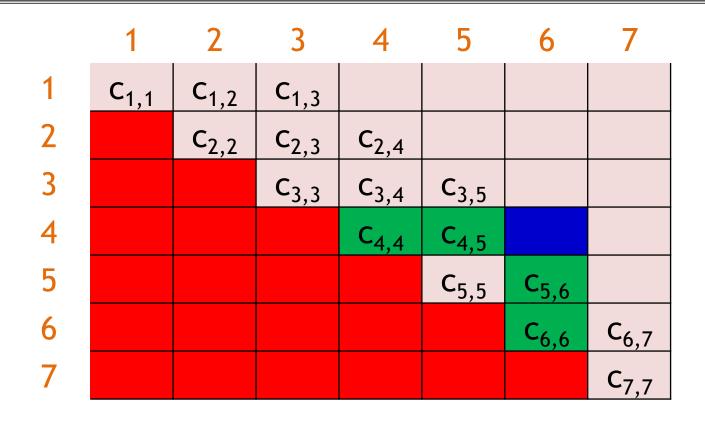


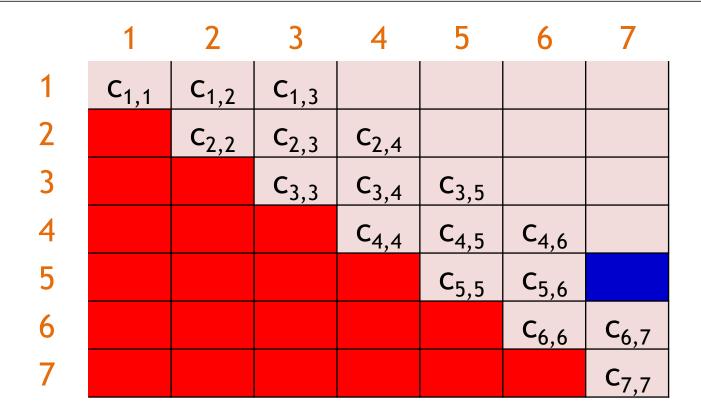


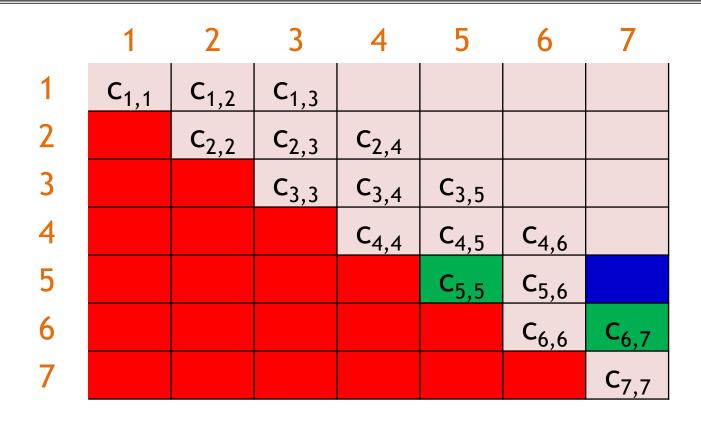


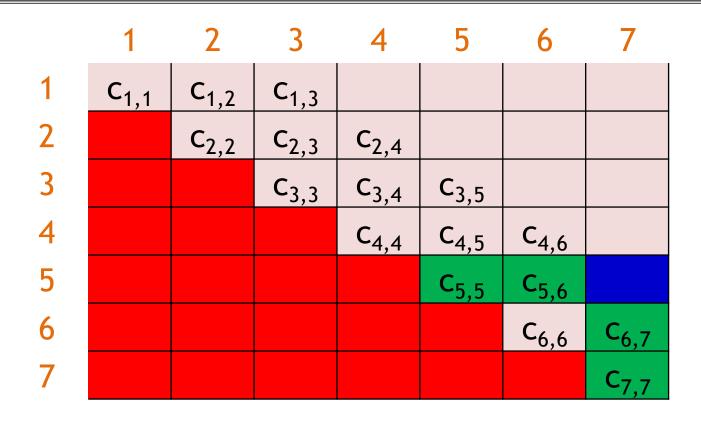


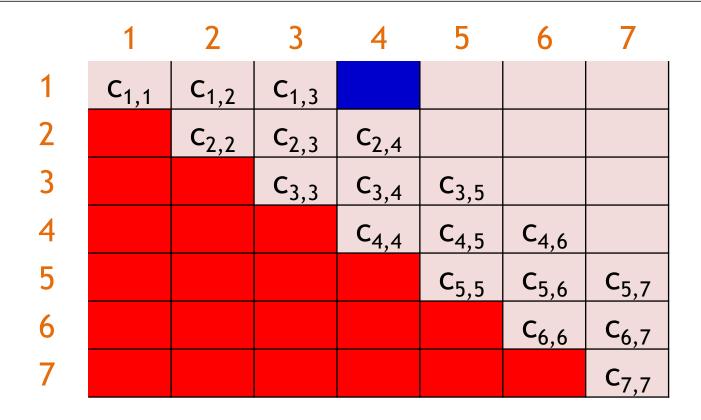


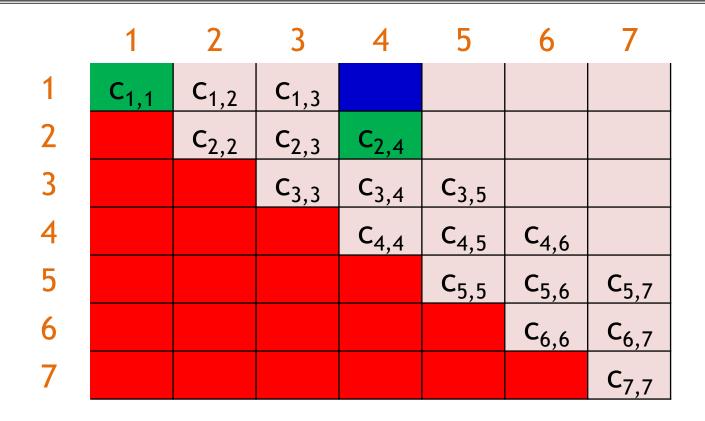


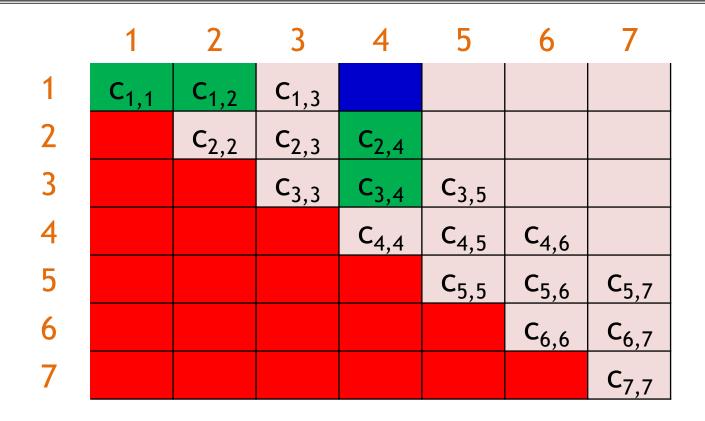


