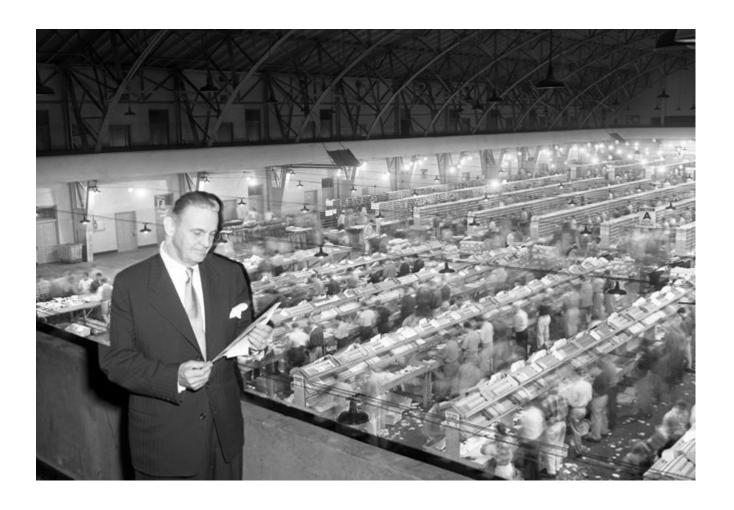
Query Processing Sort/Hash-based (Optional)

Introduction to Database Management CS348 Fall 2022

Outline

- Scan
 - Selection, duplicate-preserving projection, nested-loop join
- Index
 - Selection, index nested-loop join, zig-zag join
- Sort (Optional)
 - External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, grouping and aggregation
- Hash (Optional)

Sorting-based algorithms



External merge sort

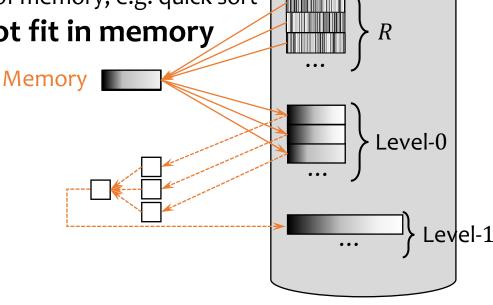
Remember (internal-memory) merge sort?

-- sort M blocks of data with M blocks of memory, e.g. quick sort

Problem: sort R, but R does not fit in memory

 Phase 0: read M blocks of R at a time, sort them, and write out a level-0 run

 Phase 1: merge (M − 1) level-0 runs at a time, and write out a level-1 run



Disk

• Phase 2: merge (M-1) level-1 runs at a time, and write out a level-2 run

• • •

Final phase produces one sorted run

Toy example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
- Phase o
 - 1, 7, 4 \rightarrow 1, 4, 7
 - 5, 2, 8 \rightarrow 2, 5, 8
 - 9, 6, 3 \rightarrow 3, 6, 9
- Phase 1
 - 1, 4, 7 + 2, 5, 8 \rightarrow 1, 2, 4, 5, 7, 8
 - 3, 6, 9
- Phase 2 (final)
 - 1, 2, 4, 5, 7, 8 + 3, 6, 9 \rightarrow 1, 2, 3, 4, 5, 6, 7, 8, 9

Analysis

- Phase 0: read M blocks of R at a time, sort them, and write out a level-0 run
 - There are $\left[\frac{B(R)}{M}\right]$ level-0 sorted runs

I/O cost is $2 \cdot B(R)$

- Phase i: merge (M-1) level-(i-1) runs at a time, and write out a level-i run
 - (M-1) memory blocks for input, 1 to buffer output
 - The number of level-i runs = $\frac{number \text{ of level} (i-1) \text{ runs}}{M-1}$
 - $\left[\log_{M-1}\left[\frac{B(R)}{M}\right]\right]$ number of such phases
 - Final pass produces one sorted run

