
CS 348 Lecture 1

Course Overview & Organization

Semih Salihoğlu

Jan 6th, 2025

1

Outline For Today

1. Overview of DBMSs: 3 Major Contributions of the Field

1. Set of DBMS Features for Applications

2. Physical Data Independence/High-level Query Languages

3. Transactions

2. Course Diagram & Administrative Information

2

Outline For Today

1. Overview of DBMSs: 3 Major Contributions of the Field

1. Set of DBMS Features for Applications

2. Physical Data Independence/High-level Query Languages

3. Transactions

2. Course Diagram & Administrative Information

3

What is a Database Management System (DBMS)?

4

DBMS

Applications

OS

Queries/modifications Answers/responses

File system interface

Storage system interface

Disk(s)

Main Set of DBMS Features

5

➢ High-level Data Model and Query Language

➢ Efficient access and processing of data

➢ Scalability:

➢ Handling of Large Data, i.e., Out-of-memory Data

➢ 10-100Ks of concurrent data access/sec

➢ Safe access and processing of data:

➢ Maintenance of the integrity of the data upon updates

➢ Multi-User access to data (Concurrency)

➢ Fault tolerant storage of data

Main Contributions of the Field?

6

1. The System

2. High-level/Declarative Programming

➢ Ingredients: Relational Data Model & Algebra: A model based on

set theory (so a formal mathematical theory)

➢ Provides ability to generate automatic efficient algorithms for

many data processing tasks

3. Transactions

➢ Principles of concurrent data-manipulating app. development

Why App Developers Need a DBMS?

7

➢ Application: Order & Inventory Management in E-commerce

➢ E.g.: Amazon or Alibaba
Customers &

End Devices
Product

Shipments & Arrivals

Managers &

Analytics Apps

App Software/

Servers

Storage Software

Server & Device

Let’s simplify the design: assume a single server will accept requests from app

software to keep track of and serve your records: orders, new products, etc.

Service Requirement

➢ Thousands of requests/sec

Bad Idea: Write Storage Software in Java/C++

orders.txt

➢ Possible Approach: Directly use the file system of the OS.

➢ E.g: one or more files for orders, customers, products etc.

customers.txt products.txt

➢ Problem: Physical Record Design?

➢ Suppose you record: name, birthdate for each customer

➢ How many bytes for each fact?

➢ E.g.: Encoding of string names? Fixed or variable length?

➢ Many sub-problems: E.g.: How to quickly find a record?

PR1: Example Physical Record Designs (1)

name-len (bytes) name payload birthdate (fixed 4 bytes)

➢ Variable-length design

11 Alice Smith 2001/09/08

6 Ali Jo 1992/02/25

19 Alexander Desdemona 2002/05/20

26 Montgomery Cambridgeshire 1992/02/25

… … … … … … … … …

customers.txt

➢ Fixed-length design

null 11 Alice Smith ---------- 2001/09/08

Overflow ptr len name (16 byte) birthdate (4 bytes)

customers.txt customer-overflow.txt

0 19 Alexander Desdem 2002/05/20

null 19 Ali Jo ------------------ 1992/02/25

… … … …

ona idgeshire ….

… … ….

PR1: Example Physical Record Designs (2)

name-leng (bytes) name payload birthdate (fixes 4 bytes) prev ptr next ptr

➢ Chained Design: Maybe to keep in sorted alphabetical order

r0 11 Alice. 2001/09/08 r0 r3

r2 6 Ali Jo 1992/02/25 r1 r0 r3 26 Montgom. 1992/02/25 r0 r7

customers.txt

Takeaway 1: Many designs options & difficult for app developers!

Takeaway 2: Bytes not the right data abstraction to program apps.

r1 19 Alexander. 2002/05/20 null r2

r4 … … … … … r5 … … … … …
`

PR2: Efficient Query/Analytics Algorithms

➢ Managers Ask: Who are top paying customers?

