
Query Processing
Sort/Hash-based (Optional)

Introduction to Database Management
CS348 Fall 2022



Outline

• Scan
• Selection, duplicate-preserving projection, nested-loop join

• Index
• Selection, index nested-loop join, zig-zag join

• Sort (Optional)
• External merge sort, sort-merge join, union (set), difference, 

intersection, duplicate elimination, grouping and 
aggregation

• Hash (Optional)
2



Sorting-based algorithms

3http://en.wikipedia.org/wiki/Mail_sorter#mediaviewer/File:Mail_sorting,1951.jpg



External merge sort
Remember (internal-memory) merge sort?

-- sort 𝑀 blocks of data with 𝑀 blocks of memory, e.g. quick sort

Problem: sort 𝑹, but 𝑹 does not fit in memory
• Phase 0: read 𝑀 blocks 

of 𝑅 at a time, sort them, 
and write out a level-0 run

• Phase 1: merge 𝑀 − 1
level-0 runs at a time, 
and write out a level-1 run

• Phase 2: merge 𝑀 − 1 level-1 runs at a time, and write out 
a level-2 run

…
• Final phase produces one sorted run

4

Memory

𝑅

Level-0

…

…

… Level-1

Disk



Toy example

• 3 memory blocks available; each holds one number
• Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
• Phase 0
• 1, 7, 4 → 1, 4, 7
• 5, 2, 8 → 2, 5, 8
• 9, 6, 3 → 3, 6, 9

• Phase 1
• 1, 4, 7 + 2, 5, 8 →
• 3, 6, 9

• Phase 2 (final)
• 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9

5

1, 2, 4, 5, 7, 8 



Analysis

• Phase 0: read𝑀 blocks of 𝑅 at a time, sort them, 
and write out a level-0 run
• There are % &

'
level-0 sorted runs

• Phase 𝑖: merge 𝑀 − 1 level- 𝑖 − 1 runs at a time, 
and write out a level-𝑖 run
• 𝑀 − 1 memory blocks for input, 1 to buffer output

• The number of level-𝑖 runs = ()*+,- ./ 012103 435 6789
'35

• log'35
% &
' number of such phases

• Final pass produces one sorted run

6

I/O cost is 2 ⋅ 𝐵 𝑅

I/O cost is 2 ⋅ 𝐵 𝑅
times # of phases

Subtract 𝐵 𝑅 for the final pass



Performance of external merge sort

• I/O’s
• 2B R ⋅ 1 + log'35

% &
' − B(R)

• Roughly, this is 𝑂 𝐵 𝑅 ×log'𝐵 𝑅

• Memory requirement: 𝑀 (as much as possible)

7



Case study: 
• System requirements:

• Each disk/memory block can hold up to 10 rows (from any table);
• All tables are stored compactly on disk (10 rows per block);
• 8 memory blocks are available for query processing: M=8 

• Database: 
• User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)
• |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows 
• #of blocks: B(User)=1000/10=100; B(Group)=100/10=10; 

B(Member)=50000/10=5k

• Q3: select * from User order by age asc;
• I/O cost using external merge sort?  

8



Case study: 
• System requirements:

• Each disk/memory block can hold up to 10 rows (from any table);
• All tables are stored compactly on disk (10 rows per block);
• 8 memory blocks are available for query processing: M=8 

• Database: 
• User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)
• |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows 
• #of blocks: B(User)=1000/10=100; B(Group)=100/10=10; 

B(Member)=50000/10=5k

• Q3: select * from User order by age asc;
• I/O cost using external merge sort?  

• Phase 0: read 8 blocks into memory at a time and sort it => ceil(100/8)=13 runs
• Phase 1: merge 7 runs at a time => ceil(13/7)=2 runs 
• Phase 2: merge last 2 runs into a single run

9

𝑅
…

8blocks

8blocks

8blocks

Level-0…
8blocks

8blocks

Level-18*7=56blocks

8*5+4=blocks

4blocks

100 blocks

Level-2

Number	of	phases:	 log!"#
$ %&'(

!
+ 1 = log(*"#)

#,,
*

+ 1 = 3

Phase	0:	read	B(user)=100	blocks,	write	B(User)=100	blocks	(temporary	result)
Phase	1:	read	B(user)=100	blocks,	write	B(User)=100	blocks	(temporary	result)
Phase	2:	read	B(user)=100	blocks,	write	B(User)=100	blocks	(final	result,	don’t	count)

Total:	 2𝐵 𝑈𝑠𝑒𝑟 ∗ 3 − 𝐵 𝑈𝑠𝑒𝑟 = 5𝐵 𝑢𝑠𝑒𝑟 = 500



Sort-merge join

𝑅 ⋈!.#$%.& 𝑆
• Sort 𝑅 and 𝑆 by their join attributes; then merge 
• 𝑟, 𝑠 = the first tuples in sorted 𝑅 and 𝑆
• Repeat until one of 𝑅 and 𝑆 is exhausted:

If 𝑟. 𝐴 > 𝑠. 𝐵 then 𝑠 = next tuple in 𝑆
else if 𝑟. 𝐴 < 𝑠. 𝐵 then 𝑟 = next tuple in 𝑅
else output all matching tuples, and

