Intro to the Relational
Model

Introduction to Database Management
CS348 Fall 2022

Announcements (Tue. Sep 13)

* Assignment #1 will be released on 11pm today

* Part 1: general questions and r.a.
* Submit via Crowdmark

* Part 2: writing SQL on DB2 on school servers (try soon)
* Submit via Marmoset

* Due by Sep 29 (Thur), 11:59pm

* Project details will be released on Learn on Thur
* Grading scheme
* Supplementary materials

Edgar F. Codd (1923-2003)

* Pilot in the Royal Air Force in WW2

e Inventor of the relational model
and algebra while at IBM

- & * Turing Award, 1981

http://en.wikipedia.org/wiki/File:Edgar_F_Codd.jpg

Outline

e Part 1: Relational data model

* Part 2: Relational algebra

Example for Relational data model

Group

User I

Bart gov Student Government
123 Milhouse 10 0.2 dps Dead Putting Society
857 Lisa 8 0.7
456 Ralph 8 0.3

ieroer ERRFTER

dps

123 gov

. 857 abc
relations (or tables) e
456 abc

456 gov

Example for Relational data model

Group

User gid_lname
mm_-m abc Book Club

Bart gov Student Government
123 Milhouse 10 0.2 dps Dead Putting Society
857 Lisa 8 0.7
456 Ralph 8 0.3

weroer ENRFTER

dps

123 gov

. 857 abc
attributes (or columns) =
456 abc

456 gov

Example for Relational data model

Group

User G Loame

Bart gov Student Government
123 Milhouse 10 0.2 dps Dead Putting Society
857 Lisa 8 0.7
456 Ralph 8 0.3 o

5

weroer IENRFTER

L g dps
123 gov
857 abc
857 gov
456 abc

domain (or type)

456 gov

Example for Relational data model

Group

User G Loame

Bart gov Student Government
123 Milhouse 10 0.2 dps Dead Putting Society
857 Lisa 8 0.7
456 Ralph 8 0.3
Member mm
dps
tuples (or rows) 123 gov
857 abc
Duplicates are not allowed 857 gov
Ordering of rows doesn’t matter 456 abc
(even though output is 456 gov

always in some order)

Example for Relational data model

Group

User G Loame

Bart gov Student Government
123 Milhouse 10 0.2 dps Dead Putting Society
857 Lisa 8 0.7
456 Ralph 8 0.3

weroer ENRFTER

dps
123 gov

User: {(142, Bart, 10, 0.9), (857, Milhouse, 10, 0.2), ... }
Group: {(abc, Book Club), (gov, Student Government), ... } R
Member: {(142, dps), (123, gov), ... } 857 gov
456 abc

456 gov

Relational data model

* A database is a collection of (or)
 Each relation has a set of (or)
* Each attribute has aname and a (or)

* The domains are required to be atomic

* Each relation contains a set of (or)
* Each tuple has a value for each attribute of the relation

* Two tuples are duplicates if they agree on all attributes

< Simplicity is a virtue!

Schema vs. instance

()

* Specifies the of data
* |s defined at setup time, rarely changes

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

* Represents the data content
* Changes rapidly, but always to the schema

User: {(142, Bart, 10, 0.9), (857, Milhouse, 10, 0.2), ... }

Group: {{(abc, Book Club), (gov, Student Government), ... }
Member: {(142, dps), (123, gov), ... }

Integrity constraints

e A set of rules that database instances should follow

* Example:
* age cannot be negative
* uid should be in the User relation

e uid in Member must refer to arow in User

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

User: {{1424Bart{10)0.9), (857, Milhouse\10,)0.2), ...}
Group: {(abd, Book Club), (gov, Student Government), ... }

Member: dps), (123, gov), ...}

Integrity constraints

* Aninstance is only if it satisfies all the integrity
constraints.

e Reasons to use constraints:

* Ensure data entry/modification respects to database
design

* Protect data from bugs in applications

Types of integrity constraints

* Tuple-level

* Domain restrictions, attribute comparisons, etc.
* E.g.age cannot be negative

 Relation-level

(focus in this lecture)
* E.g.uid should be in the User relation

* Functional dependencies (Textbook, Ch. 7)

e Database-level

 Referential integrity — (focus in this lecture)
e uid in Member must refer to a row in User with the same uid

Key (Candidate Key)

Def: A set of attributes K for arelation R if

In no instance of R will two different
tuples agree on all attributes of K

* Thatis, K canserveasa

)

: No proper subset of K satisfies the
above condition

e Thatis, K is

» Example: User (uid, name, age, pop)
* uidis a key of User
* ageis not a key (not an identifier)
* {uid, name} is not a key (not minimal), but a

Schema vs. instance

uid | name | age | pop
142 Bart 10 0.9
123 Milhouse 10 0.2
857 Lisa 8 0.7
456 Ralph 8 0.3

