Relational Database Design Theory (I)

Introduction to Database Management

CS348 Fall 2022
Announcements (Tue. Oct 18)

• Assignment 1’s grade was released last Thur
 • Partial solution is available on Learn
 • Appeal deadline is this Thur

• Milestone 1 is due this Thur, Oct 20, 11:59pm
 • Basic score is 45 points, capped by 49 points
 • Contribute $\frac{\min(s1,49)}{45} \times 30$ to the final project score

• Assignment 2 is released
 • Cover lectures till lecture 10
 • Due by Thur, Oct 27, 11:59pm
Design process – where are we?

• Schema refinement

Conceptual Design ➔ Conceptual Schema (E/R model) ➔ Logical Design ➔ Logical Schema (Relational model)

• What are relational design principles?
A Parts/Suppliers database example

- Each type of part has a name and an identifying number and may be supplied by zero or more suppliers.
- Each supplier has an identifying number, a name, and a contact location for ordering parts.
- Each supplier may offer the part at a different price.
Parts/Suppliers example (cont.)

• An instance

<table>
<thead>
<tr>
<th>Suppliers</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sno</td>
<td>Sname</td>
<td>City</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
</tr>
<tr>
<td>S2</td>
<td>Budd</td>
<td>Hull</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supplies</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sno</td>
<td>Pno</td>
</tr>
<tr>
<td>S1</td>
<td>P1</td>
</tr>
<tr>
<td>S1</td>
<td>P2</td>
</tr>
<tr>
<td>S1</td>
<td>P3</td>
</tr>
<tr>
<td>S2</td>
<td>P3</td>
</tr>
</tbody>
</table>

Parts

<table>
<thead>
<tr>
<th>Pno</th>
<th>Pname</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Bolt</td>
</tr>
<tr>
<td>P2</td>
<td>Nut</td>
</tr>
<tr>
<td>P3</td>
<td>Screw</td>
</tr>
</tbody>
</table>
Alternate Parts/Suppliers database

Supplied_Items

<table>
<thead>
<tr>
<th>Sno</th>
<th>Sname</th>
<th>City</th>
<th>Pno</th>
<th>Pname</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
<td>P1</td>
<td>Bolt</td>
<td>0.50</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
<td>P2</td>
<td>Nut</td>
<td>0.25</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
<td>P3</td>
<td>Screw</td>
<td>0.30</td>
</tr>
<tr>
<td>S2</td>
<td>Budd</td>
<td>Hull</td>
<td>P3</td>
<td>Screw</td>
<td>0.40</td>
</tr>
</tbody>
</table>
Change anomalies

• The single-table schema suffers from:
 • **Update anomalies** (e.g. change supplier name)
 • **Insert anomalies** (e.g. add a new item)
 • **delete anomalies** (e.g. S1 no longer supplies Nut)
 • Likely increase in space requirements

<table>
<thead>
<tr>
<th>Sno</th>
<th>Sname</th>
<th>City</th>
<th>Pno</th>
<th>Pname</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
<td>P1</td>
<td>Bolt</td>
<td>0.50</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
<td>P2</td>
<td>Nut</td>
<td>0.25</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
<td>P3</td>
<td>Screw</td>
<td>0.30</td>
</tr>
<tr>
<td>S2</td>
<td>Budd</td>
<td>Hull</td>
<td>P3</td>
<td>Screw</td>
<td>0.40</td>
</tr>
</tbody>
</table>
Change anomalies

• The single-table schema suffers from:
 • Update anomalies (e.g. change supplier name)
 • Insert anomalies (e.g. add a new item)
 • delete anomalies (e.g. S1 no longer supplies Nut)
 • Likely increase in space requirements

• The multi-table schema does not have these problems.
Another alternate

• Is more tables always better?

<table>
<thead>
<tr>
<th>Snos</th>
<th>Sname</th>
<th>Cities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sno</td>
<td>Sname</td>
<td>City</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
</tr>
<tr>
<td>S2</td>
<td>Budd</td>
<td>Hull</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pnums</th>
<th>Pnames</th>
<th>Prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pnum</td>
<td>Pname</td>
<td>Price</td>
</tr>
<tr>
<td>I1</td>
<td>Bolt</td>
<td>0.50</td>
</tr>
<tr>
<td>I2</td>
<td>Nut</td>
<td>0.25</td>
</tr>
<tr>
<td>I3</td>
<td>Screw</td>
<td>0.30</td>
</tr>
</tbody>
</table>

• Information about relationships is lost
Designing good databases

• Goals
 • A methodology for evaluating schemas (detecting anomalies)
 • A methodology for transforming bad schemas into good ones

• How do we know an anomaly exists?
• What should we do if an anomaly exists?

