
SQL:
Triggers, Views, Indexes

Introduction to Database Management
CS348 Fall 2022

Announcements (Tue., Sep 27)

• Milestone 0 - Project groups are formed by tonight!
• Form a team on Learn
• Report.pdf and link to GitHub repo
• Not graded, but very important!

• Assignment #1 due by Sep 29 (Thur), 11:59pm
• Part 1: general questions and r.a.

• Submit via Crowdmark
• Part 2: writing SQL on DB2 on school servers (try soon)

• Submit via Marmoset

2

SQL

• Basic SQL (queries, modifications, and constraints)

• Intermediate SQL
• Triggers
• Views
• Indexes

• Advanced SQL
• Programming
• Recursive queries (Optional)

3

Lectures 5-6

Still remember “referential integrity”?

Example: Member.uid references User.uid
• Delete or update a User row whose uid is

referenced by some Member row
• Multiple Options (in SQL)

4

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… ….

User Member

Option 1: Reject Option 2: Cascade
(ripple changes to all
referring rows)

CREATE TABLE Member
(uid DECIMAL(3,0) NOT NULL
REFERENCES User(uid)
ON DELETE CASCADE,
…..);

Can we generalize it?

5

Event

Condition

Action

Delete/update a
User row

Whether its uid is
referenced by some

Member row

Yes: reject/delete cascade/null

Referential constraints Data Monitoring

Some user’s
popularity is updated

Whether the user is a member
of “S group” and pop drops

below 0.5

Yes: kick that user out
of S group

Triggers

• A trigger is an event-condition-action (ECA) rule
• When event occurs, test condition; if condition is

satisfied, execute action

6

CREATE TRIGGER PickySGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW

WHEN (newUser.pop < 0.5)
AND (newUser.uid IN (SELECT uid

FROM Member
WHERE gid = ‘sgroup'))

DELETE FROM Member
WHERE uid = newUser.uid AND gid = ‘sgroup';

Event

Condition

Action

Transition variable

Trigger option 1 – possible events

• Possible events include:
• INSERT ON table; DELETE ON table; UPDATE [OF column]

ON table

7

CREATE TRIGGER PickySGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW

WHEN (newUser.pop < 0.5)
AND (newUser.uid IN (SELECT uid

FROM Member
WHERE gid = ‘sgroup'))

DELETE FROM Member
WHERE uid = newUser.uid AND gid = ‘sgroup';

Event

Condition

Action

Trigger option 2 – timing

• Timing—action can be executed:
• AFTER or BEFORE the triggering event
• INSTEAD OF the triggering event on views (more later)

8

CREATE TRIGGER NoFountainOfYouth
BEFORE UPDATE OF age ON User
REFERENCING OLD ROW AS o, NEW ROW AS n
FOR EACH ROW

WHEN (n.age < o.age)
SET n.age = o.age;

Event

Condition

Action

Trigger option 3 – granularity

• Granularity—trigger can be activated:
• FOR EACH ROW modified

9

CREATE TRIGGER PickySGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW

WHEN (newUser.pop < 0.5)
AND (newUser.uid IN (SELECT uid

FROM Member
WHERE gid = ‘sgroup'))

DELETE FROM Member
WHERE uid = newUser.uid AND gid = ‘sgroup';

Event

Condition

Action

Trigger option 3 – granularity

• Granularity—trigger can be activated:
• FOR EACH ROW modified
• FOR EACH STATEMENT that performs modification

10

CREATE TRIGGER PickySGroup2
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT

DELETE FROM Member
WHERE gid = ‘sgroup’
AND uid IN (SELECT uid

FROM newUsers
WHERE pop < 0.5);

Event

Condition
& Action

Transition table:
contains all the
affected rows

Trigger option 3 – granularity

• Granularity—trigger can be activated:
• FOR EACH ROW modified
• FOR EACH STATEMENT that performs modification

11

CREATE TRIGGER PickySGroup2
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT

DELETE FROM Member
WHERE gid = ‘sgroup’
AND uid IN (SELECT uid

FROM newUsers
WHERE pop < 0.5);

Transition table:
contains all the
affected rows

Only can be used
with AFTER

triggers

Transition variables/tables
• OLD ROW: the modified row before the triggering event
• NEW ROW: the modified row after the triggering event
• OLD TABLE: a hypothetical read-only table containing all

rows to be modified before the triggering event
• NEW TABLE: a hypothetical table containing all modified

rows after the triggering event

AFTER Trigger BEFORE Trigger

12

Event Row Statement

Delete old r; old t old t

Insert new r; new t new t

Update old/new r; old/new t old/new t

Event Row Statement

Update old/new r -

Insert new r -

Delete old r -

Statement- vs. row-level triggers

• Simple row-level triggers are easier to implement
• Statement-level triggers: require significant amount of

state to be maintained in OLD TABLE and NEW TABLE

• Exercise 1: However, can you think of a case when a
row-level trigger may be less efficient?

• Exercise 2: Certain triggers are only possible at
statement level. Can you think of an example?

13

System issues

• Recursive firing of triggers
• Action of one trigger causes another trigger to fire
• Can get into an infinite loop

• Interaction with constraints (tricky to get right!)
• When to check if a triggering event violates constraints?

• After a BEFORE trigger
• Before an AFTER trigger
• (based on db2, other DBMS may differ)

• Be best avoided when alternatives exist

14

SQL features covered so far

• Basic SQL

• Intermediate SQL
• Triggers
• Views

15

Views

• A view is like a “virtual” table
• Defined by a query, which describes how to compute

the view contents on the fly
• Stored by DBMS instead of view contents
• Can be used in queries just like a regular table

16

CREATE VIEW SGroup AS
SELECT * FROM User
WHERE uid IN (SELECT uid

FROM Member
WHERE gid = ‘sgroup');

DROP VIEW SGroup;

Base
tables

SELECT AVG(pop) FROM SGroup;

SELECT AVG(pop)
FROM (SELECT * FROM User

WHERE uid IN
(SELECT uid FROM Member
WHERE gid = 'jes'))
AS SGroup;

SELECT MIN(pop) FROM SGroup;
SELECT … FROM SGroup;

Why use views?

