
Relational Database 
Design Theory (I)

Introduction to Database Management
CS348 Fall 2022



Announcements (Tue. Oct 18)

• Assignment 1’s grade was released last Thur
• Partial solution is available on Learn
• Appeal deadline is this Thur

• Milestone 1 is due this Thur, Oct 20, 11:59pm 
• Basic score is 45 points, capped by 49 points

• Contribute !"# $%,'(
')

∗ 30 to the final project score

• Assignment 2 is released 
• Cover lectures till lecture 10
• Due by Thur, Oct 27, 11:59pm 

2



Design process – where are we?

• Schema refinement

• What are relational design principles?

3

Conceptual 
Design

Conceptual 
Schema

(E/R model)

Logical 
Design

Logical 
Schema

(Relational 
model)



A Parts/Suppliers database example
• Each type of part has a name and an identifying number and 

may be supplied by zero or more suppliers. 
• Each supplier has an identifying number, a name, and a 

contact location for ordering parts.
• Each supplier may offer the part at a different price.

4



Parts/Suppliers example (cont.)

• An instance

5



Alternate Parts/Suppliers database 
6



Change anomalies

• The single-table schema suffers from: 
• Update anomalies (e.g. change supplier name)
• Insert anomalies (e.g. add a new item)
• delete anomalies (e.g. S1 no longer supplies Nut)
• Likely increase in space requirements

7

Xi
Xi
Xi



Change anomalies

• The single-table schema suffers from: 
• Update anomalies (e.g. change supplier name)
• Insert anomalies (e.g. add a new item)
• delete anomalies (e.g. S1 no longer supplies Nut)
• Likely increase in space requirements

• The multi-table schema does not have these 
problems.

8

Xi



Another alternate

• Is more tables always better?

• Information about relationships is lost

9



Designing good databases

• Goals
• A methodology for evaluating schemas (detecting anomalies)
• A methodology for transforming bad schemas into good ones

• How do we know an anomaly exists?
• What should we do if an anomaly exists?

10

Integrity constraints (e.g. dependencies 
between attributes) à lead to anomaliesSchema 

decomposition: 
avoid anomalies 
while retaining 
all info in the 

instances.



Design Theory 

• Detect anomalies: Functional dependencies

• Repair anomalies: Schema decomposition

11

This lecture



Functional dependencies

• Consider the following relation schema

1. SIN determines employee name
2. Project number determines project name and location
3. Allowances are always the same for the same number 

of hours at the same location

• A functional dependency (FD) has the form 𝑋 → 𝑌, 
where 𝑋 and 𝑌 are sets of attributes in a relation 𝑅

12

SIN → EName

PNum→ PName, PLoc

PLoc, Hours→ Allowance



Functional dependencies

• A functional dependency (FD) has the form 𝑋 → 𝑌, 
where 𝑋 and 𝑌 are sets of attributes in a relation 𝑅

• 𝑋 → 𝑌 means that whenever two tuples in 𝑅 agree 
on all the attributes in 𝑋, they must also agree on 
all attributes in 𝑌

• If X is a superkey of R , then X → R (all the attributes)

13

𝑿 𝒀 𝒁
𝑎 𝑏 𝑐
𝑎 ? ?

… … …

𝑿 𝒀 𝒁
𝑎 𝑏 𝑐
𝑎 𝑏 ?

… … …Must be 𝑏 Could be anything



Functional dependencies

• Consider the following relation schema

1. SIN determines employee name
2. Project number determines project name and location
3. Allowances are always the same for the same number 

of hours at the same location

• How about SIN and EName determines Ename? 
• Trivial FD

14

SIN → EName

PNum→ PName, PLoc

PLoc, Hours→ Allowance

SIN,EName → EName



Closure of FD sets

• How do we know what additional FDs hold in a 
schema? 

• A set of FDs ℱ logically implies a FD 𝑋 → 𝑌 if 𝑋 → 𝑌
holds in all instances of 𝑅 that satisfy ℱ

• The closure of a FD set ℱ (denoted ℱ!): 
• The set of all FDs that are logically implied by ℱ
• Informally, ℱ+includes all of the FDs in ℱ, i.e., ℱ ⊆ 𝐹+, 

plus any dependencies they imply.

15

ℱ ℱ!