➢ Task: Compute total sales by customer

➢ Assume in record layout every field is fixed length

➢ Problem: App developer needs to implement an algorithm.

orders.txt

O1 Cust1 BookA $20

O2 Cust2 WatchA $120

O3 Cust1 DiapersB $30

O4 Cust3 MasksA $15

… … … …

… … … …

Possible Algorithm 1:
file = open(“orders.txt”)
HashTable ht;
for each line in file:
// some code to parse custID and price
 if (ht.contains(custID))
 ht.put(custID, ht.get(custID) + price)
 else: ht.put(custID, price);
file.close();

Possible High-level Algorithm 2:
sort orders.txt on CustID
orders of Cust_i are now consecutive
read sorted records sequentially
and sum prices for each C_i

Which sorting algorithm to use?

Should one parallelize sorting? How?

PR2: Efficient Query/Analytics Algorithms

➢ That is only for 1 question. There will be many questions:

➢ List of orders that bought a product that cost > $500

➢ Last order from cust4?

➢ Who are closest co-purchasers of Cust4? (i.e., who bought

the same item as Cust4, ordered by the #co-purchases.)

➢ Many many more (thousands) important business questions:

➢ For each question numerous possible algorithms and

implementations.

Takeaway 1: Many algs & implementations. Difficult to choose.

Takeaway 2: Writing an algorithm for each task won’t scale!

PR3: Scalability

➢ Large-scale Data: Data > Memory

➢ E.g. orders.txt grows to terabytes & does not fit in memory.

➢ Often the case for data-intensive applications

➢ Need ``External’’ algorithms, i.e., uses disk to scale

➢ Hard to write such algorithms. Challenge:

➢ Try implementing a good external sorting algorithm?

➢ Scale to: 10K~100Ks of requests/sec

➢ Hard to write code that efficiently supports such workloads.

Takeaway: Hard and have nothing to do w/ the app logic!

App developers should focus on the app!

PR4: Integrity/Consistency of The Data (1)

➢ Many ways data can be corrupted:

➢ Often: Wrong application logic or bugs in application

➢ E.g: Checkout App’s “Checkout As Guest”

➢Writes the Order record

➢And the Customer record

➢Assume Bob shops again

➢ (Bob, 1999/05/07) is duplicated!

Orders.txt Customers.txt Products.txt

O7 Bob BookC $17

Likely an inconsistency.

We’d want to enforce the invariant:

No duplicate cust records!

Bob 1999/05/07

O8 Bob TVA $90

PR4: Integrity/Consistency of The Data (2)

➢ E.g: Checkout App’s “Checkout As Guest”

➢Writes the Order record

➢But not the Customer record

➢ (Bob, 1999/05/07) is not in Customers.txt.

Orders.txt Customers.txt Products.txt

O7 Bob BookC $17

X
Likely an inconsistency.

We’d want to enforce the invariant:

Every order’s cust record exists!

➢ Another example momentarily in concurrency

PR5: Concurrency: Multiple Conflicting Requests

➢ Alice & Bob concurrently order BookA: suppose 1 left in stock.

Product NumInStock

… …

BookA 1

… …

Buy_Product_Subroutine(string prodName):
(prod, numInStock) = readProduct(prodName)
if (numInStock > 0):
 writeProduct((prod, numInStock - 1)
else throw(“Cannot buy product!”);

r: (A, 1)

ti
m

e

r: (A, 0)

w: (A, 0)

r: (A,1)

w:(A,0)

r:(A,0)

r: (A,1)r: (A,1)

w:(A,0)

w:(A,0)

No Book

X
No Book

✓ ✓

Concurrency Questions

➢ What is a correct/incorrect state upon concurrent updates?

➢ Theoretical formalism to explain these states: Serializability

➢ What protocols/algorithms can ensure a correct state?