<table>
<thead>
<tr>
<th>Supplied_Items</th>
<th>Sno</th>
<th>Sname</th>
<th>City</th>
<th>Pno</th>
<th>Pname</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
<td></td>
<td>P1</td>
<td>Bolt</td>
<td>0.50</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
<td></td>
<td>P2</td>
<td>Nut</td>
<td>0.25</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
<td></td>
<td>P3</td>
<td>Screw</td>
<td>0.30</td>
</tr>
<tr>
<td>S2</td>
<td>Budd</td>
<td>Hull</td>
<td></td>
<td>P3</td>
<td>Screw</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Schema decomposition: avoid anomalies while retaining all info in the instances.

Integrity constraints (e.g. dependencies between attributes) → lead to anomalies
Design Theory

• Detect anomalies: Functional dependencies

• Repair anomalies: Schema decomposition
Functional dependencies

- Consider the following relation schema

<table>
<thead>
<tr>
<th>SIN</th>
<th>PNum</th>
<th>Hours</th>
<th>EName</th>
<th>PName</th>
<th>PLoc</th>
<th>Allowance</th>
</tr>
</thead>
</table>

1. SIN determines employee name
2. Project number determines project name and location
3. Allowances are always the same for the same number of hours at the same location

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R.

- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y.

- If X is a superkey of R, then $X \rightarrow R$ (all the attributes).

```
<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>?</td>
</tr>
</tbody>
</table>
```

Must be b Could be anything
Functional dependencies

• Consider the following relation schema

<table>
<thead>
<tr>
<th>SIN</th>
<th>PNum</th>
<th>Hours</th>
<th>EName</th>
<th>PName</th>
<th>PLoc</th>
<th>Allowance</th>
</tr>
</thead>
</table>

1. SIN determines employee name
2. Project number determines project name and location
3. Allowances are always the same for the same number of hours at the same location

• How about SIN and EName determines Ename?
 • Trivial FD

\[\text{SIN} \rightarrow \text{EName} \]
\[\text{PNum} \rightarrow \text{PName}, \text{PLoc} \]
\[\text{PLoc, Hours} \rightarrow \text{Allowance} \]

\[\text{SIN, EName} \rightarrow \text{EName} \]
Closure of FD sets

• How do we know what additional FDs hold in a schema?

• A set of FDs \(\mathcal{F} \) logically implies a FD \(X \rightarrow Y \) if \(X \rightarrow Y \) holds in all instances of \(R \) that satisfy \(\mathcal{F} \).

• The closure of a FD set \(\mathcal{F} \) (denoted \(\mathcal{F}^+ \)):
 • The set of all FDs that are logically implied by \(\mathcal{F} \)
 • Informally, \(\mathcal{F}^+ \) includes all of the FDs in \(\mathcal{F} \), i.e., \(\mathcal{F} \subseteq \mathcal{F}^+ \), plus any dependencies they imply.
Rules of FD’s

• Armstrong’s axioms
 • Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 • Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 • Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

• Rules derived from axioms
 • Decomposition: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 • Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

Using these rules, you can prove or disprove an FD given a set of FDs
Example for proving a FD

Prove $\text{SIN}, \text{PNum} \rightarrow \text{Allowance}$

1. $\text{SIN}, \text{PNum} \rightarrow \text{Hours} \ (\in \mathcal{F})$
2. $\text{PNum} \rightarrow \text{PName, PLoc} \ (\in \mathcal{F})$
3. $\text{PLoc, Hours} \rightarrow \text{Allowance} \ (\in \mathcal{F})$

\mathcal{F} includes:
- $\text{SIN, PNum} \rightarrow \text{Hours}$
- $\text{SIN} \rightarrow \text{EName}$
- $\text{PNum} \rightarrow \text{PName, PLoc}$
- $\text{PLoc, Hours} \rightarrow \text{Allowance}$
Example for proving a FD