• To hide complexity from users

• To hide data from users

• Logical data independence

• To provide a uniform interface for different
implementations or sources

17

Modifying views

• Does it even make sense, since views are virtual?

• It does make sense if we want users to really see
views as tables

• Goal: modify the base tables such that the
modification would appear to have been
accomplished on the view

18

A simple case

19

CREATE VIEW UserPop AS
SELECT uid, pop FROM User;

DELETE FROM UserPop WHERE uid = 123;

DELETE FROM User WHERE uid = 123;

translates to:

An impossible case

• No matter what we do on User, the inserted row
will not be in PopularUser

20

CREATE VIEW PopularUser AS
SELECT uid, pop FROM User
WHERE pop >= 0.8;

INSERT INTO PopularUser VALUES(987, 0.3);

A case with too many possibilities

• Set everybody’s pop to 0.5?
• Adjust everybody’s pop by the same amount?
• Just lower one user’s pop?

21

CREATE VIEW AveragePop(pop) AS
SELECT AVG(pop) FROM User;

UPDATE AveragePop SET pop = 0.5;

Renamed
column

SQL92 updateable views

• More or less just single-table selection queries
• No join
• No aggregation
• No subqueries

• Arguably somewhat restrictive
• Still might get it wrong in some cases
• See the slide titled “An impossible case” (slide 20)
• Adding WITH CHECK OPTION to the end of the view

definition will make DBMS reject such modifications

22

INSTEAD OF triggers for views

• What does this trigger do?

23

CREATE TRIGGER AdjustAveragePop
INSTEAD OF UPDATE ON AveragePop
REFERENCING OLD ROW AS o,

NEW ROW AS n
FOR EACH ROW

UPDATE User
SET pop = pop + (n.pop-o.pop);

CREATE VIEW AveragePop(pop) AS
SELECT AVG(pop) FROM User;

UPDATE AveragePop SET pop = 0.5;

INSTEAD OF triggers for views

• What does this trigger do?

24

CREATE TRIGGER AdjustAveragePop
INSTEAD OF UPDATE ON AveragePop
REFERENCING OLD ROW AS o,

NEW ROW AS n
FOR EACH ROW

UPDATE User
SET pop = pop + (n.pop-o.pop);

CREATE VIEW AveragePop(pop) AS
SELECT AVG(pop) FROM User;

UPDATE AveragePop SET pop = 0.5;

… pop …

0.4

0.4

0.5

0.3

User
0.4

0.5

+0.1

+0.1

+0.1

+0.1

SQL features covered so far

• Basic SQL

• Intermediate SQL
• Triggers
• Views
• Indexes

25

Motivating examples of using indexes

• Can we go “directly” to rows with name='Bart’ instead
of scanning the entire table?
à index on User.name

• Can we find relevant Member rows “directly”?
à index on Member.gid or (gid, uid)

• For each relevant Member row, can we “directly” look
up User rows with matching uid
à index on User.uid

26

SELECT * FROM User WHERE name = 'Bart';

SELECT * FROM User, Member
WHERE User.uid = Member.uid AND Member.gid = ‘sgroup';

Indexes
• An index is an auxiliary persistent data structure
• Search tree (e.g., B+-tree), lookup table (e.g., hash

table), etc.
FMore on indexes later in this course!

• CREATE [UNIQUE] INDEX 𝑖𝑛𝑑𝑒𝑥𝑛𝑎𝑚𝑒 ON
𝑡𝑎𝑏𝑙𝑒𝑛𝑎𝑚𝑒(𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒!,…,𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒");
• With UNIQUE, the DBMS will also enforce that
𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒!, … , 𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒" is a key of
𝑡𝑎𝑏𝑙𝑒𝑛𝑎𝑚𝑒

• DROP INDEX 𝑖𝑛𝑑𝑒𝑥𝑛𝑎𝑚𝑒;

• Typically, the DBMS will automatically create
indexes for PRIMARY KEY and UNIQUE constraint
declarations

27

Indexes
• An index on 𝑅. 𝐴 can speed up accesses of the form
• 𝑅. 𝐴 = 𝑣𝑎𝑙𝑢𝑒
• 𝑅. 𝐴 > 𝑣𝑎𝑙𝑢𝑒 (sometimes; depending on the index type)

• An index on 𝑅. 𝐴!, … , 𝑅. 𝐴" can speed up
• 𝑅. 𝐴! = 𝑣𝑎𝑙𝑢𝑒! ∧ ⋯∧ 𝑅. 𝐴" = 𝑣𝑎𝑙𝑢𝑒"
• 𝑅. 𝐴!, … , 𝑅. 𝐴" > 𝑣𝑎𝑙𝑢𝑒!, … , 𝑣𝑎𝑙𝑢𝑒" (again depends)

Questions (lecture 12):
FOrdering of index columns is important—is an index on
𝑅. 𝐴, 𝑅. 𝐵 equivalent to one on 𝑅. 𝐵, 𝑅. 𝐴 ?

FHow about an index on 𝑅. 𝐴 plus another on 𝑅. 𝐵?
FMore indexes = better performance?

28

SQL features covered so far

Basic & Intermediate SQL
• Query
• Modification
• Constraints
• Triggers
• Views
• Indexes

FNext: Programming

29