I/O cost is $2 \cdot B(R)$ times # of phases

Subtract B(R) for the final pass

Performance of external merge sort

• I/O's

•
$$2B(R) \cdot \left(1 + \left\lceil \log_{M-1} \left\lceil \frac{B(R)}{M} \right\rceil \right\rceil \right) - B(R)$$

• Roughly, this is $O(B(R) \times \log_M B(R))$

• Memory requirement: M (as much as possible)

Case study:

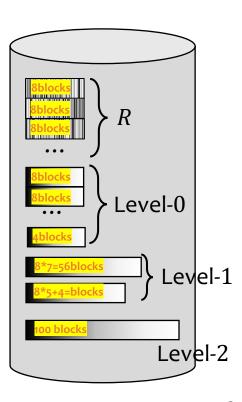
- System requirements:
 - Each disk/memory block can hold up to 10 rows (from any table);
 - All tables are stored compactly on disk (10 rows per block);
 - 8 memory blocks are available for query processing: M=8
- Database:
 - User(<u>uid</u>, age, pop), Member(<u>gid</u>, <u>uid</u>, date), Group(<u>gid</u>, gname)
 - |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
 - #of blocks: B(User)=1000/10=100; B(Group)=100/10=10; B(Member)=50000/10=5k
- Q3: select * from User order by age asc;
 - I/O cost using external merge sort?

Case study:

- System requirements:
 - Each disk/memory block can hold up to 10 rows (from any table);
 - All tables are stored compactly on disk (10 rows per block);
 - 8 memory blocks are available for query processing: M=8
- Database:
 - User(<u>uid</u>, age, pop), Member(<u>gid</u>, uid, date), Group(<u>gid</u>, gname)
 - |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
 - #of blocks: B(User)=1000/10=100; B(Group)=100/10=10; B(Member)=50000/10=5k
- Q3: select * from User order by age asc;
 - I/O cost using external merge sort?
 - Phase o: read 8 blocks into memory at a time and sort it => ceil(100/8)=13 runs
 - Phase 1: merge 7 runs at a time => ceil(13/7)=2 runs
 - Phase 2: merge last 2 runs into a single run

$$\textit{Number of phases:} \left\lceil \log_{M-1} \left\lceil \frac{B(User)}{M} \right\rceil \right\rceil + 1 = \left\lceil \log_{(8-1)} \left\lceil \frac{100}{8} \right\rceil \right\rceil + 1 = 3$$

Phase 0: read B(user)=100 blocks, write B(User)=100 blocks (temporary result)
Phase 1: read B(user)=100 blocks, write B(User)=100 blocks (temporary result)
Phase 2: read B(user)=100 blocks, write B(User)=100 blocks (final result, don't count)



Sort-merge join

$R\bowtie_{R,A=S,B} S$

- Sort R and S by their join attributes; then merge
 - r, s = the first tuples in sorted R and S
 - Repeat until one of R and S is exhausted: If r.A > s.B then s = next tuple in Selse if r.A < s.B then r = next tuple in Relse output all matching tuples, and r, s = next in R and S
- I/O's: sorting +O(B(R) + B(S))
 - In most cases (e.g., join of key and foreign key)
 - Worst case is $B(R) \cdot B(S)$: everything joins

Example of merge join

$$R:$$
 $S:$ $R \bowtie_{R.A=S.B} S:$

→ $r_1.A = 1$ → $s_1.B = 1$ r_1s_1

→ $r_2.A = 3$ → $s_2.B = 2$ r_2s_3
 $r_3.A = 3$ → $s_3.B = 3$ r_2s_4

→ $r_4.A = 5$ → $s_5.B = 8$ r_3s_3

→ $r_6.A = 7$ → $r_7.A = 8$ r_7s_5

Case study:

- System requirements:
 - Each disk/memory block can hold up to 10 rows (from any table);
 - All tables are stored compactly on disk (10 rows per block);
 - 8 memory blocks are available for query processing: M=8
- Database:
 - User(<u>uid</u>, age, pop), Member(<u>gid</u>, <u>uid</u>, date), Group(<u>gid</u>, gname)
 - |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
 - #of blocks: B(User)=1000/10=100; B(Group)=100/10=10; B(Member)=50000/10=5k
- Q2: select * from User, Member where User.uid = Member.uid;
 - I/O cost using SMJ?
 - Sorting cost for User: (assume uid unsorted yet)
 - Sorting cost for Member: (assume uid unsorted)
 - Join cost: foreign-key and primary key join

