
Indexing
Introduction to Database Management

CS348 Fall 2022

Announcements (Tue, Nov 1)

• Midterm Exam
• Fri, Nov 4, 4:30-6:00pm
• Cover Lectures 1-6 [instead of Lectures 1-10]
• Practice questions on Learn
• Survey for midterm review session

• Assignment 2
• Grade won’t be released before midterm exam, but we

will cover solutions related to Lectures 1-6 on the
midterm review lecture on Thur, Nov 3.

• Project
• Milestone 2 due Nov 17 (Thu)

2

Outline

• Types of indexes

• Index structure

• How to use index

3

What are indexes for?

• Given a value, locate the record(s) with this value
SELECT * FROM R WHERE A = value;
SELECT * FROM R, S WHERE R.A = S.B;

• Find data by other search criteria, e.g.
• Range search

SELECT * FROM R WHERE A > value;
• Keyword search

4

database indexing Search

Focus
of this
lecture

Dense v.s. sparse indexes
• Dense: one index entry for each search key value

• One entry may “point” to multiple records (e.g., two users named Jessica)
• Sparse: one index entry for each block

• Records must be clustered according to the search key

5

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

Dense v.s. sparse indexes
• Dense: one index entry for each search key value

• One entry may “point” to multiple records (e.g., two users named Jessica)
• Sparse: one index entry for each block

• Records must be clustered according to the search key

6

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

Smaller size

Must be clustered

Can tell directly if
a record exists

May not fit
into memory

Easier to
update

Clustering v.s. non-clustering indexes

• An index on attribute A of a relation is a clustering index if tuples in the
relation with similar values for A are stored together in the same block.

• Other indices are non-clustering (or secondary) indices.

• Note: A relation may have at most one clustering index, and any number
of non-clustering indices.

7

Bart

Jessica

Lisa

Martin

Milhouse

Nelson

Ralph

Sherri

Terri

Windel

123

456

857

Sparse index
on uid

Dense index
on name

123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5

A clustering index
on uid

A
non-clustering
index on name

Primary and secondary indexes
• Primary index

• Created for the primary key of a table
• Records are usually clustered by the primary key
• Clustering index à sparse

• Secondary index
• Non-clustering index, usually dense (to find each search key

value, since records are not clustered by this search key)

• SQL
• PRIMARY KEY declaration automatically creates a primary

index, UNIQUE key automatically creates a secondary index
• Additional secondary index can be created on non-key

attribute(s):
CREATE INDEX UserPopIndex ON User(pop);

8

Outline

• Types of indexes
• Sparse v.s. dense
• Clustering v.s. non-clustering
• Primary v.s. secondary

• Index structure

• How to use index

9

ISAM

• What if an index is still too big?
• Put a another (sparse) index on top of that!
FISAM (Index Sequential Access Method), more or less

10

100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, …

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…… … …

Data blocks

192, 197,
…

200, 202,
…

Example: look up 197

Updates with ISAM

• Overflow chains and empty data blocks degrade
performance
• Worst case: most records go into one long chain, so

lookups require scanning all data!

11

100, 200, …, 901

100, 123, …, 192 901, …, 996…Index blocks 200, …

100, 108,
119, 121

123, 129,
…

901, 907,
…

996, 997,
…… … …

Data blocks

192, 197,
…

200, 202,
…

Example: insert 107

107 Overflow block

Example: delete 129

B+-tree

• A hierarchy of nodes with intervals
• Balanced (more or less): good performance guarantee
• Disk-based: one node per block; large fan-out

12
3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

Sample B+-tree nodes
13

Max fan-out: 4

12
0

15
0

18
0

to keys
100 ≤ 𝑘 < 120

to keys
120 ≤ 𝑘 < 150

to keys
150 ≤ 𝑘 < 180

to keys
180 ≤ 𝑘

Non-leaf
12
0

13
0

to records with these 𝑘 values;
or, store records directly in leaves

to next leaf node in sequenceLeaf

to keys
100 ≤ 𝑘

B+-tree balancing properties

• Height constraint: all leaves at the same lowest level
• Fan-out constraint: all nodes at least half full