➢ Locking-based protocols

➢ Pessimistic: set of lock acquisitions to prevent bad state

➢ Optimistic protocols

➢ Detect bad state and recover from it

➢ Set of guarantees that a DBMS should satisfy

➢ ACID guarantees: atomicity, consistency, isolation, durability

Concurrency Avoidance Ex: Global DB Lock

ti
m

e

AliceBob

Safe but inefficient. Why?

Product NumInStock

… …

BookA 1

BookB 7

lock DB ✓lock DB X Wait

r (A, 1)

w (A, 0)

release lock

lock DB ✓

➢ Alice and Bob order BookA

Concurrency Avoidance Ex: Global DB Lock

ti
m

e

AliceBob
➢ Alice orders BookA, Bob orders BookB

Bob had no conflicts; so was “unnecessarily” blocked.

Product NumInStock

… …

BookA 1

BookB 7

lock DB ✓lock DB X Wait

r (A, 1)

w (A, 0)

release lock

lock DB ✓

r (B, 7)
…

Concurrency Avoidance Ex: Record-level Lock

Product NumInStock

… …

BookA 1

BookB 7

AliceBob

➢ Alice, Bob as before want BookA, Carmen orders Book B

ti
m

e

…

lock: (A, 1) ✓ lock: (A, 1) X Wait

Carmen

lock: (B, 7) ✓

r (A, 1) r (B, 7)

w (A, 0) w (B, 6)

Concurrency Avoidance Ex: Record-level Lock

Product NumInStock

… …

BookA 0

BookB 6

AliceBob

➢ Alice, Bob as before want BookA, Carmen orders Book B

ti
m

e

…

Safe and achieves parallelism. What can go wrong?

lock: (A, 1) ✓ lock: (A, 1) X Wait

Carmen

lock: (B, 7) ✓

r (A, 1) r (B, 7)

w (A, 0) w (B, 6)

release lock Brelease lock A

lock: (A, 1) ✓

Where There is Locking, There is Deadlocks!

Product NumInStock

… …

BookA 1

BookB 7

AliceBob

➢ Alice, Bob both order both BookA and BookB together

ti
m

e

How can we detect & avoid deadlocks?

lock: (A, 1) ✓

lock: (B, 7) ✓

lock: (B, 7) X Wait

lock: (A, 1) X Wait

Deadlock!

Failure & Recovery

➢ What if your disk fails in the middle of an order?

➢ What if your server software fails due to a bug?

➢ What if there is a power outage in the machine storing files?

Product NumInStock

… …

BookA 1

BookB 7

Failure & Recovery

➢ What if your disk fails in the middle of an order?

➢ What if your server software fails due to a bug?

➢ What if there is a power outage in the machine storing files?

➢ Suppose Alice orders both BookA and BookB

w (A, 0)

Product NumInStock

… …

BookA 1

BookB 7

Failure & Recovery

➢ What if your disk fails in the middle of an order?

➢ What if your server software fails due to a bug?

➢ What if there is a power outage in the machine storing files?

➢ Suppose Alice orders both BookA and BookB

Product NumInStock

… …

BookA 0

BookB 7

Product NumInStock

… …

BookA 0

BookB 6

✓

X

Before (B, 6) is written failure!

Inconsistent data state!
PR: How to recover from inconsistent state?

w (A, 0)

Contributions of DBMSs To Computing

➢ DBMSs provide solutions to all of the problems we identified!

➢ Allows app developers to focus on the application logic.

Problems Solutions

1. Physical record design

and access to records

Data Model (Higher-level than bits/bytes)

2. Efficiency High Level Data Query/Manipulation Language:

Automatic compilation of queries to efficient

algs/query plans

3. Scalability:

3.1: Large-scale data

3.2: Large # of requests

Persistent-disk-based data

Scale to 10-100K requests/seconds

4. Safe Concurrency Transactions & ACID guarantees

5. Other Safety Features: Data Integrity and Failure Recovery

Contribution 1: The System

➢ IDS (1960s): First DBMS

➢ Had a data model and a primitive “query” language

➢ Had scalability for its era and integrity and recovery

➢ No transactions

Contribution 2

Contribution 3

From Hans-J. Schek’s VLDB 2000 slides
27

The Birth of DBMS (1)

From Hans-J. Schek’s VLDB 2000 slides
28

The Birth of DBMS (2)

From Hans-J. Schek’s VLDB 2000 slides
29

DBMS is an excellent example of a successful abstraction!