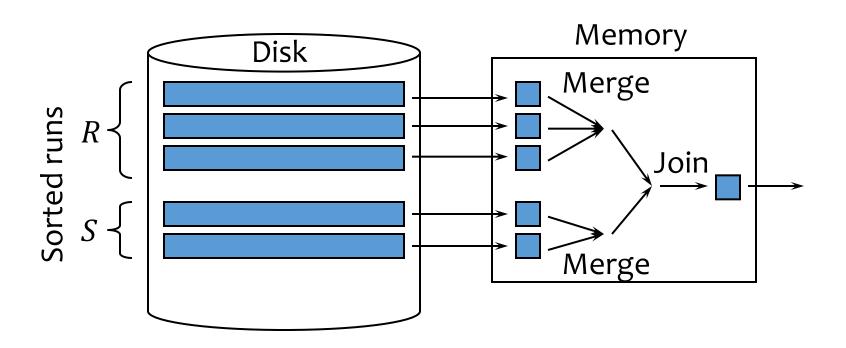
Case study:

- System requirements:
 - Each disk/memory block can hold up to 10 rows (from any table);
 - All tables are stored compactly on disk (10 rows per block);
 - 8 memory blocks are available for query processing: M=8
- Database:
 - User(<u>uid</u>, age, pop), Member(<u>gid</u>, <u>uid</u>, date), Group(<u>gid</u>, gname)
 - |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
 - #of blocks: B(User)=1000/10=100; B(Group)=100/10=10; B(Member)=50000/10=5k
- Q2: select * from User, Member where User.uid = Member.uid;

 - Sorting cost for Member: $\#of\ phases \left[\log_{M-1}\left[\frac{B(Member)}{M}\right]\right] + 1 = \left[\log_{(8-1)}\left[\frac{5K}{8}\right]\right] + 1 = 5$ (assume uid unsorted) 2B(Member) * 5 B(Member) = 9B(Member) = 45k
 - Join cost: foreign-key and primary key join B(User) + B(Member) = 100 + 5k = 5100

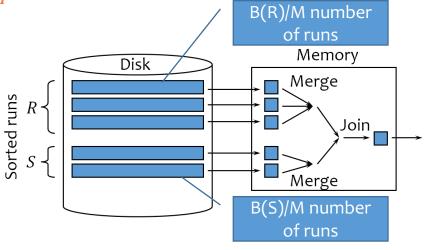
Optimization of SMJ

- Idea: combine join with the (last) merge phase of merge sort
- Sort: produce sorted runs for R and S such that there are fewer than M of them total
- Merge and join: merge the runs of R, merge the runs of S, and merge-join the result streams as they are generated!



Performance of SMJ

- If SMJ completes in two phases:
 - I/O's: $3 \cdot (B(R) + B(S))$
 - 1st phase: read B(R) + B(S) into memory for sorting and write sorted B(R) + B(S) to disk
 - 2nd phase: read B(R) + B(S) into memory to merge and join
 - Memory requirement
 - We must have enough memory to accommodate one block from each run: $M > \frac{B(R)}{M} + \frac{B(S)}{M}$
 - $M > \sqrt{B(R) + B(S)}$



Performance of SMJ

- If SMJ completes in two passes:
 - I/O's: $3 \cdot (B(R) + B(S))$
 - 1st phase: read B(R) + B(S) into memory for sorting and write sorted B(R) + B(S) to disk
 - 2nd phase: read B(R) + B(S) into memory to merge and join
 - Memory requirement
 - We must have enough memory to accommodate one block from each run: $M > \frac{B(R)}{M} + \frac{B(S)}{M}$
 - $M > \sqrt{B(R) + B(S)}$
- If SMJ cannot complete in two passes:
 - Repeatedly merge to reduce the number of runs as necessary before final merge and join

Other sort-based algorithms

- Union (set), difference, intersection
 - More or less like SMJ
- Duplication elimination
 - External merge sort
 - Eliminate duplicates in sort and merge
- Grouping and aggregation
 - External merge sort, by group-by columns
 - Trick: produce "partial" aggregate values in each run, and combine them during merge
 - This trick doesn't always work though
 - Examples: SUM(DISTINCT ...), MEDIAN(...)