𝑟, 𝑠 = next in 𝑅 and 𝑆
• I/O’s: sorting +𝑂(𝐵 𝑅 + 𝐵 𝑆 )
• In most cases (e.g., join of key and foreign key)
• Worst case is 𝐵 𝑅 ⋅ 𝐵 𝑆 : everything joins

10



Example of merge join

𝑅: 𝑆: 𝑅 ⋈!.#$%.& 𝑆: 
𝑟'. 𝐴 = 1 𝑠'. 𝐵 = 1
𝑟(. 𝐴 = 3 𝑠(. 𝐵 = 2
𝑟). 𝐴 = 3 𝑠). 𝐵 = 3
𝑟*. 𝐴 = 5 𝑠*. 𝐵 = 3
𝑟+. 𝐴 = 7 𝑠+. 𝐵 = 8
𝑟,. 𝐴 = 7
𝑟-. 𝐴 = 8

11

𝑟'𝑠'
𝑟(𝑠)
𝑟(𝑠*
𝑟)𝑠)
𝑟)𝑠*
𝑟-𝑠+



Case study: 
• System requirements:

• Each disk/memory block can hold up to 10 rows (from any table);
• All tables are stored compactly on disk (10 rows per block);
• 8 memory blocks are available for query processing: M=8 

• Database: 
• User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)
• |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows 
• #of blocks: B(User)=1000/10=100; B(Group)=100/10=10; B(Member)=50000/10=5k

• Q2: select * from User, Member where User.uid = Member.uid;
• I/O cost using SMJ?
• Sorting cost for User:

(assume uid unsorted yet)

• Sorting cost for Member:
(assume uid unsorted)

• Join cost: foreign-key and primary key join 

12



Case study: 
• System requirements:

• Each disk/memory block can hold up to 10 rows (from any table);
• All tables are stored compactly on disk (10 rows per block);
• 8 memory blocks are available for query processing: M=8 

• Database: 
• User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)
• |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows 
• #of blocks: B(User)=1000/10=100; B(Group)=100/10=10; B(Member)=50000/10=5k

• Q2: select * from User, Member where User.uid = Member.uid;
• I/O cost using SMJ?
• Sorting cost for User:

(assume uid unsorted yet)

• Sorting cost for Member:
(assume uid unsorted)

• Join cost: foreign-key and primary key join 

13

#of	phases	 log!"#
$ !%&'%(

!
+ 1 = log(*"#)

,-
*

+ 1 = 5
2𝐵 𝑀𝑒𝑚𝑏𝑒𝑟 ∗ 5 − 𝐵 𝑀𝑒𝑚𝑏𝑒𝑟 = 9𝐵 𝑀𝑒𝑚𝑏𝑒𝑟 = 45𝑘

#of	phases	 log!"#
$ ./%(

!
+ 1 = log(*"#)

#00
*

+ 1 = 3
2𝐵 𝑈𝑠𝑒𝑟 ∗ 3 − 𝐵 𝑈𝑠𝑒𝑟 = 5𝐵 𝑢𝑠𝑒𝑟 = 500

B(User)	+	B(Member)	=	100+5k	=	5100



Optimization of SMJ
• Idea: combine join with the (last) merge phase of merge sort
• Sort: produce sorted runs for 𝑅 and 𝑆 such that there are 

fewer than 𝑀 of them total
• Merge and join: merge the runs of 𝑅, merge the runs of 𝑆, and 

merge-join the result streams as they are generated!

14

Merge

MergeSo
rt

ed
 ru

ns 𝑅

𝑆

Disk Memory

Join



Performance of SMJ

• If SMJ completes in two phases:
• I/O’s: 3 ⋅ 𝐵 𝑅 + 𝐵 𝑆

• 1st phase: read B(R) + B(S) into memory for sorting and write sorted B(R) +B(S) 
to disk 

• 2nd phase: read B(R) + B(S) into memory to merge and join 

• Memory requirement
• We must have enough memory to accommodate one block 

from each run: 𝑀 > ! "
#

+ ! $
#

• 𝑀 > 𝐵 𝑅 + 𝐵 𝑆

15

B(R)/M number 
of runs

B(S)/M number 
of runs



Performance of SMJ

• If SMJ completes in two passes:
• I/O’s: 3 ⋅ 𝐵 𝑅 + 𝐵 𝑆

• 1st phase: read B(R) + B(S) into memory for sorting and write sorted B(R) +B(S) 
to disk 

• 2nd phase: read B(R) + B(S) into memory to merge and join 

• Memory requirement
• We must have enough memory to accommodate one block 

from each run: 𝑀 > ! "
#

+ ! $
#

• 𝑀 > 𝐵 𝑅 + 𝐵 𝑆

• If SMJ cannot complete in two passes:
• Repeatedly merge to reduce the number of runs as 

necessary before final merge and join
16



Other sort-based algorithms

• Union (set), difference, intersection
• More or less like SMJ

• Duplication elimination
• External merge sort

• Eliminate duplicates in sort and merge

• Grouping and aggregation
• External merge sort, by group-by columns

• Trick: produce “partial” aggregate values in each run, and 
combine them during merge
• This trick doesn’t always work though