The Birth of DBMS (3)

A Side Note on Spotting an Opportunity For New

Systems or System Components

➢ Sometimes (but not always) you spot that a new system/system

component is needed by observing functionality duplication.

➢ Ex 1: Map Reduce Large-Scale Dataflow System
➢ CS 451: Data-Intensive Distributed Computing

Over the past five years, the authors and many others at Google

have implemented hundreds of special-purpose computations that

process large amounts of raw data, such as crawled documents,

web request logs, etc., to compute various kinds of derived data,

such as inverted indices, various representations of the graph
structure of web documents, summaries of the number of pages

crawled per host, the set of most frequent queries in a given day,

etc. Most such computations are conceptually straightforward.

However, the input data is usually large and the computations have

to be distributed across hundreds or thousands of machines in
order to finish in a reasonable amount of time. The issues of how to

parallelize the computation, distribute the data, and handle failures

conspire to obscure the original simple computation with large

amounts of complex code to deal with these issues.

A picture containing text, newspaper, screenshot,
document

Description automatically generated

https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf

31

The Birth of MapReduce (1)

…

Google Inverted Index
Constructor

Code for:

Computation parallelization

across a cluster of machines

Distributing data files,

Custer failure recovery

Google PageRank
Computation

Code for:

Computation parallelization

across a cluster of machines

Distributing data files,

Custer failure recovery

Google User
Dashboards

Code for:

Computation parallelization

across a cluster of machines

Distributing data files,

Custer failure recovery

… … ……

32

The Birth of MapReduce (2)

…
Google Inverted Index

Constructor
Google PageRank

Computation
Google User
Dashboards

…

MapReduce System

Code for:

Computation parallelization

across a cluster of machines

Distributing data files,

Custer failure recovery

Same Application Development W/ a DBMS

➢ We will use a Relational DBMS (RDBMS) but can use other

DBMSs too (e.g., a graph database management system)

➢ Ex: PostgreSQL, Oracle, MySQL, SAP HANA, Snowflake…

Data Modeling With an RDBMS (1)

Customers

name birthday

Alice 2001/09/08

Bob 2002/05/20

… …

Orders

oID cust product price

O1 2001/09/08 BookA 20

O2 2002/05/20 TVB 100

… … … …

Products

product numInStock

BookA 1

TVB 78

… …

➢ Relational Model: Data is modeled as a set of tables

➢ Much higher-level abstraction than bits/bytes

Example SQL Command in an RDBMS:
CREATE TABLE Customers
 name varchar(255),
 birthdate DATE;

➢ The RDBMS takes care of physical record design: Fixed-

length/var-length, columnar, row, chained etc.

➢ The physical record design is transparent to the developer, i.e.

the developer does not need to know the design.

Data Modeling With an RDBMS (2)

➢ Physical Data Independence:

➢ Throughout the lifetime of the app, the RDBMS can change the

physical layout for performance or other reasons and the

applications keep working because the design is transparent.

➢ E.g:

➢ A new column can be added that changes the record design

➢ A compressed column can be uncompressed

Takeaway: A high-level data model delegates the responsibility of

physical record design and access to these records to the DBMS

High-level Query Language (1)

➢ Structured Query Language (SQL)

➢ SQL is referred to as a declarative language:

➢ Describe outputs of computation but not how to perform it

➢ “Declarative”ness is subjective and relative:

➢ E.g. Prolog > SQL > {C,C++,Java}

➢ Recall managers’ question: Who are top paying customers?

SELECT cust, sum(price) as sumPay
FROM Orders
ORDER BY sumPay DESC

➢ No procedural description of how to group-by and aggregate:

hash-based, sort-based, what sorting algorithm to use etc.