(except root)

Max # Max # Min # Min #
pointers keys active pointers keys

Non-leaf 𝑓 𝑓 − 1 ⌈𝑓/2⌉ ⌈𝑓/2⌉ − 1
Root 𝑓 𝑓 − 1 2 1
Leaf 𝑓 𝑓 − 1 ⌊𝑓/2⌋ ⌊𝑓/2⌋

14

Lookups

• SELECT * FROM R WHERE k = 179;
• SELECT * FROM R WHERE k = 32;

15
3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

17
9

Not found

Range query

• SELECT * FROM R WHERE k > 32 AND k < 179;

16
3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

10
0

10
1

11
0

12
0

13
0

15
0

15
6

Look up 32…

And follow next-leaf pointers until you hit upper bound

35

Insertion

• Insert a record with search key value 32

17
3 5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

Look up where the
inserted key
should go…

32

And insert it right there

Another insertion example

• Insert a record with search key value 152

18

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
2

Oops, node is already full!

Node splitting
19

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
2

10
0

10
1

11
0

15
6

Need to add to parent node a pointer
to the newly created node

Oops, that node
becomes full!

More node splitting
20

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

18
0

Max fan-out: 4

15
2

10
0

10
1

11
0

12
0

15
0

15
6

Need to add to parent node a pointer
to the newly created node

• In the worst case, node splitting can “propagate” all the way up
to the root of the tree (not illustrated here)
• Splitting the root introduces a new root of fan-out 2 and causes the tree

to grow “up” by one level

Deletion

• Delete a record with search key value 130

21

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

Look up the key
to be deleted…

And delete it
Oops, node is too empty!

If a sibling has more
than enough keys,
steal one!

Stealing from a sibling
22

10
0

10
1

11
0

12
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

15
6

Remember to fix the key
in the least common ancestor
of the affected nodes

Another deletion example

• Delete a record with search key value 179

23

10
0

10
1

11
0

12
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
6

18
0

Max fan-out: 4

Cannot steal from siblings
Then coalesce (merge) with a sibling!

Coalescing

• Deletion can “propagate” all the way up to the root of the
tree (not illustrated here)
• When the root becomes empty, the tree “shrinks” by one level

24

10
0

10
1

11
0

12
0

15
0

15
6

18
0

20
0

10
0

12
0

15
6

18
0

Max fan-out: 4

Remember to delete the
appropriate key from parent

Performance analysis of B+-tree

• How many I/O’s are required for each operation?
• ℎ, the height of the tree (more or less)
• Plus one or two to manipulate actual records
• Plus 𝑂 ℎ for reorganization (rare if 𝑓 is large)
• Minus one if we cache the root in memory

• How big is ℎ?
• Roughly log!"#$%&𝑁, where 𝑁 is the number of records
• Fan-out is typically large (in hundreds)—many keys and

pointers can fit into one block
• A 4-level B+-tree is enough for “typical” tables

25

B+-tree in practice

• Complex reorganization for deletion often is not
implemented (e.g., Oracle)
• Leave nodes less than half full and periodically

reorganize

• Most commercial DBMS use B+-tree instead of
hashing-based indexes because B+-tree handles
range queries
• ℎ(𝑘𝑒𝑦) 𝑚𝑜𝑑 𝑓: which pointer/block to which data entry

with key belongs

26

The Halloween Problem

• Story from the early days of System R…
UPDATE Payroll
SET salary = salary * 1.1
WHERE salary >= 100000;
• There is a B+-tree index on Payroll(salary)
• The update never stopped (why?)