Prove $\text{SIN, PNum} \rightarrow \text{Allowance}$

1. $\text{SIN, PNum} \rightarrow \text{Hours} \ (\in \mathcal{F})$
2. $\text{PNum} \rightarrow \text{PName, PLoc} \ (\in \mathcal{F})$
3. $\text{PLoc, Hours} \rightarrow \text{Allowance} \ (\in \mathcal{F})$
4. $\text{SIN, PNum} \rightarrow \text{PNum} \ (\text{reflexivity})$
5. $\text{SIN, PNum} \rightarrow \text{PName, PLoc} \ (\text{transitivity, 4 and 2})$
6. $\text{SIN, PNum} \rightarrow \text{PLoc} \ (\text{decomposition, 5})$
7. $\text{SIN, PNum} \rightarrow \text{PLoc, Hours} \ (\text{union, 6 and 1})$
8. $\text{SIN, PNum} \rightarrow \text{Allowance} \ (\text{transitivity, 7 and 3})$

\mathcal{F} includes:

- $\text{SIN, PNum} \rightarrow \text{Hours}$
- $\text{SIN} \rightarrow \text{EName}$
- $\text{PNum} \rightarrow \text{PName, PLoc}$
- $\text{PLoc, Hours} \rightarrow \text{Allowance}$
Example for proving a FD

Prove $SIN, PNum \rightarrow Allowance$

1. $SIN, PNum \rightarrow Hours (\in \mathcal{F})$
2. $PNum \rightarrow PName, PLoc (\in \mathcal{F})$
3. $PLoc, Hours \rightarrow Allowance (\in \mathcal{F})$
4. $SIN, PNum \rightarrow PNum$ (reflexivity)
5. $SIN, PNum \rightarrow PName, PLoc$ (transitivity, 4 and 2)
6. $SIN, PNum \rightarrow PLoc$ (decomposition, 5)
7. $SIN, PNum \rightarrow PLoc, Hours$ (union, 6 and 1)
8. $SIN, PNum \rightarrow Allowance$ (transitivity, 7 and 3)

\mathcal{F} includes:
- $SIN, PNum \rightarrow Hours$
- $SIN \rightarrow EName$
- $PNum \rightarrow PName, PLoc$
- $PLoc, Hours \rightarrow Allowance$

Attribute closure of $\{SIN, PNum\}$
Attribute closure

• The closure of attributes Z in a relation R (denoted Z^+) with respect to a set of FDs, \mathcal{F}, is the set of all attributes $\{A_1, A_2, \ldots\}$ functionally determined by Z (that is, $Z \rightarrow A_1A_2 \ldots$)

• Algorithm for computing the closure

Compute$Z^+(Z, \mathcal{F})$:

• Start with closure $= Z$
• If $X \rightarrow Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
• Repeat until no new attributes can be added
Example for computing attribute closure

Compute $Z^+ ({PNum, Hours}, F)$:

F includes:
- $SIN, PNum \rightarrow Hours$
- $SIN \rightarrow EName$
- $PNum \rightarrow PName, PLoc$
- $PLoc, Hours \rightarrow Allowance$

<table>
<thead>
<tr>
<th>FD</th>
<th>Z^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>$PNum, Hours$</td>
</tr>
<tr>
<td>$PNum \rightarrow PName, PLoc$</td>
<td>$PNum, Hours, PName, PLoc$</td>
</tr>
<tr>
<td>$PLoc, Hours \rightarrow Allowance$</td>
<td>$PNum, Hours, PName, PLoc, Allowance$</td>
</tr>
</tbody>
</table>

$PNum, Hours \rightarrow PLoc, Allowance$
Using attribute closure

Given a relation R and set of FD’s \mathcal{F}

- **Does another FD** $X \rightarrow Y$ **follow from** \mathcal{F}?
 - Compute X^+ with respect to \mathcal{F}
 - If $Y \subseteq X^+$, then $X \rightarrow Y$ follows from \mathcal{F}

- **Is K a key of** R?
 - Compute K^+ with respect to \mathcal{F}
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that K is *minimal* (how?) [Exercise]
 - Hint: check the attribute closure of its proper subset.
Design Theory

• Detect anomalies: Functional dependencies
 • Closure of FDs (rules, e.g. Armstrong’s axioms)
 • Attribute closure

• Repair anomalies: Schema decomposition
 • (next lecture)