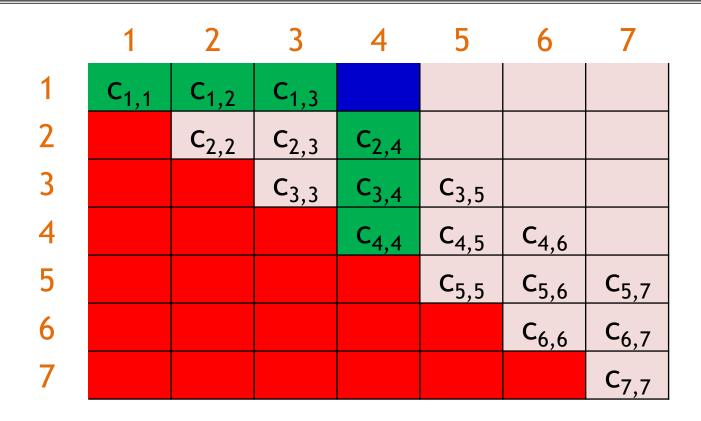


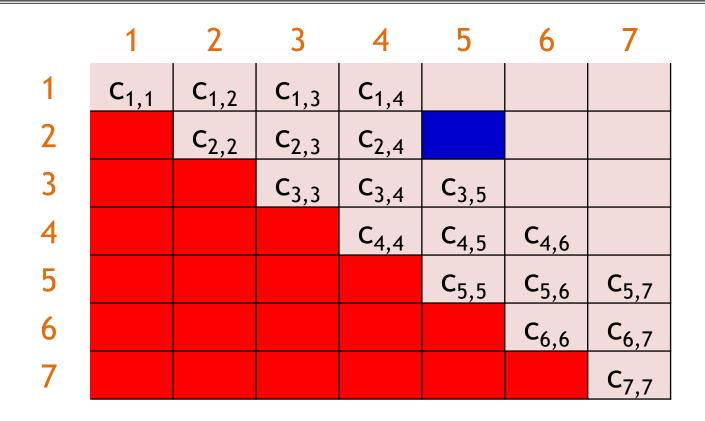


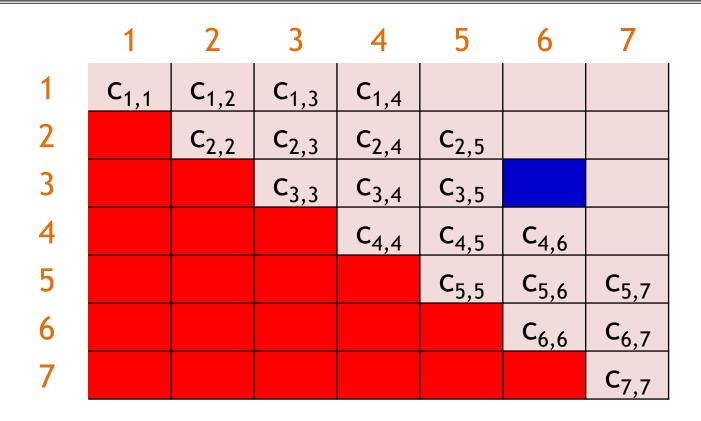


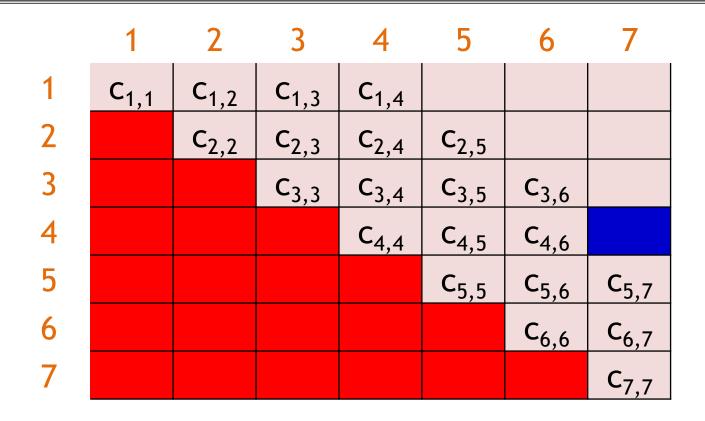


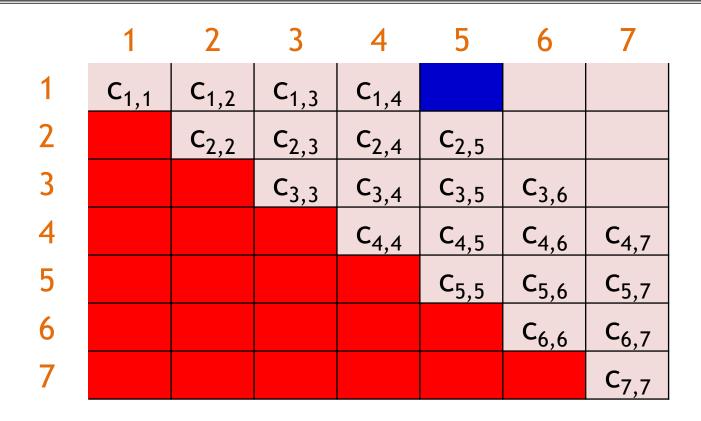


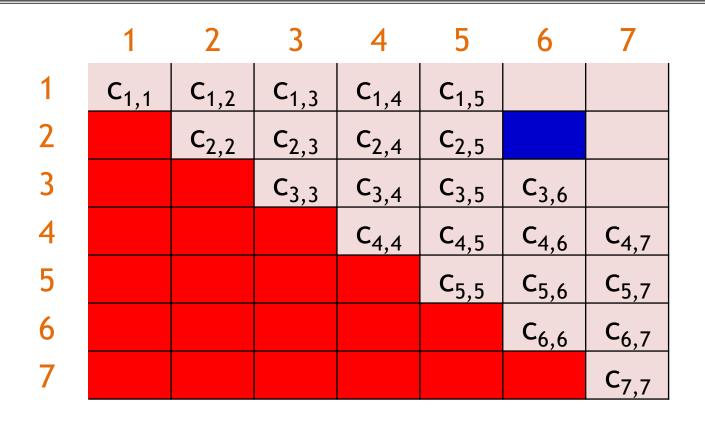