* Is name a key of User?
* Yes? Seems reasonable for this instance
* No! User names are not unique in general

* Key declarations are part of the schema

More examples of keys

« Member (uid, gid) Member
. {Uid, g’d} 142 dps
A key can contain multiple attributes 2 |e
857 abc
857 gov
* Address (street address, city, state, zip) 6 abc
 Key 1: {street address, city, state} 456 gov
 Key 2: {street address, zip}
“ A relation can have multiple keys!
: a candidate key in the

schema declaration

all its attributes, e.g., Address (street_address,
city, state, zip)

Use of keys

* More constraints on data, fewer mistakes

* Look up arow by its key value
* Many selection conditions are “key = value”

* “Pointers” to other rows (often across tables)

“Pointers” to other rows

* Foreign key: primary key of one relation appearing
as attribute of another relation

Grou
illic L ke Lion "
oid name
142 Bart -
abc Book Club
12 Milhouse 10 0.2
gov Student Government

Lisa 8 0.7

dps Dead Putting Society
Ralph 8 0.3

Member@j
142 dps

123 gov
857 abc
857 gov
456 abc

456 gov

19

20

“Pointers” to other rows

* Referential integrity: A tuple with a non-null value
for a foreign key that does not match the primary
key value of a tuple in the referenced relation is not
allowed.

B | "d
Member il
. 142 dps
rou
p 123 gov
g gid |name Wiy e
857 i
abc Book Club 857 gov
gov Student Government 456 abc

dps Dead Putting Society 456 gov

Outline

e Part 1: Relational data model
 Data model
e Database schema
* Integrity constraints (keys)
* Languages
* Relational algebra (focus in this lecture)

* SQL (next lecture)
* Relational calculus (textbook, Ch. 27)

* Part 2: Relational algebra

21

Relational algebra

A language for querying relational data
based on “operators”

- - -
—
—
operators:

* Selection, projection, cross product, union, difference,
and renaming

* Additional, operators:
* Join, natural join, intersection, etc.

* Compose operators to make complex queries

22

Core operator 1: Selection

* Example: Users with popularity higher than 0.5
Opop>0.5 User

142 Bart 10 0.9 142 Bart 10 09
123 Milhouse 10 0.2 _

- I
857 Lisa 8 0.7

Lisa 8 0.7

857

Core operator 1: Selection

* Input: a table R

* Notation:
* piscalled a (or)

* Purpose: filter rows according to some criteria

* Output: same columns as R, but only rows of R that
satisfy p

More on selection

* Selection condition can include any column of R,
constants, comparison (=, <, etc.) and Boolean
connectives (A: and, V: or, —: not)

* Example: users with popularity at least 0.9 and age
under 10 or above 12
o User

 You must be able to evaluate the condition over
of the input table!

* Example: the most popular user

\
o User \NRONG '

26

Core operator 2: Projection

* Example: IDs and names of all users
MTyidname User

uid | name __| age | pop _ uid | name ____
142 0.9

Bart 10 142 Bart

123 Milhouse 10 0.2 M 123 Milhouse
857 Lisa 8 07 857 Lisa

456 Ralph 8 0.3 456 Ralph

Core operator 2: Projection

* Input: a table R

e Notation: 7, R
e L isalist of columnsin R

* Purpose: output chosen columns
* Output: “same” rows, but only the columnsin L

28

More on projection

* Duplicate output rows are removed (by definition)
* Example: user ages

Tage User
uid | name | age | pop _ age
142 Bart 10 0.9 10

123 Milhouse 10 02 -
857 Lisa 8 0.7 8

456 Ralph 8 03 e

Core operator 3: Cross product

UserXMember

123 Milhouse 10
857 Lisa 8

0.7

Milhouse . gov
123 Milhouse 10 0.2 857 abc
123 Milhouse 10 0.2 857 gov
857 Lisa 8 0.7 123 gov
857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

Core operator 3: Cross product

* Input: two tables R and S
* Natation: R xS
* Purpose: pairs rows from two tables

* Output: foreachrow rin R and each s in S, output
a row rs (concatenation of r and s)

31

A note a column ordering

* Ordering of columns is unimportant as far as
contents are concerned

123 Milhouse 10 123 123 Milhouse 10

123 Milhouse 10 0.2 857 abc 857 abc 123 Milhouse 10 0.2

123 Milhouse 10 0.2 857 gov 857 gov 123 Milhouse 10 0.2

857 Lisa 8 0.7 123 gov — 123 gov 857 Lisa 8 0.7

857 Lisa 8 0.7 857 abc 857 abc 857 Lisa 8 0.7

857 Lisa 8 0.7 857 gov 857 gov 857 Lisa 8 0.7
* So cross product is , i.e., forany R and

S, RXS = SXR (up to the ordering of columns)