Orders

oID cust product price

High-level Query Language (2)

➢ RDBMS automatically generates an algorithm for the query:

➢ We call those algorithms query plans

SELECT cust, sum(price) as sumPay
FROM Orders
ORDER BY sumPay DESC

Takeaway: A high-level QL delegates the responsibility of finding

an efficient algorithm for queries to the DBMS.

Other efficiency benefits: The DBMS will handle large data and

automatically parallelize these algorithms.

➢ High-level QLs are perhaps the

best examples of automatic

programming

Integrity Constraints

➢ Recall the bug in Checkout App’s “Checkout As Guest”:

➢Writes the Customer record

➢Assume Bob shops again

➢ (Bob, 1999/05/07) is duplicated!

➢ In RDBMSs: add uniqueness constraints (Primary Key Constraints)

CREATE TABLE Customers (name varchar(255), birthdate DATE,
PRIMARY KEY (name));

➢ Can enforce other integrity constraints (e.g., foreign key)

Takeaway: DBMSs will enforce the constraint and maintain the

data’s integrity at all times on behalf of the app!

Concurrency When Using an RDBMS

➢ Recall Alice & Bob concurrently ordering BookA:

Product NumInStock

… …

BookA 1

… …

Buy_Product_Subroutine(string prodName):
(prod, numInStock) = readProduct(prodName)
if (numInStock > 0):
 writeProduct((prod, numInStock - 1)
else throw(“Cannot buy product!”);

r: (A, 1)

ti
m

e

r: (A, 0)

w: (A, 0)

r: (A,1)

w:(A,0)

r:(A,0)

r: (A,1)r: (A,1)

w:(A,0)

w:(A,0)

No Book

X
No Book

✓ ✓

Concurrency When Using an RDBMS

(Simplified) SQL:
BEGIN TRANSACTION
UPDATE Products
SET numInStock = numInStock - 1
WHERE name = “BookA”

INSERT INTO Orders
VALUES (“Alice”, “BookA”, $20)
COMMIT

r: (A, 1)

ti
m

e

r: (A, 0)

w: (A, 0)

r: (A,1)

w:(A,0)

r:(A,0)

r: (A,1)r: (A,1)

w:(A,0)

w:(A,0)

➢ Will ensure a correct end state

➢ Will avoid any deadlocks

➢ Will error for Alice or Bob

Take away: DBMS ensures safe

concurrency.

X✓ ✓

Backup and Recovery

r (A, 1)

w (A, 0)

Product NumInStock

… …

BookA 0

BookB 7

X

➢ Recall failure scenario: Alice orders both BookA and BookB

➢ Suppose a power failure occurs and the DBMS fails in the

middle of committing the transaction

Product NumInStock

… …

BookA 1

BookB 7

✓

Summary

42

DBMS is an indispensable core system software to develop any

application that stores, queries, or processes data.

Outline For Today

1. Overview of DBMSs: 3 Major Contributions of the Field

1. Set of DBMS Features for Applications

2. Physical Data Independence/High-level Query Languages

3. Transactions

2. Course Diagram & Administrative Information

43

Key People When Developing Data-

Intensive Applications

App Software/

Servers

DBMS

1: Application

End Users

2. App Developers:

DBMS Users

3. DBMS Administrator: Person

who maintains the DBMS when it

serves multiple applications

4. DBMS Architect: Person who

actually implements the DBMS

➢ Won’t differentiate between 2&3

➢ ~2/3rd from the perspective of app developers

➢ ~1/3rd on DBMS internals and architecture

➢ Want to learn more about internals of DBMSs: CS 448

User/Administrator Perspective

DBMS Architect/Implementer
Perspective (8 lectures)

Primary Database Management
System Features (6 lectures)

• Data Model: Relational Model
• High Level Query Language:

Relational Algebra & SQL, Datalog
• Integrity Constraints
• Indexes/Views
• Transactions