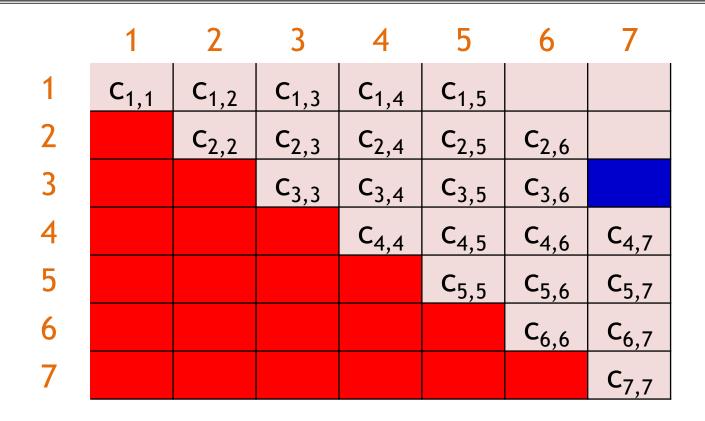


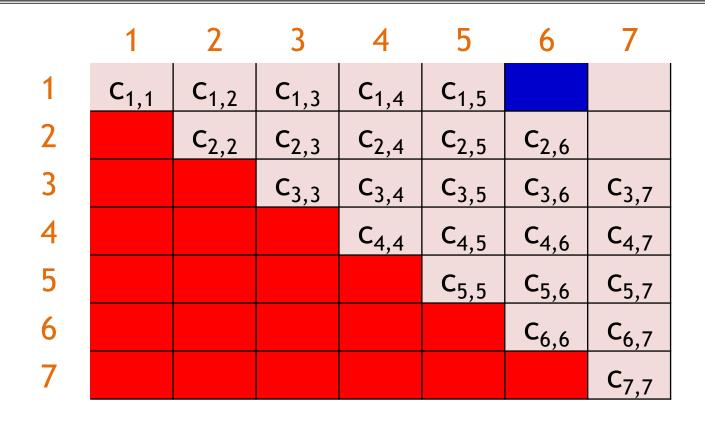


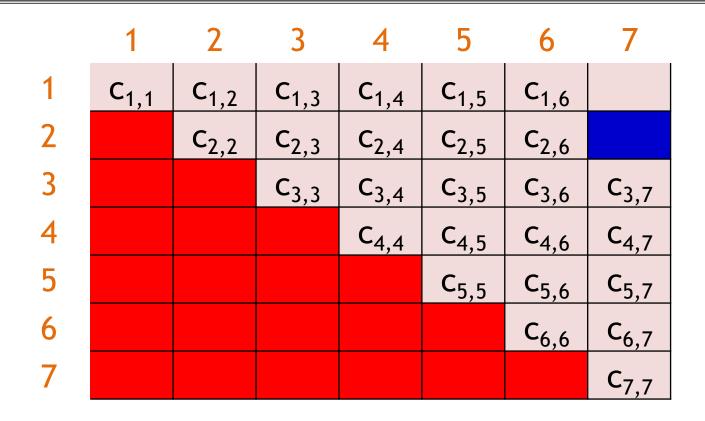


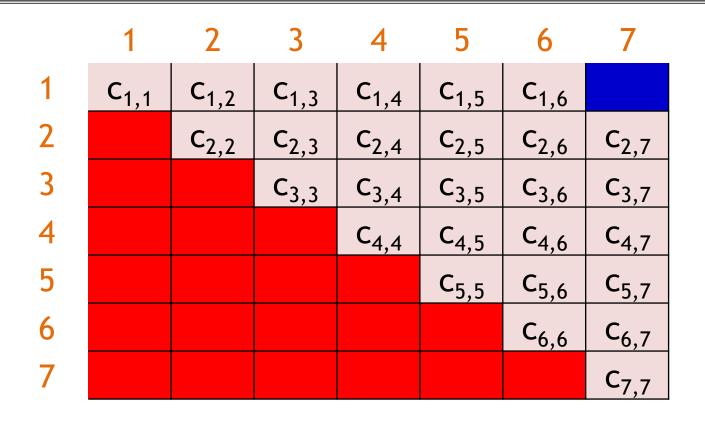




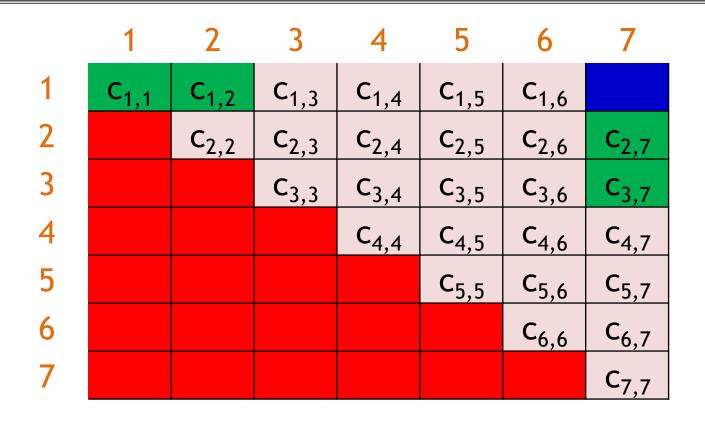






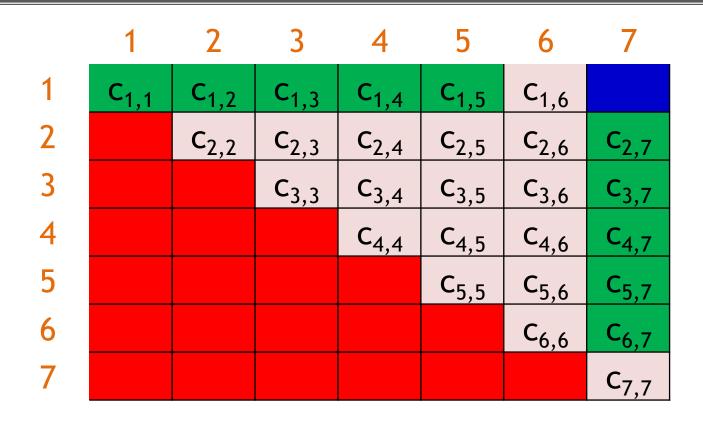


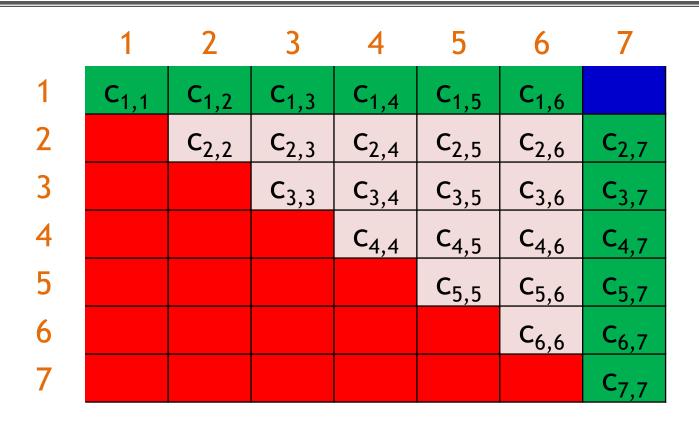
	1	2	3	4	5	6	7
1	C _{1,1}	C _{1,2}	C _{1,3}	C _{1,4}	C _{1,5}	C _{1,6}	
2		C _{2,2}	C _{2,3}	C _{2,4}	C _{2,5}	C _{2,6}	C _{2,7}
3			C _{3,3}	C _{3,4}	C _{3,5}	C _{3,6}	C _{3,7}
4				C _{4,4}	C _{4,5}	C _{4,6}	C _{4,7}
5					C _{5,5}	C _{5,6}	C _{5,7}
6						C _{6,6}	C _{6,7}
7							C _{7,7}