Derived operator 1: Join

* Info about users, plus IDs of their groups
User D<]lllse'r.uid:Membe'r.uid Member

123 gov
123 Milhouse 10 0.2 857 abc
857 Lisa 8 0.7 . 857 gov
N yseruid=
Member.uid
\/
Prefix a column reference
with table name and “.” to 123 Milhouse 10 0.2 123 gov

disambiguate identically named
columns from different tables

857 Lisa
857 Lisa

Derived operator 1: Join

* Input: two tables R and S

* Notation: R S
* piscalled a (or)

* Purpose: relate rows from two tables according to
some criteria

* OQutput: foreachrow rin R and eachrow s in S,
output arow rs if r and s satisfy p

» Shorthand for o, (RXS)
* (A.k.a. “theta-join”)

Derived operator 2: Natural join

User X\ Member

= (User X Useruid= Member)
Member.uid

0.2 123 gov

123 Milhouse 10 .
857 Lisa 8 0.7 857 abc
857 gov

Derived operator 2: Natural join

* Input: two tables R and S
* Notation: R = §

* Purpose: relate rows from two tables, and
* Enforce equality between identically named columns

* Shorthand for m; (R X, S), where

* p equates each pair of columns commonto R and §

* L is the union of column names from R and S (with
duplicate columns removed)

Core operator 4: Union

* Input: two tables R and S

e Notation: R U S
e R and S must have identical schema

* Output:
e Has the same schemaas R and S

 Contains all rows in R and all rows in S (with duplicate
rows removed)

123 gov U 123 gov = 123 gov
857 abc 901 edf 857 abc
901 edf

36

37

Core operator 5: Difference

* Input: two tables R and S

e Notation: R — S
e R and S must have identical schema

* Output:
e Has the same schemaas R and S
e Contains all rows in R that are notin S

123 gov — 123 gov = 857 abc
857 abc 901 edf

Derived operator 3: Intersection

* Input: two tables R and S

e Notation: RN S
e R and S must have identical schema

* Output:
e Has the same schemaas R and S
e Contains all rows that arein both R and S

 Shorthand forR — (R — S)
* Also equivalentto S — (S — R)
 AndtoR X §

Core operator 6: Renaming

* Input: a table R
* Notation: p< R, R, or R

* Purpose: “rename” a table and/or its columns

* Output: a table with the same rows as R, but called

differently
Member M1

TR PM1(uid- uid,gid— gidl)Member 123 gov

857 abc 257 | Bl

9. Basic operator: Renaming

* As with all other relational operators, it doesn’t
modify the database
* Think of the renamed table as a copy of the original

e Used to

* Create identical column names for natural joins

* Example: R(rid, ...), S(sid,)

* R S can be written as (prig-ia)R) ™ (Psia—iaS)
* Avoid confusion caused by identical column names

41

9. Basic operator: Renaming

* IDs of users who belong to at least two groups

I Member », Member EEREE

100 gov 100 gov
100 abc 100 abc
200 gov 200 gov

Condition 1: same uid

100 gov 100 abc

% o 0 . . o
Condition 2: different gids
100 abc 100 gov

L0 A T, 1 T oS 1o o WY, 7o SR
= 288—gov—"188—gov—"
—288—pgsv—200—ate——
—200 _cone D00 ooy

Renaming example

* IDs of users who belong to
Member X, Member

TTyid (Member Nremberuid=Member.uid A Membe‘r)
Member.gldiMember.glc{NRoNG,

p(uid—>uid1,gid—>gid1)Member

Nuid1=uid2 Agidq{#+gid,

p(uid—>uid2,gid—>gid2)Member

nlLidl

Expression tree notation

Tl'-Uldl

Nuid1=uid2 ANgld{#gid,

P(uid>uid,,gid—gid,) P(uid>uid,,gid—gid,)

Member Member

Take-home Exercises

* Exercise 1: IDs of groups who have

* Exercise 2: IDs of users who belong to
?

Summary of operators

Core Operators

1. Selection: o, R Note: use

5. Proiection: 7, R these operators for
rojection: my, assignments & quiz

3. Cross product: RXS

4. Union:RUS

5. Difference:R — S

6

Renamlng: pS(A1—>A’1,A2—>A’2,...)R
Does not really add “processing” power

Derived Operators

1. Join:R ™, §

2. Naturaljoin:R < S
3. Intersection:R NS

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* Names of users in Lisa’s groups

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* Names of users in Lisa’s groups
Their names T, sme

X
Users in / \

Lisa’s groups Tlyid User

X

o / \
Lisa’s groups Tgid Member

|
Who’s Lisa? _— X ~_

Oname="Lisa" Member
|
User

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* IDs of groups that Lisa doesn’t belong to

User (uid int, name string, age int, pop float)

M O re exa m p I e Group@ string, name string)

Member (uid int, gid string)

* IDs of groups that Lisa doesn’t belong to

All grcy Yusa s groups

T[gld T[gld
Group / [><1 \
Member 9name="Lisa"

User

User (uid int, name string, age int, pop float)

A trickier example | cow gidsting namesiing)

Member (uid int, gid string)

* Who are the most popular?
* Who do NOT have the highest pop rating?
* Whose pop is lower than somebody else’s?