• Solutions?
• Scan index in reverse, or
• Before update, scan index to create a “to-do” list, or
• During update, maintain a “done” list, or
• Tag every row with transaction/statement id

27

B+-tree versus ISAM

• ISAM is more static; B+-tree is more dynamic

• ISAM can be more compact (at least initially)
• Fewer levels and I/O’s than B+-tree

• Overtime, ISAM may not be balanced
• Cannot provide guaranteed performance as B+-tree does

28

B+-tree versus B-tree

• B-tree: why not store records (or record pointers)
in non-leaf nodes?
• These records can be accessed with fewer I/O’s

• Problems?
• Storing more data in a node decreases fan-out and

increases ℎ
• Records in leaves require more I/O’s to access
• Vast majority of the records live in leaves!

29

Beyond ISAM, B-, and B+-trees

• Other tree-based indexes: R-trees and variants,
GiST, etc.
• How about binary tree?

• Hashing-based indexes: extensible hashing, linear
hashing, etc.
• Text indexes: inverted-list index, suffix arrays, etc.
• Other tricks: bitmap index, bit-sliced index, etc.

30

vs.

Outline

• Types of indexes:
• Dense v.s. sparse
• Clustering v.s. non-clustering
• Primary v.s. secondary

• Indexing structure
• ISAM
• B+-tree

• How to use index

31

Multi-attribute indices

• Index on several attributes of the same relation.
• CREATE INDEX NameIndex ON User(LastName,FirstName);

• This index would be useful for these queries:
• select * from User where Lastname = ‘Smith’
• select * from User where Lastname = ‘Smith’ and

Firstname=‘John’

• This index would be not useful at all for this query:
• select * from User where Firstname=‘John’

32

tuples (or tuple pointers) are organized first
by Lastname. Tuples with a common surname

are then organized by Firstname.

Index-only plan

• For example:
• select count(*) from User where pop > ‘0.8’ and

firstname = ‘Bob’;
• non-clustering index on (firstname, pop)

• A (non-clustered) index contains all the columns
needed to answer the query without having to
access the tuples in the base relation.
• Avoid one disk I/O per tuple
• The index is much smaller than the base relation

33

Physical design guidelines for indices

1. Don’t index unless the performance increase outweighs
the update overhead

2. Attributes mentioned in WHERE clauses are candidates for
index search keys

3. Multi-attribute search keys should be considered when
• a WHERE clause contains several conditions; or
• it enables index-only plans

34

Physical design guidelines for indices

1. Don’t index unless the performance increase outweighs
the update overhead

2. Attributes mentioned in WHERE clauses are candidates for
index search keys

3. Multi-attribute search keys should be considered when
4. Choose indexes that benefit as many queries as possible
5. Each relation can have at most one clustering scheme;

therefore choose it wisely
• Target important queries that would benefit the most

• Range queries benefit the most from clustering
• A multi-attribute index that enables an index-only plan does not

benefit from being clustered

35

Case study

• Common queries
1. List the name, pop of users in a particular age range
2. List the uid, age, pop of users with a particular name
3. List the average pop of each age
4. List all the group info, ordered by their starting date
5. List the average pop of a particular group given the

group name

• Pick a set of clustered/unclustered indexes for
these set of queries (without worrying too much
about storage and update cost)

36
• User(uid, name, age, pop)
• Group(gid, name, date)
• Member(uid, gid)

Attention! This case study is newly added to this lecture, and hence it has no previous
video recording. Try to slowly go through the slides and understand them well.