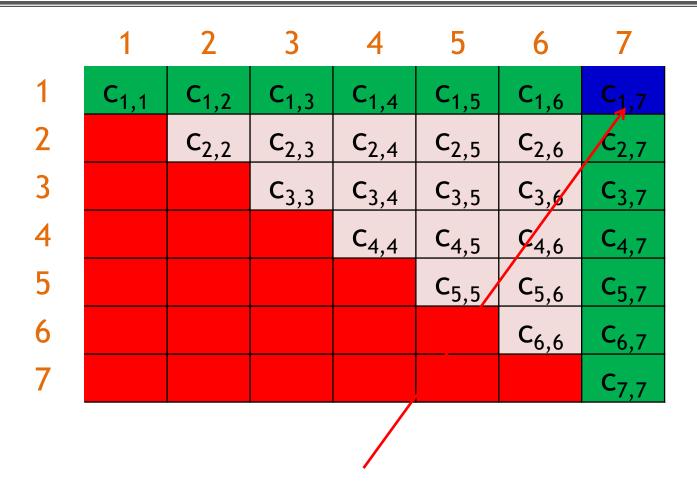


	1	2	3	4	5	6	7
1	C _{1,1}	C _{1,2}	C _{1,3}	C _{1,4}	C _{1,5}	C _{1,6}	
2		C _{2,2}	C _{2,3}	C _{2,4}	C _{2,5}	C _{2,6}	C _{2,7}
3			C _{3,3}	C _{3,4}	C _{3,5}	C _{3,6}	C _{3,7}
4				C _{4,4}	C _{4,5}	C _{4,6}	C _{4,7}
5					C _{5,5}	C _{5,6}	C _{5,7}
6						C _{6,6}	C _{6,7}
7							C _{7,7}

	1	2	3	4	5	6	7
1	C _{1,1}	C _{1,2}	C _{1,3}	C _{1,4}	C _{1,5}	C _{1,6}	
2		C _{2,2}	C _{2,3}	C _{2,4}	C _{2,5}	C _{2,6}	C _{2,7}
3			C _{3,3}	C _{3,4}	C _{3,5}	C _{3,6}	C _{3,7}
4				C _{4,4}	C _{4,5}	C _{4,6}	C _{4,7}
5					C _{5,5}	C _{5,6}	C _{5,7}
6						C _{6,6}	C _{6,7}
7							C _{7,7}







Note, this is the final solution (not the join plan but the cost of the opt plan)

Solution (w/ correct index accesses)

Let S[][] be an n by n array storing solutions to sub-queries

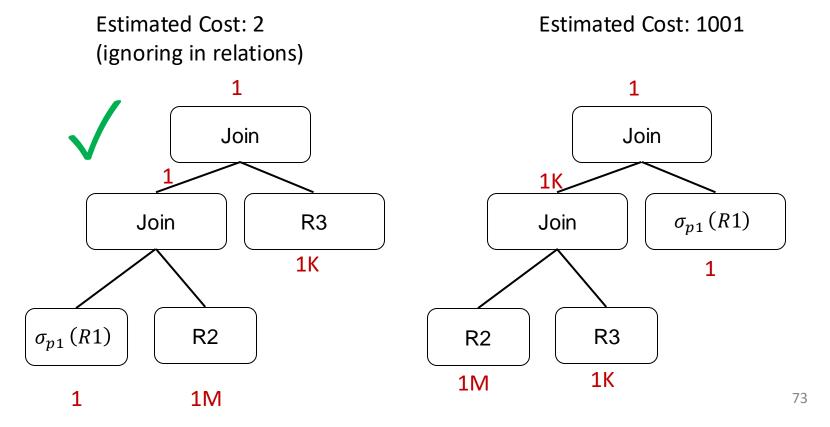
```
S[i][j] is min cost of joining R<sub>i</sub>, ..., R<sub>i</sub>
procedure DP-Join-Order(R<sub>1</sub> ... R<sub>n</sub>):
 Base Cases:S[i][i]=|R_i|;S[i][i+1]=|R_i|+|R_{i+1}|+card(R_i \bowtie R_{i+1})
  for d = 3 ... n
   c = d; // column index
   for r = 1 \dots n-d+1 // row index
      \min_{r,c} = +\infty
      for k = r, ... c-1 // different split points
         \min_{r,c} = \min(\min_{r,c}, S[r][k]+S[k+1][c]+card(R_r \bowtie ... \bowtie R_c))
      S[r][c] = min_{r,c}
      c++;// each time we increment r also increment c
return S[1][n]
```

Outline For Today

- 1. Goal of Query Optimization and Overview of Techniques
- 2. Cost-based Optimization Principles
- 3. Cost-based DP Logical Join Plan Optimizer
- 4. Cardinality Estimation Techniques
- 5. Rule-based Optimizations/Transformations
- 6. Final Remarks on Query Optimization & Query Processing

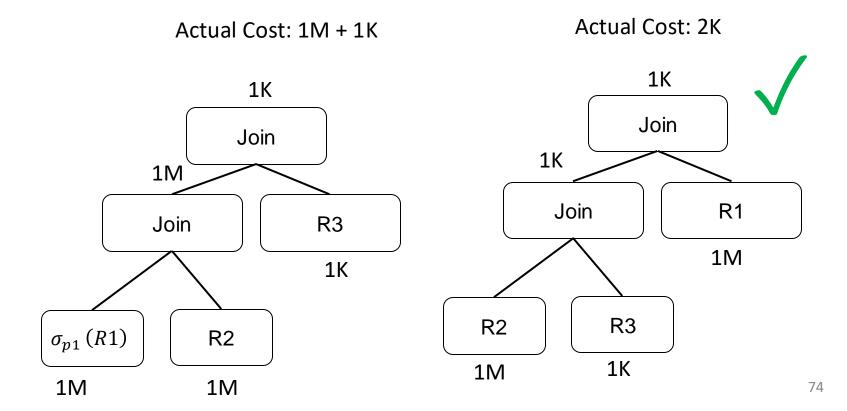
Recall Example Poor Optimizer Choice

- > Suppose cost(o_i): # input tuples processed.
- $\triangleright \ \sigma_{p1}(R1) \bowtie R2 \bowtie R3$
- > Suppose $\sigma_{p1}(R1) = 1M$ but DBMS underestimates as 1
- ➤ Suppose |R2| = 1M and |R3| = 1K
- > Suppose output of join has the size of the minimum input relation