Rules of FD’s

• Armstrong’s axioms
• Reflexivity: If 𝑌 ⊆ 𝑋, then 𝑋 → 𝑌
• Augmentation: If 𝑋 → 𝑌, then 𝑋𝑍 → 𝑌𝑍 for any 𝑍
• Transitivity: If 𝑋 → 𝑌 and 𝑌 → 𝑍, then 𝑋 → 𝑍

• Rules derived from axioms
• Decomposition: If 𝑋 → 𝑌𝑍, then 𝑋 → 𝑌 and 𝑋 → 𝑍
• Union: If 𝑋 → 𝑌 and 𝑋 → 𝑍, then 𝑋 → 𝑌𝑍

FUsing these rules, you can prove or disprove an FD 
given a set of FDs

16

SIN,EName → EName

SIN, Z→ Ename, Z

PNum→ PName, PLoc

PNum→ Pname
PNum→ PLoc



Example for proving a FD 
Prove SIN, PNum→ Allowance
1. SIN, PNum→ Hours (∈ ℱ)
2. PNum→ PName,PLoc (∈ ℱ)
3. PLoc,Hours→ Allowance (∈ ℱ)

17

ℱ includes:
SIN, PNum→ Hours  
SIN → EName
PNum→ PName,PLoc
PLoc, Hours→ Allowance



Example for proving a FD 
Prove SIN, PNum→ Allowance
1. SIN, PNum→ Hours (∈ ℱ)
2. PNum→ PName,PLoc (∈ ℱ)
3. PLoc,Hours→ Allowance (∈ ℱ)
4. SIN, PNum→ PNum (reflexivity)
5. SIN, PNum→ PName,PLoc (transitivity, 4 and 2)
6. SIN, PNum→ PLoc (decomposition, 5)
7. SIN, PNum→ PLoc,Hours (union, 6 and 1)
8. SIN, PNum→ Allowance (transitivity, 7 and 3)

18

ℱ includes:
SIN, PNum→ Hours  
SIN → EName
PNum→ PName,PLoc
PLoc, Hours→ Allowance



PLoc, Hours, 
Allowance, .. 

Example for proving a FD 
Prove SIN, PNum→ Allowance
1. SIN, PNum→ Hours (∈ ℱ)
2. PNum→ PName,PLoc (∈ ℱ)
3. PLoc,Hours→ Allowance (∈ ℱ)
4. SIN, PNum→ PNum (reflexivity)
5. SIN, PNum→ PName,PLoc (transitivity, 4 and 2)
6. SIN, PNum→ PLoc (decomposition, 5)
7. SIN, PNum→ PLoc,Hours (union, 6 and 1)
8. SIN, PNum→ Allowance (transitivity, 7 and 3)

19

ℱ includes:
SIN, PNum→ Hours  
SIN → EName
PNum→ PName,PLoc
PLoc, Hours→ Allowance

SIN, PNum

Attribute closure of 
{SIN, PNum}



Attribute closure

• The closure of attributes 𝑍 in a relation 𝑅 (denoted 
𝑍!) with respect to a set of FDs, ℱ, is the set of all 
attributes 𝐴", 𝐴#, … functionally determined by 𝑍
(that is, Z → 𝐴"𝐴#…)

• Algorithm for computing the closure 
Compute𝑍!(𝑍, ℱ):
• Start with closure = 𝑍
• If 𝑋 → 𝑌 is in ℱ and 𝑋 is already in the closure, then also 

add 𝑌 to the closure
• Repeat until no new attributes can be added

20



Example for computing attribute 
closure

FD 𝑍!

initial 𝑃𝑁𝑢𝑚,𝐻𝑜𝑢𝑟𝑠

21

ℱ includes:
SIN, PNum→ Hours  
SIN → EName
PNum→ PName,PLoc
PLoc, Hours→ Allowance

Compute𝑍!({𝑃𝑁𝑢𝑚,𝐻𝑜𝑢𝑟𝑠}, ℱ):

𝑃𝑁𝑢𝑚,𝐻𝑜𝑢𝑟𝑠 → 𝑃𝐿𝑜𝑐, 𝐴𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒

PNum → PName,PLoc 𝑃𝑁𝑢𝑚,𝐻𝑜𝑢𝑟𝑠, PName, PLoc

PLoc, Hours→ Allowance 𝑃𝑁𝑢𝑚,𝐻𝑜𝑢𝑟𝑠, PName, PLoc, Allowance



Using attribute closure

Given a relation 𝑅 and set of FD’s ℱ
• Does another FD 𝑋 → 𝑌 follow from ℱ?
• Compute 𝑋+ with respect to ℱ
• If 𝑌 ⊆ 𝑋+, then 𝑋 → 𝑌 follows from ℱ

• Is 𝐾 a key of 𝑅?
• Compute 𝐾+ with respect to ℱ
• If 𝐾+ contains all the attributes of 𝑅, 𝐾 is a super key
• Still need to verify that 𝐾 is minimal (how?) [Exercise]

• Hint: check the attribute closure of its proper subset. 

22



Design Theory 

• Detect anomalies: Functional dependencies
• Closure of FDs (rules, e.g. Armstrong’s axioms)
• Attribute closure

• Repair anomalies: Schema decomposition 
• (next lecture)

23