User (uid int, name string, age int, pop float)

A trickier example | cow gidsting namesiing)

Member (uid int, gid string)

* Who are the most popular?
* Who do NOT have the highest pop rating?
* Whose pop is lower than somebody else’s?

e s

uid Userq,.uid
User X Useri.pop<User,.pop
pUserl Pu T

User User

Non-monotone operators

N N .
S N I .
-ReIOp What happens
Add more rows _____ to the output?
to the input... "™

* If some old output rows may become invalid, and need to
be removed =» the operator is non-monotone

* Example: difference operatorR — S

CEFTE @ CETE I | ol

becomes invalid

123 gov — 123 gov = 857 iye—
. 001 i because the new
857 abc e
row added to S

R S

52

Non-monotone operators

N I I .
- 1 1] |
What happens
Add morerows ___ to the output?
I N I .

to the input...

* If some old output rows may become invalid, and need to
be removed =» the operator is non-monotone

* Otherwise (old output rows always remain “correct”) = the
operator is monotone

This old row is

uid | gid__ uid | gid__ EERNEERR | always valid no

123 gov — 123 gov = 857 abc matter what
857 abc 901 edf 189 m rows are added
R o

R S

53

Classification of relational operators

* Selection: o, R Monotone
* Projection: T R Monotone
* Cross product: RXS Monotone
* JointR ™, § Monotone
* Naturaljoin:R ®S Monotone
* Union:tRUS Monotone

 Difference: R — S Monotone w.r.t. R; non-monotone w.r.t S
* Intersection: RNS Monotone

Why is “—"" needed for “highest’”?

* Composition of monotone operators produces a

* Old output rows remain “correct” when more rows are
added to the input

* Is the “highest” query monotone? (slide 50)
* No!
* Current highest pop is 0.9
* Add another row with pop 0.91
* Old answer is invalidated

&S0 it must use difference!

Why do we need core operator X?

* Difference

* The only operator
* Projection

* The only operator that

* Cross product
* The only operator that
* Union

o ?

e Selection

o ?

Extensions to relational algebra

* Duplicate handling (“bag algebra”)
* Grouping and aggregation

» “Extension” (or “extended projection’) to allow
new column values to be computed

= All these will come up when we talk about SQL

& But for now we will stick to standard relational
algebra without these extensions

Why is r.a. a good query language?

* Simple
* A small set of core operators
* Semantics are easy to grasp
* Declarative?
* Yes, compared with older languages like CODASYL
* Though operators do look somewhat “procedural”
* Complete?
* With respect to what?

User (uid int, name string, age int, pop float)

Relational calculus | crouw gistring name string)

Member (uid int, gid string)

* First-order logic

* Example: Who are the most popular?

o {u.uid | u € User A
—(3u’ € User:u.pop < u'.pop)}, or

e {u.uid | u € User A
(Vu' € User:u.pop = u'.pop)}

Relational calculus

* Relational algebra = “safe” relational calculus

* Every query expressible as a safe relational calculus
query is also expressible as a relational algebra query

* And vice versa

* Example of an * "’ relational calculus query
* {u.name | =(u € User)} = users not in the database

* A queryis if, for all database instances
conforming to the schema, the query result can be
computed using

or in the query itself.

Turing machine

How does relational algebra compare with a Turing
machine?

* A conceptual device that can
execute any computer algorithm

* Approximates what general-
purpose programming languages
can do

* E.g., Python, Java, C++, ...

Alan Turing (1912-1954)

http://en.wikipedia.org/wiki/File:Alan_Turing_photo.jpg

61

Limits of relational algebra

* Relational algebra has

» Example: given relation Friend(uid1, uid2), who can Bart
reach in his social network with any number of hops?
* Writing this query in r.a. is impossible!
* Sor.a.is not as powerful as general-purpose languages

* But why not?
* Optimization becomes
= Simplicity is empowering
* Besides, you can always implement it at the application
level, and recursion is added to SQL nevertheless!

Summary

* Part 1: Relational data model
* Data model
* Database schema
* Integrity constraints ()
* Languages (relational algebra, relational calculus, SQL)

* Part 2: Relational algebra - basic language
* Core operators & derived operators

()

* V.s. relational calculus
* V.s. general programming language

* What’s next?
* SQL - query language used in practice (4 lectures)