Recall Example Poor Optimizer Choice

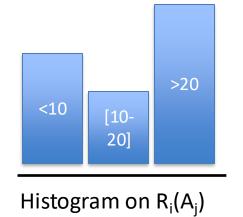
- Suppose cost(o_i): # input tuples processed.
- $\triangleright \ \sigma_{p1}(R1) \bowtie R2 \bowtie R3$
- > Suppose $\sigma_{p1}(R1) = 1M$ but DBMS underestimates as 1
- \triangleright Suppose |R2| = 1M and |R3| = 1K
- > Suppose output of join has the size of the minimum



2 High-level Card. Estimation Techniques

1. Sampling-based:

- While optimizing Q, sample relations to make an estimate
- 2. Summary/statistics-based:
 - Use statistics about D to make estimates
 - Possible statistics:
 - → |R_i|: size of each relation
 - \rightarrow $|\pi_{Aj}(Ri)|$ # distinct values in column A_j
 - Histograms: Distribution of values on A_j
 - Also use known constraints:



- \triangleright E.g. FK constraint from R to S: $|R \bowtie S| = |R|$
- 2 common simplification assumptions (no other good reason):

(i) uniformity; (ii) independence

Example Statistics-based Estimation Techniques

Selections with Equality Predicates

- $\triangleright Q: \sigma_{A=v}R$
- Suppose the following information is available:
 - \triangleright Size of R: |R|
 - \triangleright Number of distinct A values in R: $|\pi_A R|$
- > Assumptions:

- wild assumption, often doesn't hold
- 1. Values of *A* are *uniformly distributed* in *R*
- 2. $\vee \in |\pi_A R|$
- $\triangleright |Q| \approx |R|/|\pi_A R|$

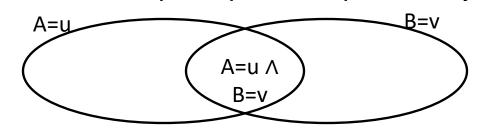
- fair assumption, often holds (b/c users search things they put in the db)
- > Selectivity factor of (A = v) is $\frac{1}{|\pi_A R|}$
- \triangleright Ex: |Product| = 1000, $|\pi_{name}(Product)| = 50$
 - $\triangleright \sigma_{name=BookA} Product$: 1000/50 = 20

Conjunctive Predicates

- $\triangleright Q: \sigma_{A=u \land B=v}R$
- Additional assumption:
 - 3. (A = u) and (B = v) are independent
 - Counter example: age and salary
- $\triangleright |Q| \approx |R| / |\pi_A R| \cdot |\pi_B R|$
 - Reduce total size by all selectivity factors
 - > Directly derived from standard probability rules:
 - $ightharpoonup \Pr(E_1) = p_1$, and $\Pr(E_2) = p_2$ and E_1 and E_2 are independent:
 - $ightharpoonup Pr(E_1 \wedge E_2) = p_1 * p_2$
 - \triangleright Ex: Pr(heads \land dice=6) = 1/2 * 1/6 = 1/12
- > Ex: |Prod| = 1000, $|\pi_{name}(Prod)| = 50$, $|\pi_{merchant}(Prod)| = 4$
 - $\triangleright \sigma_{name=BookA \land marchant=B\&N} \ Product: 1000/(50*4) = 5$

Negated and Disjunctive Predicates

- $\triangleright Q: \sigma_{A\neq v}R$
 - $\triangleright |Q| \approx |R| \cdot \left(1 \frac{1}{|\pi_A R|}\right)$
 - \triangleright Selectivity factor of $\neg p$ is (1 selectivity factor of p)
- $\triangleright Q: \sigma_{A=u \vee B=v}R$
 - $> |Q| \approx |R| \cdot (1/|\pi_A R| + 1/|\pi_B R|)?$
 - \triangleright No! Tuples satisfying (A = u) and (B = v) are counted twice
 - \triangleright Use only for $\sigma_{A=u \vee A=v}R$ (b/c then A=u and A=v are disjoint)
 - $> |Q| \approx |R| \cdot (1/|\pi_A R| + 1/|\pi_B R| 1/|\pi_A R||\pi_B R|)$
 - Inclusion-exclusion principle from probability

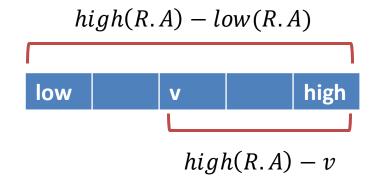


Range Predicates

- $\triangleright \ \sigma_{A>u} R?$
- Case 1: Suppose the DBMS knew actual projection values:
 - \triangleright Then range queries are a generalization of $\sigma_{A=u \vee A=v} R$
 - $\triangleright \ \sigma_{A>u} R = |Q| \approx |R| \cdot {|\#vals>u| / |\pi_A R|}$?
 - > E.g. A was an int column and $|\pi_A R| = \{1, 2, 3, 4, 5\}$
 - $> \sigma_{A>2}R = |R| * 3/5$

Case 2 of Range Predicates

- Case 2: We don't know actual values
- Not enough information!
 - > Just pick a *magic constant*, e.g., $|Q| \approx |R| \cdot \frac{1}{3}$
- With more information
 - Largest R.A value: high(R.A)
 - \triangleright Smallest R.A value: low(R.A)
 - $ightharpoonup |Q| \approx |R| \cdot \frac{\operatorname{high}(R.A) v}{\operatorname{high}(R.A) \operatorname{low}(R.A)}$



- In practice: sometimes the second highest and lowest are used
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!

