
SQL: 
Recursion (Optional)

Introduction to Database Management
CS348 Fall 2022



SQL 

• Basic SQL (queries, modifications, and constraints)

• Intermediate SQL
• Triggers 
• Views
• Indexes

• Advanced SQL
• Programming 
• Recursion (Optional)

2



A motivating example

• Example: find Bart’s ancestors
• “Ancestor” has a recursive definition
• 𝑋 is 𝑌’s ancestor if

• 𝑋 is 𝑌’s parent, or
• 𝑋 is 𝑍’s ancestor and 𝑍 is 𝑌’s ancestor

3

Parent (parent, child)
parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Bart Lisa

MargeHomer

Abe

Ape



Recursion in SQL

• SQL2 had no recursion
• You can find Bart’s parents, grandparents, great 

grandparents, etc.

• But you cannot find all his ancestors with a single query

• SQL3 introduces recursion
• WITH clause
• Implemented in PostgreSQL (common table 

expressions)

4

SELECT p1.parent AS grandparent
FROM Parent p1, Parent p2
WHERE p1.child = p2.parent

AND p2.child = 'Bart';



WITH RECURSIVE
Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

SELECT anc
FROM Ancestor
WHERE desc = 'Bart';

base case

Ancestor query in SQL3

5

Query using the relation
defined in WITH clause

Define
a relation

recursivelyrecursion step

a1.anc (X) à a1.desc(Z)
a2.anc (Z) à a2.desc (Y)



Finding ancestors

6

parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

Ape Bart

Ape Lisa

WITH RECURSIVE
Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

…..;

base case

recursive 
step



Fixed point of a function

• If 𝑓: 𝐷 → 𝐷 is a function from a type 𝐷 to itself, a 
fixed point of 𝑓 is a value 𝑥 such that 𝑓 𝑥 = 𝑥
• Example: what is the fixed point of f(x) = x/2?
• Ans: 0, as f(0)=0

• To compute a fixed point of 𝑓
• Start with a “seed”: 𝑥 ← 𝑥!
• Compute 𝑓 𝑥

• If 𝑓 𝑥 = 𝑥, stop; 𝑥 is fixed point of 𝑓
• Otherwise, 𝑥 ← 𝑓 𝑥 ; repeat

7

With seed 1: 1, 1/2, 1/4, 1/8, 1/16, … → 0



Fixed point of a query

• A query 𝑞 is just a function that maps an input table 
to an output table, so a fixed point of 𝑞 is a table 𝑇
such that 𝑞 𝑇 = 𝑇

• To compute fixed point of 𝑞
• Start with an empty table: 𝑇 ← ∅
• Evaluate 𝑞 over 𝑇

• If the result is identical to 𝑇, stop; 𝑇 is a fixed point
• Otherwise, let 𝑇 be the new result; repeat

8



Non-linear v.s. linear recursion

• Non-linear

• Linear: a recursive definition can make only one 
reference to itself

9

WITH RECURSIVE Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))  …..;

WITH RECURSIVE Ancestor2(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT anc, child
FROM Ancestor, Parent
WHERE desc = parent))



Linear vs. non-linear recursion

• Linear recursion is easier to implement
• For linear recursion, just keep joining newly generated 

Ancestor rows with Parent
• For non-linear recursion, need to join newly generated 

Ancestor rows with all existing Ancestor rows

• Non-linear recursion may take fewer steps to 
converge, but perform more work
• Example: Given 𝑎 → 𝑏 → 𝑐 → 𝑑 → 𝑒 , i.e., a is parent of b, 

b is parent of c, …., d is parent of e.
• The linear recursion takes 4 steps to find (𝑎, 𝑒) is an ancestor-

descendant pair (slide 9, Ancestor2)
• Question: How about non-linear recursion? (slide 9, Ancestor)

10



Mutual recursion example

• Table Natural (n) contains 1, 2, …, 100
• Which numbers are even/odd?
• An even number plus 1 is an odd number
• An odd number plus 1 is an even number
• 1 is an odd number

11

WITH RECURSIVE Even(n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd)),

RECURSIVE Odd(n) AS
((SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even



Computing mutual recursion

• Even = ∅, Odd = ∅
• Even = ∅, Odd = {1}
• Even = {2}, Odd = {1}
• Even = {2}, Odd = {1, 3}
• Even = {2, 4}, Odd = {1, 3}
• Even = {2, 4}, Odd = {1, 3, 5}
• …

