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Announcements (Tue, Nov 1)

• Midterm Exam
• Fri, Nov 4, 4:30-6:00pm 
• Cover Lectures 1-6 [instead of Lectures 1-10]
• Practice questions on Learn
• Survey for midterm review session 

• Assignment 2
• Grade won’t be released before midterm exam, but we 

will cover solutions related to Lectures 1-6 on the 
midterm review lecture on Thur, Nov 3.   

• Project 
• Milestone 2 due Nov 17 (Thu)
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Outline

• Types of indexes

• Index structure

• How to use index
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What are indexes for?

• Given a value, locate the record(s) with this value
SELECT * FROM R WHERE A = value;
SELECT * FROM R, S WHERE R.A = S.B;

• Find data by other search criteria, e.g.
• Range search

SELECT * FROM R WHERE A > value;
• Keyword search
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Dense v.s. sparse indexes
• Dense: one index entry for each search key value

• One entry may “point” to multiple records (e.g., two users named Jessica)
• Sparse: one index entry for each block

• Records must be clustered according to the search key
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123 Milhouse 10 0.2

142 Bart 10 0.9

279 Jessica 10 0.9

345 Martin 8 2.3

456 Ralph 8 0.3

512 Nelson 10 0.4

679 Sherri 10 0.6

697 Terri 10 0.6

857 Lisa 8 0.7

912 Windel 8 0.5

997 Jessica 8 0.5



Dense v.s. sparse indexes
• Dense: one index entry for each search key value

• One entry may “point” to multiple records (e.g., two users named Jessica)
• Sparse: one index entry for each block

• Records must be clustered according to the search key
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Clustering v.s. non-clustering indexes

• An index on attribute A of a relation is a clustering index if tuples in the 
relation with similar values for A are stored together in the same block.

• Other indices are non-clustering (or secondary) indices.

• Note: A relation may have at most one clustering index, and any number 
of non-clustering indices.
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Primary and secondary indexes
• Primary index

• Created for the primary key of a table
• Records are usually clustered by the primary key
• Clustering index à sparse

• Secondary index
• Non-clustering index, usually dense (to find each search key 

value, since records are not clustered by this search key)

• SQL
• PRIMARY KEY declaration automatically creates a primary 

index, UNIQUE key automatically creates a secondary index
• Additional secondary index can be created on non-key 

attribute(s):
CREATE INDEX UserPopIndex ON User(pop);
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Outline

• Types of indexes
• Sparse v.s. dense
• Clustering v.s. non-clustering
• Primary v.s. secondary 

• Index structure

• How to use index
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ISAM

• What if an index is still too big?
• Put a another (sparse) index on top of that!
FISAM (Index Sequential Access Method), more or less
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Example: look up 197



Updates with ISAM

• Overflow chains and empty data blocks degrade 
performance
• Worst case: most records go into one long chain, so 

lookups require scanning all data!
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B+-tree

• A hierarchy of nodes with intervals
• Balanced (more or less): good performance guarantee
• Disk-based: one node per block; large fan-out
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Sample B+-tree nodes
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B+-tree balancing properties

• Height constraint: all leaves at the same lowest level
• Fan-out constraint: all nodes at least half full 

(except root)

Max #   Max # Min # Min #
pointers keys active pointers keys

Non-leaf 𝑓 𝑓 − 1 ⌈𝑓/2⌉ ⌈𝑓/2⌉ − 1
Root 𝑓 𝑓 − 1 2 1
Leaf 𝑓 𝑓 − 1 ⌊𝑓/2⌋ ⌊𝑓/2⌋
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Lookups

• SELECT * FROM R WHERE k = 179;
• SELECT * FROM R WHERE k = 32;
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Range query

• SELECT * FROM R WHERE k > 32 AND k < 179;
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Insertion

• Insert a record with search key value 32
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Another insertion example

• Insert a record with search key value 152
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Node splitting
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More node splitting
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Deletion

• Delete a record with search key value 130

21

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
0

18
0

Max fan-out: 4

Look up the key
to be deleted…

And delete it
Oops, node is too empty!

If a sibling has more
than enough keys,
steal one!