Equi-Join of Two Relations (1)

- \triangleright $Q: R(A,B) \bowtie S(A,C)$
- Assumption: containment of value sets:
 - Every tuple in the "smaller" relation (one with fewer distinct values for the join attribute) joins with a tuple in the other relation
 - ightharpoonup That is, if $|\pi_A R| \leq |\pi_A S|$ then $\pi_A R \subseteq \pi_A S$
 - Certainly not true in general
 - > But holds in the common case of foreign key joins
- $\triangleright |Q| \approx \frac{|R| \cdot |S|}{\max(|\pi_A R|, |\pi_A S|)}$
 - > Selectivity factor of R.A = S.A is $\frac{1}{\max(|\pi_A R|, |\pi_A S|)}$

Equi-Join of Two Relations (2)

Example:

R		
Α	В	
a_{1}	b_1	
a_{1}	b ₂	
a_{1}	b ₃	
a_{1}	b ₄	

$$\pi_A R = \{\mathsf{a_1}\}$$

S		
Α	С	
a ₁	c_{1}	
a ₁	C ₂	
a ₂	C ₃	
a ₂	C ₄	

$$\pi_A S = \{a_1, a_2\}$$

- $\triangleright |Q| \approx \frac{|R|\cdot|S|}{\max(|\pi_A R|, |\pi_A S|)} = 4x4/2 = 8 \text{ (correct)}$
- \triangleright If we had picked m $in(|\pi_A R|, |\pi_A S|)$, then we'd over-estimate
 - > Intuitively a fraction of tuples from the larger-domain table will join with each tuple from smaller-domain table (not vice versa)

Other Estimations Techniques

- ➤ Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- > Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
- In practice: Very very difficult but very important for the optimizer.
 - B/c: ultimate goal is to help estimate costs of operators & plans
 - ➤ If we badly underestimate an expression => may lead to bad plans

Outline For Today

- 1. Goal of Query Optimization and Overview of Techniques
- 2. Cost-based Optimization Principles
- 3. Cost-based DP Logical Join Plan Optimizer
- 4. Cardinality Estimation Techniques
- 5. Rule-based Optimizations/Transformations
- 6. Final Remarks on Query Optimization & Query Processing

Rule-based Transformations

- > DP-based join optimizer algorithm only considered join-only queries
- What if there was a selection, projection, group-by aggregate etc?
- ➤ When possible we consider them as we enumerate plans but often in a rule-based manner

Example (1)

```
SELECT *

FROM R1 NATURAL JOIN R2 NATURAL JOIN R3 NATURAL JOIN R4

WHERE R1.A1 = "foo" AND R3.A3="bar"
```

- Intuitively instead of enumerating a plan for R1 we should enumerate a plan for relation: $\sigma_{A1=foo}(R1)$
- \triangleright Similarly instead of R2, we should enumerate plans for $\sigma_{A3=bar}(R3)$
- ➤ Why?
- > But not if the predicate was: R1.A1 = "foo" OR R3.A3="bar"
- What to enumerate is governed by algebraic laws
 - > This is an important advantage of implementing a query language that's based on a formal algebra: i.e., relational algebra

Example (2)

```
SELECT *

FROM R1 NATURAL JOIN R2 NATURAL JOIN R3 NATURAL JOIN R4

WHERE R1.A1 = "foo" AND R3.A3="bar"
```

In relational algebra:

$$\sigma_{A1=foo \land A3=bar} (R1 \bowtie R2 \bowtie R3 \bowtie R4) = (\sigma_{A1=foo} (R1) \bowtie R2 \bowtie \sigma_{A3=bar} (R3) \bowtie R4)$$

- > The expression effectively joins these smaller relations:
 - i. $\sigma_{A1=foo}(R1)$
 - *ii. R2*
 - *iii.* $\sigma_{A3=bar}$ (R3)
 - iv. R4
- > What if WHERE clause was R1.A1 = "foo" OR R3.A3="bar"?
 - Apply the predicate only for sub-queries with both R1 and R3.
- > The above algebraic law is called: *pushing down selections*

Ex Algebraic Transformation Rules (1)

Will use pure rel. algebra notation but can use our logical plan notation

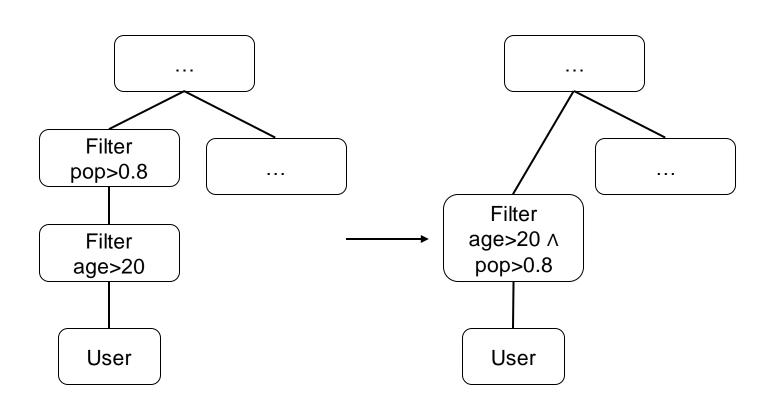
- \triangleright Convert σ_p - \times to/from \bowtie_p : $\sigma_p(R \times S) = R \bowtie_p S$
 - ightharpoonup Example: $\sigma_{User.uid=Member.uid}(User imes Member) = User imes Member$