• Examples: SUM(DISTINCT …), MEDIAN(…) 

17



Outline
• Scan
• Selection, duplicate-preserving projection, nested-loop join

• Index
• Selection, index nested-loop join, zig-zag join

• Sort (Optional)
• External merge sort, sort-merge join, union (set), difference, 

intersection, duplicate elimination, grouping and 
aggregation

• Hash (Optional)
• Hash join, union (set), difference, intersection, duplicate 

elimination, grouping and aggregation
18



Hashing-based algorithms

19http://global.rakuten.com/en/store/citygas/item/041233/



Hash join

𝑅 ⋈!.#$%.& 𝑆
• Main idea
• Partition 𝑅 and 𝑆 by hashing their join attributes, and 

then consider corresponding partitions of 𝑅 and 𝑆
• If 𝑟. 𝐴 and 𝑠. 𝐵 get hashed to different partitions, they 

don’t join

20

Nested-loop join 
considers all slots

1

2

1 2 3 4 5𝑅

𝑆
3

4

5

Hash join considers only
those along the diagonal!



Partitioning phase

• Partition 𝑅 and 𝑆 according to the same hash 
function on their join attributes

21

𝑀 − 1 partitions of 𝑅

DiskMemory

𝑅

Same for 𝑆

… …
Each partition has a size of 

B(R)/(M-1) 



Probing phase

• Read in each partition of 𝑅, stream in the 
corresponding partition of 𝑆, join
• Typically build a hash table for the partition of 𝑅

• Not the same hash function used for partition, of course!

22

Disk Memory

𝑅
partitions

𝑆
partitions

…
…

…load

stream For each 𝑆 tuple,
probe and join



Performance of (two-pass) hash join

• If hash join completes in two phases:
• I/O’s: 3 ⋅ 𝐵 𝑅 + 𝐵 𝑆

• 1st phase: read B(R) + B(S) into memory to partition and write 
partitioned B(R) +B(S) to disk 

• 2nd phase: read B(R) + B(S) into memory to merge and join 

• Memory requirement:
• In the probing phase, we should have enough memory to fit 

one partition of R: 𝑀 − 1 > ! "
#%&

• 𝑀 > 𝐵 𝑅 + 1
• We can always pick 𝑅 to be the smaller relation, so:

𝑀 > min 𝐵 𝑅 , 𝐵 𝑆 + 1

23



Generalizing for larger inputs

• What if a partition is too large for memory?
• Read it back in and partition it again!
• Re-partition 𝑂 log'𝐵 𝑅 times

24



Hash join versus SMJ

(Assuming two-pass)
• I/O’s: same
• Memory requirement: hash join is lower

• min 𝐵 𝑅 , 𝐵 𝑆 + 1 < 𝐵 𝑅 + 𝐵 𝑆

• Hash join wins when two relations have very different sizes

• Other factors
• Hash join performance depends on the quality of the hash

• Might not get evenly sized buckets
• SMJ can be adapted for inequality join predicates
• SMJ wins if 𝑅 and/or 𝑆 are already sorted
• SMJ wins if the result needs to be in sorted order

25



What about nested-loop join?

• May be best if many tuples join
• Example: non-equality joins that are not very selective

• Necessary for black-box predicates
• Example: WHERE user_defined_pred(𝑅. 𝐴, 𝑆. 𝐵)

26



Other hash-based algorithms

• Union (set), difference, intersection
• More or less like hash join

• Duplicate elimination
• Check for duplicates within each partition/bucket

• Grouping and aggregation
• Apply the hash functions to the group-by columns

27



Summary of techniques
• Scan

• Selection, duplicate-preserving projection, nested-loop join

• Index
• Selection, index nested-loop join, zig-zag join

• Sort (Optional)
• External merge sort, sort-merge join, union (set), difference, 

intersection, duplicate elimination, grouping and aggregation

• Hash (Optional)
• Hash join, union (set), difference, intersection, duplicate 

elimination, grouping and aggregation

28



Another view of techniques
• Selection

• Scan without index (linear search):  O(𝐵 𝑅 )
• Scan with index – selection condition must be on search-key of index 

• B+ index: O(log(𝐵 𝑅 )
• Hash index: O(1)

• Projection
• Without duplicate elimination: O(𝐵 𝑅 )
• With duplicate elimination

• Sorting-based: 𝑂 𝐵 𝑅 ⋅ log!𝐵 𝑅
• Hash-based: O(𝐵 𝑅 + 𝑡)where t is the result of the hashing phase

• Join
• Block-based nested loop join (scan table):  O(𝐵 𝑅 ⋅ ! "

#
)

• Index nested loop join O(𝐵 𝑅 + 𝑅 ⋅ index lookup )
• Sort-merge join 𝑂 𝐵 𝑅 ⋅ log#𝐵 𝑅 + 𝐵 𝑆 ⋅ log#𝐵 𝑆
• Hash join 𝑂 𝐵 𝑅 ⋅ log#𝐵 𝑅 + 𝐵 𝑆 ⋅ log#𝐵 𝑆

29