Stealing from a sibling
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Another deletion example

• Delete a record with search key value 179

23

10
0

10
1

11
0

12
0

15
0

15
6

17
9

18
0

20
0

10
0

12
0

15
6

18
0

Max fan-out: 4

Cannot steal from siblings
Then coalesce (merge) with a sibling!



Coalescing

• Deletion can “propagate” all the way up to the root of the 
tree (not illustrated here)
• When the root becomes empty, the tree “shrinks” by one level
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Performance analysis of B+-tree 

• How many I/O’s are required for each operation?
• ℎ, the height of the tree (more or less)
• Plus one or two to manipulate actual records
• Plus 𝑂 ℎ for reorganization (rare if 𝑓 is large)
• Minus one if we cache the root in memory

• How big is ℎ?
• Roughly log!"#$%&𝑁, where 𝑁 is the number of records
• Fan-out is typically large (in hundreds)—many keys and 

pointers can fit into one block
• A 4-level B+-tree is enough for “typical” tables
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B+-tree in practice

• Complex reorganization for deletion often is not 
implemented (e.g., Oracle)
• Leave nodes less than half full and periodically 

reorganize

• Most commercial DBMS use B+-tree instead of 
hashing-based indexes because B+-tree handles 
range queries
• ℎ(𝑘𝑒𝑦) 𝑚𝑜𝑑 𝑓:  which pointer/block to which data entry 

with key belongs
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The Halloween Problem

• Story from the early days of System R…
UPDATE Payroll
SET salary = salary * 1.1
WHERE salary >= 100000;
• There is a B+-tree index on Payroll(salary)
• The update never stopped (why?)

• Solutions?
• Scan index in reverse, or
• Before update, scan index to create a “to-do” list, or
• During update, maintain a “done” list, or
• Tag every row with transaction/statement id
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B+-tree versus ISAM

• ISAM is more static; B+-tree is more dynamic

• ISAM can be more compact (at least initially)
• Fewer levels and I/O’s than B+-tree

• Overtime, ISAM may not be balanced
• Cannot provide guaranteed performance as B+-tree does
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B+-tree versus B-tree

• B-tree: why not store records (or record pointers) 
in non-leaf nodes?
• These records can be accessed with fewer I/O’s

• Problems?
• Storing more data in a node decreases fan-out and 

increases ℎ
• Records in leaves require more I/O’s to access
• Vast majority of the records live in leaves!
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Beyond ISAM, B-, and B+-trees

• Other tree-based indexes: R-trees and variants, 
GiST, etc. 
• How about binary tree?

• Hashing-based indexes: extensible hashing, linear 
hashing, etc.
• Text indexes: inverted-list index, suffix arrays, etc.
• Other tricks: bitmap index, bit-sliced index, etc.
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Outline

• Types of indexes:
• Dense v.s. sparse 
• Clustering v.s. non-clustering 
• Primary v.s. secondary 

• Indexing structure
• ISAM
• B+-tree

• How to use index
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Multi-attribute indices

• Index on several attributes of the same relation.
• CREATE INDEX NameIndex ON User(LastName,FirstName);

• This index would be useful for these queries:
• select * from User where Lastname = ‘Smith’
• select * from User where Lastname = ‘Smith’ and 

Firstname=‘John’

• This index would be not useful at all for this query:
• select * from User where Firstname=‘John’
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tuples (or tuple pointers) are organized first 
by Lastname. Tuples with a common surname 

are then organized by Firstname.



Index-only plan

• For example: 
• select count(*) from User where pop > ‘0.8’ and 

firstname = ‘Bob’;
• non-clustering index on (firstname, pop)

• A (non-clustered) index contains all the columns 
needed to answer the query without having to 
access the tuples in the base relation.
• Avoid one disk I/O per tuple 
• The index is much smaller than the base relation 
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Physical design guidelines for indices

1. Don’t index unless the performance increase outweighs 
the update overhead

2. Attributes mentioned in WHERE clauses are candidates for 
index search keys

3. Multi-attribute search keys should be considered when
• a WHERE clause contains several conditions; or
• it enables index-only plans
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Physical design guidelines for indices