- ightharpoonup Merge/split σ 's: $\sigma_{p_1}(\sigma_{p_2}R) = \sigma_{p_1 \wedge p_2}R$
 - \triangleright Example: $\sigma_{age>20}(\sigma_{pop=0.8}User) = \sigma_{age>20 \land pop=0.8}User$

- Merge/split π 's: $\pi_{L_1}(\pi_{L_2}R) = \pi_{L_1}R$ (note $L_1 \subseteq L_2$ must hold for the expression to be valid)
 - \triangleright Example: $\pi_{age}(\pi_{age,pop}User) = \pi_{age}User$

Example In Logical Plan Notation

- ightharpoonup Merge/split σ 's: $\sigma_{p_1}(\sigma_{p_2}R) = \sigma_{p_1 \wedge p_2}R$
 - ightharpoonup Example: $\sigma_{age>20} (\sigma_{pop=0.8} User) = \sigma_{age>20 \land pop=0.8} User$



Ex Algebraic Transformation Rules (2)

 \triangleright Push down/pull up σ :

$$\sigma_{p \wedge p_r \wedge p_s}(R \bowtie_{p'} S) = (\sigma_{p_r} R) \bowtie_{p \wedge p'} (\sigma_{p_s} S)$$
, where

- $\triangleright p_r$ is a predicate involving only R columns
- $\triangleright p_S$ is a predicate involving only S columns
- $\triangleright p$ and p' are predicates involving both R and S columns
 - > i.e., p an additional join predicate
- Example:

```
\sigma_{\text{U1.name}=\text{U2.name}\land U1.\text{pop}>0.8\land U2.pop>0.8}(\rho_{U1}User\bowtie_{U1.uid\neq U2.uid}\rho_{U2}User)
=\sigma_{pop>0.8}(\rho_{U1}User)\bowtie_{U1.uid\neq U2.uid,U1.name=U2.name}(\sigma_{pop>0.8}(\rho_{U2}User))
```

- Why should you always push selections down if possible?
 - > Selections are relatively cheap (e.g., compared to joins or group-by and aggregates) and can only reduce the number tuples processed.

Example In Logical Plan Notation

```
\sigma_{\text{U1.name}=\text{U2.name}\land U1.\text{pop}>0.8\land U2.pop>0.8}(\rho_{U1}User\bowtie_{U1.uid\neq U2.uid}\rho_{U2}User)
 = \sigma_{pop>0.8}(\rho_{U1}User) \bowtie_{U1.uid\neq U2.uid,U1.name=U2.name} (\sigma_{pop>0.8}(\rho_{U2}User))
          Filter
                                                                             Join
 U1. name = U2. name
                                                                     U1.uid \neq U2.uid
    \wedge U1. pop > 0.8
                                                                 \wedge U1. name = U2. name
    \land U2.pop > 0.8
           Join
   U1.uid \neq U2.uid
                                                               Filter
                                                                                        Filter
                                                         U1. pop > 0.8
                                                                                   U1. pop > 0.8
U1
                          U2
                                                                U1
```

U2

Ex When σ Cannot Be Pushed

- Outer Joins
- ightharpoonup E.g: (1) $\sigma_{D>15}(R\bowtie_{R.B=S.C}S)$!= (2) $(R\bowtie_{R.B=S.C}\sigma_{D>15}(S))$
- Consider R and S instances below:
- > (1)'s output is empty
- > (2)'s output is (123, abc, null, null)

R	
<u>A</u>	<u>B</u>
123	abc

S	
<u>C</u>	<u>D</u>
abc	17

- Could have pushed the selection if the predicate was on A.
- You can only push when you guarantee the equality of original expression and the pushed-down expression

Ex Algebraic Transformation Rules (3)

- > Push down π : $\pi_L(\sigma_p R) = \pi_L(\sigma_p(\pi_{LL'}R))$, where
 - \triangleright L' is the set of columns referenced by p that are not in L
 - > Example:

$$\pi_{age}(\sigma_{pop>0.8}User) = \pi_{age}(\sigma_{pop>0.8}(\pi_{age,pop}User))$$

- \blacktriangleright Not as important and effective as pushing σ
- Many more equivalences can be systematically used to transform plans

Outline For Today

- 1. Goal of Query Optimization and Overview of Techniques
- 2. Cost-based Optimization Principles
- 3. Cost-based DP Logical Join Plan Optimizer
- 4. Cardinality Estimation Techniques
- 5. Rule-based Optimizations/Transformations
- 6. Final Remarks on Query Optimization & Query Processing

Final Remarks (1)

- Query Optimizer and Cardinality Estimator: Brain of the DBMS
 - Ultimate Goal: Pick a reasonable plan (i.e,. one processing few tuples)
- Query Processor and Storage: Skeleton
 - > They do actual data searching and computation
- Several insights have emerged over the years in DBMS literature:
 - Cost model is not very critical: keep a simple model (e.g., # tuples)
 - Cardinality estimation: matters a lot
 - ➤ But! Extremely difficult to integrate a good estimator. Always a hack with wild unrealistic assumptions here and there to make it implementable: magic constants, uniformity assumptions, independence assumptions etc.
- > My advice: Optimizer is important but keep it simple.
 - Do not be complacent on the query processor and storage! Work very hard on these and optimize relentlessly!

Final Remarks (2)

- CS 448: Database Systems Implementation
 - Gets into many more details about the internals of query processing and optimization and other DBMS components!
 - ➤ A3's programming question is meant to give you a glimpse of CS 448 assignments.