
SQL:
Programming

Introduction to Database Management
CS348 Fall 2022

SQL

• Basic SQL (queries, modifications, and constraints)

• Intermediate SQL
• Triggers
• Views
• Indexes

• Advanced SQL
• Programming
• Recursion (Optional, video only)

2

Motivation

• Pros and cons of SQL
• Very high-level, possible to optimize
• Not intended for general-purpose computation

• Solutions
• Augment SQL with constructs from general-purpose

programming languages
• E.g.: SQL/PSM

• Use SQL together with general-purpose programming
languages: many possibilities
• Through an API, e.g., Python psycopg2
• Embedded SQL, e.g., in C
• Automatic object-relational mapping, e.g.: Python SQLAlchemy
• Extending programming languages with SQL-like constructs,

e.g.: LINQ
3

An “impedance mismatch”

• SQL operates on a set of records at a time
• Typical low-level general-purpose

programming languages operate on one
record at a time

FSolution: cursor
• Open (a result table), Get next, Close
FFound in virtually every database language/API

• With slightly different syntaxes

4

Augmenting SQL: SQL/PSM

• PSM = Persistent Stored Modules
• CREATE PROCEDURE proc_name(param_decls)

local_decls
proc_body;

• CREATE FUNCTION func_name(param_decls)
RETURNS return_type

local_decls
func_body;

• CALL proc_name(params);
• Inside procedure body:

SET variable = CALL func_name(params);

5

SQL/PSM example

6

CREATE FUNCTION SetMaxPop(IN newMaxPop FLOAT)
RETURNS INT
-- Enforce newMaxPop; return # rows modified.
BEGIN
DECLARE rowsUpdated INT DEFAULT 0;
DECLARE thisPop FLOAT;

-- A cursor to range over all users:
DECLARE userCursor CURSOR FOR

SELECT pop FROM User
FOR UPDATE;

-- Set a flag upon “not found” exception:
DECLARE noMoreRows INT DEFAULT 0;
DECLARE CONTINUE HANDLER FOR NOT FOUND

SET noMoreRows = 1;
… (see next slide) …
RETURN rowsUpdated;

END

Declare
local
variables

SQL/PSM example continued

7

-- Fetch the first result row:
OPEN userCursor;
FETCH FROM userCursor INTO thisPop;
-- Loop over all result rows:
WHILE noMoreRows <> 1 DO

IF thisPop > newMaxPop THEN
-- Enforce newMaxPop:
UPDATE User SET pop = newMaxPop
WHERE CURRENT OF userCursor;
-- Update count:
SET rowsUpdated = rowsUpdated + 1;

END IF;
-- Fetch the next result row:
FETCH FROM userCursor INTO thisPop;

END WHILE;
CLOSE userCursor;

Function
body

Other SQL/PSM features
• Assignment using scalar query results
• SELECT INTO

• Other loop constructs
• FOR, REPEAT UNTIL, LOOP

• Flow control
• GOTO

• Exceptions
• SIGNAL, RESIGNAL

…
• For more PostgreSQL-specific information, look for

“PL/pgSQL” in PostgreSQL documentation
• https://www.postgresql.org/docs/9.6/plpgsql.html

8

https://www.postgresql.org/docs/9.6/plpgsql.html

Working with SQL through an API

• E.g.: Python psycopg2, JDBC, ODBC (C/C++/VB)
• All based on the SQL/CLI (Call-Level Interface) standard

• The application program sends SQL commands to
the DBMS at runtime

• Responses/results are converted to objects in the
application program

9

import psycopg2
conn = psycopg2.connect(dbname='beers')
cur = conn.cursor()
list all drinkers:
cur.execute('SELECT * FROM Drinker')
for drinker, address in cur:

print(drinker + ' lives at ' + address)
print menu for bars whose name contains “a”:
cur.execute('SELECT * FROM Serves WHERE bar LIKE %s', ('%a%',))
for bar, beer, price in cur:

print('{} serves {} at ${:,.2f}'.format(bar, beer, price))
cur.close()
conn.close()

Example API: Python psycopg2

10

Tuple of parameter values,
one for each %s

You can iterate over cur
one tuple at a time

Placeholder for
query parameter

More psycopg2 examples

11

“commit” each change immediately—need to set this option just once at
the start of the session
conn.set_session(autocommit=True)
...
bar = input('Enter the bar to update: ').strip()
beer = input('Enter the beer to update: ').strip()
price = float(input('Enter the new price: '))
try:

cur.execute('‘’
UPDATE Serves
SET price = %s
WHERE bar = %s AND beer = %s''', (price, bar, beer))

if cur.rowcount != 1:
print('{} row(s) updated: correct bar/beer?'\

.format(cur.rowcount))
except Exception as e:

print(e)

Perform passing,
semantic analysis,
optimization,
compilation, and finally
execution

More psycopg2 examples

12

….
while true:
Input bar, beer, price…

cur.execute('‘’
UPDATE Serves
SET price = %s
WHERE bar = %s AND beer = %s''', (price, bar, beer))

….
Check result...

Perform passing,
semantic analysis,
optimization,
compilation, and finally
execution

Execute many times
Can we reduce this overhead?