12

WITH RECURSIVE Even(n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd)),

RECURSIVE Odd(n) AS
((SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even



Semantics of WITH
• WITH RECURSIVE 𝑅, AS 𝑄,, 

…,
RECURSIVE 𝑅- AS 𝑄-

𝑄;
• 𝑄 and 𝑄", … , 𝑄# may refer to 𝑅", … , 𝑅#

• Semantics
1. 𝑅" ← ∅,… , 𝑅# ← ∅
2. Evaluate 𝑄", … , 𝑄# using the current contents of 𝑅", … , 𝑅#:
𝑅"#$% ← 𝑄", … , 𝑅##$% ← 𝑄#

3. If 𝑅&#$% ≠ 𝑅& for some 𝑖
3.1. 𝑅" ← 𝑅"#$%, … , 𝑅# ← 𝑅##$%
3.2. Go to 2.

4. Compute 𝑄 using the current contents of 𝑅", …𝑅#
and output the result

13



Starting with non-empty set

14

parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

Ape Bart

Ape Lisa

WITH RECURSIVE
Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

…..;

base case

recursive 
step

Bogus Bogus

Bogus Bogus

Bogus Bogus Bogus Bogus



Fixed points are not unique

• If 𝑞 is monotone, then starting from ∅ produces the 
unique minimal fixed point
• All these fixed points must contain this fixed point
à the unique minimal fixed point is the “natural” answer

15

parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Ape Abe

Abe Bart

Abe Lisa

Ape Homer

Ape Bart

Ape Lisa

Bogus Bogus

Note how the bogus tuple
reinforces itself!

WITH RECURSIVE
Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

…..;

Lecture 2



Mixing negation with recursion

• If 𝑞 is non-monotone
• The fixed-point iteration may never converge
• There could be multiple minimal fixed points

• Example: popular users (pop ≥ 0.8) join either 
SGroup or PGroup
• Those not in SGroup should be in PGroup
• Those not in GGroup should be in SGroup

16

WITH RECURSIVE PGroup(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM SGroup)),

RECURSIVE SGroup(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM PGroup))



Fixed-point iter may not converge

17

uid name age pop

142 Bart 10 0.9

121 Allison 8 0.85

uid uid

PGroup SGroup
uid

142

121

uid

142

121

PGroup SGroup

WITH RECURSIVE PGroup(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM SGroup)),

RECURSIVE SGroup(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM PGroup))



Multiple minimal fixed points

18

uid name age pop

142 Bart 10 0.9

121 Allison 8 0.85

uid

142

uid

121

PGroup SGroup
uid

121

uid

142

PGroup SGroup

WITH RECURSIVE PGroup(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM SGroup)),

RECURSIVE SGroup(uid) AS
(SELECT uid FROM User WHERE pop >= 0.8
AND uid NOT IN (SELECT uid FROM PGroup))



Legal mix of negation and recursion

• Construct a dependency graph
• One node for each table defined in WITH
• A directed edge 𝑅 → 𝑆 if 𝑅 is defined in terms of 𝑆
• Label the directed edge “−” if the query defining 𝑅 is 

not monotone with respect to 𝑆
• Legal SQL3 recursion: no cycle with a “−” edge
• Called stratified negation

• Bad mix: a cycle with at least one edge labeled “−”

19

Ancestor

Legal!

PGroup SGroup

−

− Illegal!



Stratified negation example

• Find pairs of persons with no common ancestors

20

Ancestor

Person

NoCommonAnc

−

WITH RECURSIVE Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent) UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc)),

RECURSIVE  Person(person) AS
((SELECT parent FROM Parent) UNION
(SELECT child FROM Parent)),

RECURSIVE NoCommonAnc(person1, person2) AS
((SELECT p1.person, p2.person

FROM Person p1, Person p2
WHERE p1.person <> p2.person)

EXCEPT
(SELECT a1.desc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.anc = a2.anc))

SELECT * FROM NoCommonAnc;



Evaluating stratified negation

• The stratum of a node 𝑅 is the maximum number of 
“−” edges on any path from 𝑅
• Ancestor: stratum 0
• Person: stratum 0
• NoCommonAnc: stratum 1

• Evaluation strategy
• Compute tables lowest-stratum first
• For each stratum, use fixed-point iteration on all nodes 

in that stratum
• Stratum 0: Ancestor and Person
• Stratum 1: NoCommonAnc

FIntuitively, there is no negation within each stratum
21

Ancestor

Person

NoCommonAnc

−



Summary

• Basic SQL (queries, modifications, and constraints)
• Intermediate SQL(triggers, views, indexes)
• Programming 

• Recursion
• SQL3 WITH recursive queries
• Solution to a recursive query (with no negation)
• Mixing negation and recursion is tricky

22