1. Don’t index unless the performance increase outweighs 
the update overhead

2. Attributes mentioned in WHERE clauses are candidates for 
index search keys

3. Multi-attribute search keys should be considered when
4. Choose indexes that benefit as many queries as possible
5. Each relation can have at most one clustering scheme; 

therefore choose it wisely
• Target important queries that would benefit the most

• Range queries benefit the most from clustering
• A multi-attribute index that enables an index-only plan does not 

benefit from being clustered
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Case study

• Common queries 
1. List  the name, pop of users in a particular age range
2. List the uid, age, pop of users with a particular name 
3. List the average pop of each age
4. List all the group info, ordered by their starting date
5. List the average pop of a particular group given the 

group name

• Pick a set of clustered/unclustered indexes for 
these set of queries (without worrying too much 
about storage and update cost)

36
• User(uid, name, age, pop)
• Group(gid, name, date)
• Member(uid, gid)

Attention! This case study is newly added to this lecture, and hence it has no previous 
video recording. Try to slowly go through the slides and understand them well.



Case study
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5. List the average pop of a particular group given the 

group name
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Case study

• Common queries 
1. List  the name, pop of users in a particular age range
2. List the uid, age, pop of users with a particular name 
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A clustered index 
on User(age)

A unclustered index 
on User(name)

• User(uid, name, age, pop)
• Group(gid, name, date)
• Member(uid, gid)

A unclustered index 
on User(age, pop)
à index-only plan
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Case study

• Common queries 
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A clustered index 
on User(age)

A unclustered index 
on User(name)

• User(uid, name, age, pop)
• Group(gid, name, date)
• Member(uid, gid)

A unclustered index 
on User(age, pop)
à index-only plan

A clustered 
index on 

Group(date)
(i) Search gid by a particular name  

à Clustered/Unclustered index on Group(name)?

A join between User(uid, …,pop) , 
Member(uid,gid), Group(gid, name) 

(ii) Search uid by a particular gid 
à Clustered/Unclustered index on Member(gid)?

(iii) Search pop by a particular uid
à Clustered/Unclustered index on User(uid)?  

Unclustered, as we 
already have a clustered 
index on Group(date)
If many other queries require a 
clustered index on Group(name), we 
may reconsider!



Case study

• Common queries 
1. List  the name, pop of users in a particular age range
2. List the uid, age, pop of users with a particular name 
3. List the average pop of each age
4. List all the group info, ordered by their starting date
5. List the average pop of a particular group given the 

group name 

41

A clustered index 
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A unclustered index 
on User(name)

• User(uid, name, age, pop)
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on User(age, pop)
à index-only plan

A clustered 
index on 

Group(date)
(i) Search gid by a particular name  

à Unclustered index on Group(name)

A join between User(uid, …,pop) , 
Member(uid,gid), Group(gid, name) 

(ii) Search uid by a particular gid 
à Clustered/Unclustered index on Member(gid)?

(iii) Search pop by a particular uid
à Clustered/Unclustered index on User(uid)?  

Clustered -> all records of 
the same gid are clustered
Or clustered index on Member(gid,uid)
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• Common queries 
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2. List the uid, age, pop of users with a particular name 
3. List the average pop of each age
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A clustered index 
on User(age)

A unclustered index 
on User(name)

• User(uid, name, age, pop)
• Group(gid, name, date)
• Member(uid, gid)

A unclustered index 
on User(age, pop)
à index-only plan

A clustered 
index on 

Group(date)
(i) Search gid by a particular name  

à Unclustered index on Group(name)

A join between User(uid, …,pop) , 
Member(uid,gid), Group(gid, name) 

(ii) Search uid by a particular gid 
à Clustered index on Member(gid)?

(iii) Search pop by a particular uid
à Clustered/Unclustered index on User(uid)?  

Unclustered, as we 
already have a clustered 
index on User(age)

Or unclustered index on User(uid, 
pop) à index-only plan, if without 
worrying about storage/update cost



Summary 
• Types of indexes:
• Dense v.s. sparse 
• Clustering v.s. non-clustering 
• Primary v.s. secondary 

• Indexing structure
• ISAM
• B+-tree

• How to use index
• Use multi-attribute indices
• Index-only plan
• General guideline
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