Relational Database
Design Theory (1)

Introduction to Database Management
CS348 Fall 2022

Announcements (Tue. Oct 18)

* Assignment 1’s grade was released last Thur
* Partial solution is available on Learn
* Appeal deadline is this Thur

* Milestone 1is due this Thur, Oct 20, 11:59pm

* Basic scoreis 45 points, capped by 49 points
min(s1,49)

* Contribute * 30 to the final project score

* Assignment 2 is released
e Cover lectures till lecture 10
* Due by Thur, Oct 27, 11:59pm

Design process — where are we?

e Schema refinement

Conceptual Logical

Conceptual P Logical Schema
Design SCHCHS Design (GEELEL

(E/R model))

* What are relational design principles?

A Parts/Suppliers database example

* Each type of part has a name and an identifying number and
may be supplied by zero or more suppliers.

* Each supplier has an identifying number, a name, and a
contact location for ordering parts.

* Each supplier may offer the part at a different price.

‘/ S \\
\ D10 J

{ Sname)
R

City >% Supplier

\:\S\upplfes f\Ptce/

\Pno D Part 7\Pname)

Parts/Suppliers example (cont.)

e Aninstance

Suppliers
Sno | Sname | City

Supplies

S1 | Magna | Ajax

Sno | Pno | Pri
S2 | Budd | Hull |

SI [PI | 050
SI | P2 | 025
SI | P3 | 030
P1 | Bolt S2 | P3 | 0.40

Parts
Pno | Pname

P2 Nut
P3 Screw

Alternate Parts/Suppliers database

Supplied_Items

Supplied_Items
Sno | Sname | City | Pno | Pname | Price

S1 | Magna | Ajax | P1 | Bolt 0.50
S1 | Magna | Ajax | P2 | Nut 0.25
S1 | Magna | Ajax | P3 | Screw | 0.30
S2 | Budd | Hull | P3 | Screw | 0.40

Change anomalies

* The single-table schema suffers from:
(e.g. change supplier name)
(e.g. add a new item)
(e.g. S1no longer supplies Nut)
* Likely increase in space requirements

Supplied_Items

Sno | Sname | City | Pno | Pname | Price
E | RAacecl! Azae | T | D .1¢ | N &n
i LVL(’,EIIQ l_lJClA | e | 1IU1L \USUAV/
\ 1 |, ., | 7, s TY ™) T 4 N o W el
W 1 lVl'O,f:’ 11d ﬂJ dA I 4 INUL Ul
C1 N oreno ANis S D2 Qe N 20N
J 1 LVLU,E 11CL 7 § LJ (6 AN AL J YWOULOU VY \ VP UAV
S2 Budd Hull | P3 Screw 0.40

Change anomalies

* The single-table schema suffers from:
» Update anomalies (e.g. change supplier name)
* Insert anomalies (e.g. add a new item)
* delete anomalies (e.g. S1 no longer supplies Nut)
* Likely increase in space requirements

* The multi-table schema does not have these
p ro b I ems. Suppliers

Sno | Sname | City

Supplies
Sno | Pno | Price

= I — == 1
D1 IVIAETC AJdX

S2 | Budd | Hull

N
>

c1 | D1
Parts

L

[—0:50

1 | aWa V< ‘

Pno | Pname Ol

P1 | Bolt S2 ‘P3 ‘ 0.40
P2 | Nut

P3 Screw

Snos

Sno

S1
S2

Pnums

Another alternate

* |s more tables always better?

Snames

Sname

Cities

City

Magna
Budd

Pnum

Pnames

Ajax
Hull

Prices

Pname

Price

I1
12
I3

Bolt
Nut
Screw

0.50
0.25
0.30
0.40

* Information about relationships is lost

10

Designing good databases

* Goals
* A methodology for evaluating schemas (detecting anomalies)
* A methodology for transforming bad schemas into good ones

* How do we know an anomaly exists?
* What should we do if an anomaly exists?