Outline

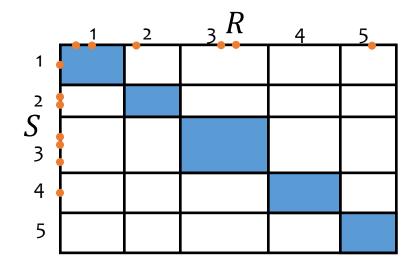
- Scan
 - Selection, duplicate-preserving projection, nested-loop join
- Index
 - Selection, index nested-loop join, zig-zag join
- Sort (Optional)
 - External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, grouping and aggregation
- Hash (Optional)
 - Hash join, union (set), difference, intersection, duplicate elimination, grouping and aggregation

Hashing-based algorithms

Hash join

$$R \bowtie_{R,A=S,B} S$$

- Main idea
 - Partition R and S by hashing their join attributes, and then consider corresponding partitions of R and S
 - If r. A and s. B get hashed to different partitions, they don't join

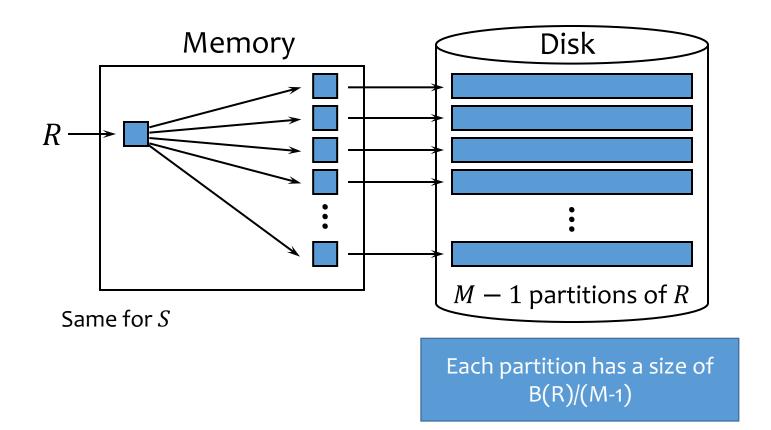


Nested-loop join considers all slots

Hash join considers only those along the diagonal!

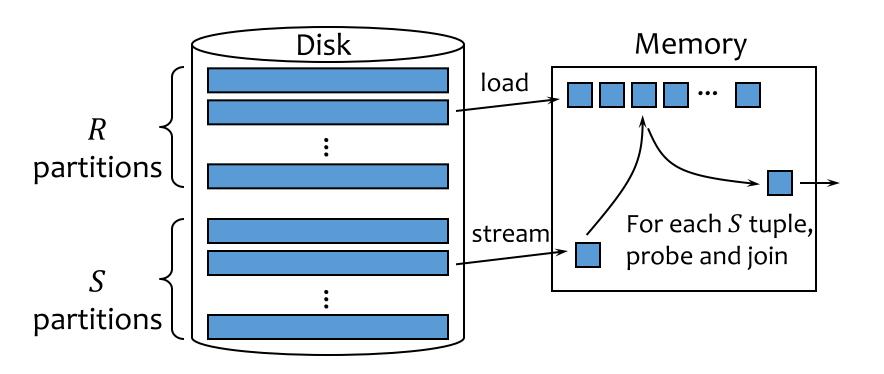
Partitioning phase

 Partition R and S according to the same hash function on their join attributes



Probing phase

- Read in each partition of R, stream in the corresponding partition of S, join
 - Typically build a hash table for the partition of R
 - Not the same hash function used for partition, of course!