Case study

• Common queries
1. List the name, pop of users in a particular age range
2. List the uid, age, pop of users with a particular name
3. List the average pop of each age
4. List all the group info, ordered by their starting date
5. List the average pop of a particular group given the

group name

37

A clustered index
on User(age)

A unclustered index
on User(name)

• User(uid, name, age, pop)
• Group(gid, name, date)
• Member(uid, gid)

Case study

• Common queries
1. List the name, pop of users in a particular age range
2. List the uid, age, pop of users with a particular name
3. List the average pop of each age
4. List all the group info, ordered by their starting date
5. List the average pop of a particular group given the

group name

38

A clustered index
on User(age)

A unclustered index
on User(name)

• User(uid, name, age, pop)
• Group(gid, name, date)
• Member(uid, gid)

A unclustered index
on User(age, pop)
à index-only plan

Case study

• Common queries
1. List the name, pop of users in a particular age range
2. List the uid, age, pop of users with a particular name
3. List the average pop of each age
4. List all the group info, ordered by their starting date
5. List the average pop of a particular group given the

group name

39

A clustered index
on User(age)

A unclustered index
on User(name)

• User(uid, name, age, pop)
• Group(gid, name, date)
• Member(uid, gid)

A unclustered index
on User(age, pop)
à index-only plan

A clustered
index on

Group(date)

Case study

• Common queries
1. List the name, pop of users in a particular age range
2. List the uid, age, pop of users with a particular name
3. List the average pop of each age
4. List all the group info, ordered by their starting date
5. List the average pop of a particular group given the

group name

40

A clustered index
on User(age)

A unclustered index
on User(name)

• User(uid, name, age, pop)
• Group(gid, name, date)
• Member(uid, gid)

A unclustered index
on User(age, pop)
à index-only plan

A clustered
index on

Group(date)
(i) Search gid by a particular name

à Clustered/Unclustered index on Group(name)?

A join between User(uid, …,pop) ,
Member(uid,gid), Group(gid, name)

(ii) Search uid by a particular gid
à Clustered/Unclustered index on Member(gid)?

(iii) Search pop by a particular uid
à Clustered/Unclustered index on User(uid)?

Unclustered, as we
already have a clustered
index on Group(date)
If many other queries require a
clustered index on Group(name), we
may reconsider!

Case study

• Common queries
1. List the name, pop of users in a particular age range
2. List the uid, age, pop of users with a particular name
3. List the average pop of each age
4. List all the group info, ordered by their starting date
5. List the average pop of a particular group given the

group name

41

A clustered index
on User(age)

A unclustered index
on User(name)

• User(uid, name, age, pop)
• Group(gid, name, date)
• Member(uid, gid)

A unclustered index
on User(age, pop)
à index-only plan

A clustered
index on

Group(date)
(i) Search gid by a particular name

à Unclustered index on Group(name)

A join between User(uid, …,pop) ,
Member(uid,gid), Group(gid, name)

(ii) Search uid by a particular gid
à Clustered/Unclustered index on Member(gid)?

(iii) Search pop by a particular uid
à Clustered/Unclustered index on User(uid)?

Clustered -> all records of
the same gid are clustered
Or clustered index on Member(gid,uid)

Case study

• Common queries
1. List the name, pop of users in a particular age range
2. List the uid, age, pop of users with a particular name
3. List the average pop of each age
4. List all the group info, ordered by their starting date
5. List the average pop of a particular group given the

group name

42

A clustered index
on User(age)

A unclustered index
on User(name)

• User(uid, name, age, pop)
• Group(gid, name, date)
• Member(uid, gid)

A unclustered index
on User(age, pop)
à index-only plan

A clustered
index on

Group(date)
(i) Search gid by a particular name

à Unclustered index on Group(name)

A join between User(uid, …,pop) ,
Member(uid,gid), Group(gid, name)

(ii) Search uid by a particular gid
à Clustered index on Member(gid)?

(iii) Search pop by a particular uid
à Clustered/Unclustered index on User(uid)?

Unclustered, as we
already have a clustered
index on User(age)

Or unclustered index on User(uid,
pop) à index-only plan, if without
worrying about storage/update cost

Summary
• Types of indexes:
• Dense v.s. sparse
• Clustering v.s. non-clustering
• Primary v.s. secondary

• Indexing structure
• ISAM
• B+-tree

• How to use index
• Use multi-attribute indices
• Index-only plan
• General guideline

43