Integrity constraints (e.g. dependencies

between attributes) - lead to anomalies

Supplied_Items
Sno | Sname | City

- ; S1 | Magna | Ajax|| Pl | Bolt 0.50
= S1 | Magna | Ajax|| P2 | Nut 0.25
S1 | Magna | Ajax ‘ P3 | Screw || 0.30
S2 | Budd | Hull [[P3 | Screw|| 0.40

Design Theory

* Detect anomalies: Functional dependencies

* Repair anomalies: Schema decomposition

Functional dependencies

* Consider the following relation schema
EmpProj
SIN | PNum | Hours | EName | PName | PLoc | Allowance
SIN — EName
SIN determines employee name sy PName, PLoc
2. Project number determines project name and location

3. Allowances are always the same for the same number
of hours at the same location [PLoc, Hours — Allowance

* A (FD) has the form ,
where X and Y are sets of attributes in a relation R

Functional dependencies

* A (FD) has the form ,
where X and Y are sets of attributes in a relation R

* X = Y means that whenever two tuplesin R agree
on all the attributes in X, they must also agree on
all attributesinY

a b c

a b | ?
Must be b_/ \._ Could be anything

* If X is a superkey of R, then X — R (all the attributes)

Functional dependencies

* Consider the following relation schema

EmpProj
SIN | PNum | Hours | EName | PName | PLoc | Allowance

1. SIN determines employee name *
2. Project number determines project name and location
3. Allowances are always the same for the same number

of hours at the same location [PLog, Hours — Allowance

e How about SIN and EName determines Ename?

14

Closure of FD sets

e How do we know what FDs hold in a
schema?

* Asetof FDs F aFDX->YiftX->Y
holds in of R that satisfy F

* The of a FD set F (denoted 7): 7

* The set of all FDs that are logically implied by F

* Informally, 7 "includes all of the FDs in F, i.e.,, F € FT,
plus any dependencies they imply.

16

Rules of FD’s

* Armstrong’s axioms

* Reflexivity: fY € X,thenX - Y _

* Augmentation: If X - Y, thenXZ - YZ forany Z
* Transitivity:f X > YandY - Z,thenX - Z

* Rules derived from axioms
* Decompositionitf X - YZ,thenX > YandX - 7
e Uniontf X ->YandX - Z,thenX - YZ

®Using these rules, you can prove or disprove an FD
given a set of FDs

Example for proving a FD

Prove F includes:
SIN, PNum — Hours
— Hours (€ F) SIN — EName
N PName,PLoc (E T) PNum — PName,PLoc

PLoc, Hours — Allowance

3. PLoc,Hours = (€ F)

Example for proving a FD

Prove F includes:
SIN, PNum — Hours
— Hours (E T) SIN — EName
N PName,PLoc (E T) PNum — PName,PLoc

PLoc, Hours — Allowance

PLOM (€ F)

SIN,/FNum @eﬂexivity)
SIN, PNtim_— PName,PLoc (transitivity, 4 and 2)

SIN, PNum — PLoc (decomposition, 5)
SIN, PNum —=(PLoc,Hours{union, 6 and 1)

© N OV AW

SIN, PNum — Allowance (transitivity, 7 and 3)

19

Example for proving a FD

Prove SIN, PNum — Allowance F includes:

1. SIN, PNum — Hours (€ F) gm'f)’\,’glf\,n;r;Hours

2. PNum — PName,PLoc (€ F) ”;’L\'(‘)"Q"H_O’ oname, “oc
3. PLoc,Hours = Allowance (€ F)

4. SIN, PNum — PNum (reflexivity)

5. SIN, PNum — PName,PLoc (transitivity, 4 and 2) /-\
6. SIN, PNum = PLoc (decomposition, 5) PLoc, Hours,

7. SIN, PNum — PLoc,Hours (union, 6 and 1) KA”OWG”C% -

8. SIN, PNum = Allowance (transitivity, 7 and 3)

Attribute closure of

{SIN, PNum}

Attribute closure

* The in a relation R (denoted
) with respect to a set of FDs, F, is the set of

(thatis, Z - A4, ...)

* Algorithm for computing the closure

e Start with closure = 7

* If X - YisinF and X is already in the closure, then also
add Y to the closure

* Repeat until no new attributes can be added

Example for computing attribute
closure

ComputeZ™ ({PNum, Hours}, F): ¥Fincludes:

SIN, PNum — Hours

SIN —» EName

PNum — PName,PLoc
PLoc, Hours = Allowance

N Y

initial PNum, Hours
PNum — PName,PLoc PNum, Hours, PName, PLoc
PLoc, Hours — Allowance PNum, Hours, PName, PLoc, Allowance

PNum, Hours — PLoc, Allowance

21

Using attribute closure

Given arelation R and set of FD’s F

Compute X with respect to F
IfY € X%, then X - Y follows from F

Compute K with respect to F
If K contains all the attributes of R, K is a super key

Still need to verify that K is minimal (how?) [Exercise]
* Hint: check the attribute closure of its proper subset.

Design Theory

* Detect anomalies: Functional dependencies
* Closure of FDs (rules, e.g. Armstrong’s axioms)
* Attribute closure

* Repair anomalies: Schema decomposition
* (next lecture)