• Physical Record Design
• Query Planning and Optimization
• Indexes
• Transactions

Other (Last 1/2 Lectures)

• Graph DBMSs or
• RDF Systems

CS 348 Diagram

Relational Database Design (4
lectures)

• E/R Models
• Normal Forms

How To Program A DBMS (0.5-1 lecture)
• Embedded vs Dynamic SQL
• Frameworks

Before/After CS 348

➢ Relational Model, SQL,

Datalog

➢ DB Design & Tuning

➢ Transactions

➢ DB Internal Architecture

SAP, Oracle, Microsoft, IBM,

Snowflake, Databricks, Neo4j,

CockroachDB, GraphflowDB, …

SQL vs NoSQL?

RDBMs vs GDBMs vs Key-Value

or Document Store?

….

A Glimpse of Current DBMS Market

Hundreds of companies producing DBMSs: Many RDBMS/SQL,

but also graph, RDF, Document DB, Key-value stores etc..

Not even including companies to tune, ingest, visualize etc..

Administrative Info

➢ Instructor: Semih Salihoglu (semih.salihoglu@uwaterloo.ca)

➢ OHs: Mondays 4:00pm-5:00pm @ DC 3351

➢ TAs: Guy Coccimiglio, Shubhankar Mohapatra, Anurag Chakraborty, David

Rui, Gaurav Sehgal, Nimmi Rashinika Weeraddana

➢ TA OHs: a few hours on weeks assignments are due

➢ Course Coordinator: Sylvie Davies

➢ Website: https://student.cs.uwaterloo.ca/~cs348/

➢ Learn: https://learn.uwaterloo.ca/d2l/home/1098090

➢ Piazza: https://piazza.com/class/m4vnhnp05wrc4

➢ Unless urgent, we will wait for students to answer

➢ We will interfere when there is confusion

➢ Please be active! This our best forum for communication.

https://student.cs.uwaterloo.ca/~cs348/
https://learn.uwaterloo.ca/d2l/home/1098090
https://piazza.com/class/m4vnhnp05wrc4

Administrative Info

➢ Textbook: Database System Concepts, Silberschatz et al., 7th edition

➢ “The library has electronic access only to the 2006 edition of “Database

System Concepts by Silberschatz.” This access is through Hathi Trust which is

emergency access. Access is restricted to one user and for one hour at a

time.”

➢ (Rare) Optional: Designing Data Intensive Applications, Klepmann

A picture containing text, cat, book

Description automatically generated

A sailboat on the water

Description automatically generated with medium confidence

https://www.db-book.com/db7/
https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://www.db-book.com/db7/

Administrative Info

➢ 2 Other Main Textbooks in the Field

Graphical user interface, application

Description automatically generated

Graphical user interface, text, application

Description automatically generated

http://pages.cs.wisc.edu/~dbbook/
http://infolab.stanford.edu/~ullman/dscb.html

Administrative Info

➢ Workload & Mark Distribution: 2 options

➢ Midterm: Feb 28th (4:30-6pm)

➢ Final: Not yet announced by the university

➢ Late Policy: 2 extra days for each assignment or project milestone

➢ For Assignments: Lose 5% for each additional day

➢ For Project milestones: Lose 25% for each day

Assignments Group Project Midterm Final

Option 1 30% -- 30% 40%

Option 2 30% 30% 15% 25%

Projects

➢ Teams of 4 or 5 students

➢ Implementing a database application

➢ Detailed information next week

➢ 4 milestones (deadlines are tentative but will finalize this week)

➢ Milestone 0: form a team due Jan 22 (not marked)

➢ Milestone 1: proposal due Feb 15

➢ Milestone 2: mid-term report Mar 14

➢ Milestone 3: report + demo (week of March 31 but due latest by

April 2nd)

Prerequisites

➢ CS 240/240E is listed but not strictly necessary.

➢ Programming in a standard language: e.g., Python

➢ General interest in software systems, data-intensive application

development and data management and processing systems

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