Prepared statements: example

13

cur.execute(''' # Prepare once (in SQL).
PREPARE update_price AS # Name the prepared plan,
UPDATE Serves
SET price = $1 # and note the $1, $2, … notation for
WHERE bar = $2 AND beer = $3''') # parameter placeholders.

while true:
Input bar, beer, price…

cur.execute(‘
EXECUTE update_price(%s, %s, %s)',\ # Execute many times.

(price, bar, beer))….
Check result...

Prepare only once

“Exploits of a mom”

• The school probably had something like:

where name is a string input by user
• Called an SQL injection attack

14

http://xkcd.com/327/

cur.execute("SELECT * FROM Students " + \
"WHERE (name = '" + name + "')")

Guarding against SQL injection

• Escape certain characters in a user input string, to
ensure that it remains a single string
• E.g., ', which would terminate a string in SQL, must be

replaced by '' (two single quotes in a row) within the
input string

• Luckily, most API’s provide ways to “sanitize” input
automatically (if you use them properly)
• E.g., pass parameter values in psycopg2 through %s’s

15

Augmenting SQL vs. API
• Pros of augmenting SQL:
• More processing features for DBMS
• More application logic can be pushed closer to data

• Cons of augmenting SQL:
• SQL is already too big
• Complicate optimization and make it impossible to

guarantee safety

16

A brief look at other approaches

• “Embed” SQL in a general-purpose programming
language
• E.g.: embedded SQL

• Support database features through an object-
oriented programming language
• E.g., object-relational mappers (ORM) like Python

SQLAlchemy

• Extend a general-purpose programming language
with SQL-like constructs
• E.g.: LINQ (Language Integrated Query for .NET)

17

EXEC SQL BEGIN DECLARE SECTION;
int thisUid; float thisPop;
EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE ABCMember CURSOR FOR

SELECT uid, pop FROM User
WHERE uid IN (SELECT uid FROM Member WHERE gid = 'abc')
FOR UPDATE;

EXEC SQL OPEN ABCMember;
EXEC SQL WHENEVER NOT FOUND DO break;
while (1) {

EXEC SQL FETCH ABCMember INTO :thisUid, :thisPop;
printf("uid %d: current pop is %f\n", thisUid, thisPop);

printf("Enter new popularity: ");
scanf("%f", &thisPop);
EXEC SQL UPDATE User SET pop = :thisPop

WHERE CURRENT OF ABCMember;
}
EXEC SQL CLOSE ABCMember;

Embedding SQL in a language

18

Declare variables to be “shared”
between the application and DBMS

Specify a handler for
NOT FOUND exception

Example in C

Embedded SQL v.s. API

• Pros of embedded SQL:
• Be processed by a preprocessor prior to compilation à

may catch SQL-related errors at preprocessing time
• API: SQL statements are interpreted at runtime

• Cons of embedded SQL:
• New host language code à complicate debugging

19

A brief look at other approaches

• “Embed” SQL in a general-purpose programming
language
• E.g.: embedded SQL

• Support database features through an object-
oriented programming language
• E.g., object-relational mappers (ORM) like Python

SQLAlchemy

• Extend a general-purpose programming language
with SQL-like constructs
• E.g.: LINQ (Language Integrated Query for .NET)

20

Object-relational mapping
• Example: Python SQLAlchemy

• Automatic data mapping and query translation
• But syntax may vary for different host languages
• Very convenient for simple structures/queries, but quickly

get complicated and less intuitive for more complex
situations

21

class User(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String)
password = Column(String)

class Address(Base):
__tablename__ = 'addresses'
id = Column(Integer, primary_key=True)
email_address = Column(String, nullable=False)
user_id = Column(Integer, ForeignKey('users.id'))

Address.user = relationship("User", back_populates="addresses")
User.addresses = relationship("Address", order_by=Address.id, back_populates="user")

jack = User(name='jack', password='gjffdd')
jack.addresses = [Address(email_address='jack@google.com’),

Address(email_address='j25@yahoo.com')]
session.add(jack)
session.commit()

session.query(User).join(Address).filter(Address.email_address=='jack@google.com').all()

A brief look at other approaches

• “Embed” SQL in a general-purpose programming
language
• E.g.: embedded SQL

• Support database features through an object-
oriented programming language
• By automatically storing objects in tables and translating

methods to SQL
• E.g., object-relational mappers (ORM) like Python

SQLAlchemy

• Extend a general-purpose programming language
with SQL-like constructs
• E.g.: LINQ (Language Integrated Query for .NET)

22

Deeper language integration

• Example: LINQ (Language Integrated Query) for
Microsoft .NET languages (e.g., C#)

• Again, automatic data mapping and query translation
• Much cleaner syntax, but it still may vary for different

host languages

23

int someValue = 5;
var results = from c in someCollection

let x = someValue * 2
where c.SomeProperty < x
select new {c.SomeProperty, c.OtherProperty};

foreach (var result in results) {
Console.WriteLine(result);

}

Summary

• Basic SQL (queries, modifications, and constraints)
• Intermediate SQL(triggers, views, indexes)
• Programming
• Augment SQL, e.g., SQL/PSM
• Through an API, e.g., Python psycopg2, JDBC
• Embedded SQL, e.g., in C
• Automatic object-relational mapping, e.g.: Python

SQLAlchemy
• Extending programming languages with SQL-like

constructs, e.g.: LINQ

• Recursion (Optional, video only)

24