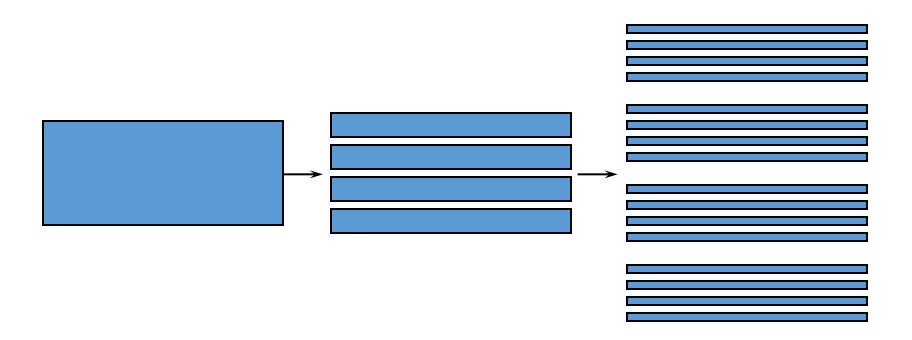
Performance of (two-pass) hash join

- If hash join completes in two phases:
 - I/O's: $3 \cdot (B(R) + B(S))$
 - 1st phase: read B(R) + B(S) into memory to partition and write partitioned B(R) + B(S) to disk
 - 2nd phase: read B(R) + B(S) into memory to merge and join
 - Memory requirement:
 - In the probing phase, we should have enough memory to fit one partition of R: $M-1>\frac{B(R)}{M-1}$
 - $M > \sqrt{B(R)} + 1$
 - We can always pick *R* to be the smaller relation, so:

$$M > \sqrt{\min(B(R), B(S))} + 1$$

Generalizing for larger inputs

- What if a partition is too large for memory?
 - Read it back in and partition it again!
 - Re-partition $O(\log_M B(R))$ times



Hash join versus SMJ

(Assuming two-pass)

- I/O's: same
- Memory requirement: hash join is lower

•
$$\sqrt{\min(B(R), B(S))} + 1 < \sqrt{B(R) + B(S)}$$

- Hash join wins when two relations have very different sizes
- Other factors
 - Hash join performance depends on the quality of the hash
 - Might not get evenly sized buckets
 - SMJ can be adapted for inequality join predicates
 - SMJ wins if R and/or S are already sorted
 - SMJ wins if the result needs to be in sorted order

What about nested-loop join?

- May be best if many tuples join
 - Example: non-equality joins that are not very selective

- Necessary for black-box predicates
 - Example: WHERE user_defined_pred(R.A, S.B)

Other hash-based algorithms

- Union (set), difference, intersection
 - More or less like hash join
- Duplicate elimination
 - Check for duplicates within each partition/bucket
- Grouping and aggregation
 - Apply the hash functions to the group-by columns

Summary of techniques

- Scan
 - Selection, duplicate-preserving projection, nested-loop join
- Index
 - Selection, index nested-loop join, zig-zag join
- Sort (Optional)
 - External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, grouping and aggregation
- Hash (Optional)
 - Hash join, union (set), difference, intersection, duplicate elimination, grouping and aggregation

Another view of techniques

Selection

- Scan without index (linear search): O(B(R))
- Scan with index selection condition must be on search-key of index
 - B+ index: $O(\log(B(R)))$
 - Hash index: 0(1)

Projection

- Without duplicate elimination: O(B(R))
- With duplicate elimination
 - Sorting-based: $O(B(R) \cdot \log_M B(R))$
 - Hash-based: O(B(R) + t) where t is the result of the hashing phase

Join

- Block-based nested loop join (scan table): $O(B(R) \cdot \frac{B(S)}{M})$
- Index nested loop join $O(B(R) + |R| \cdot (\text{index lookup}))$
- Sort-merge join $O(B(R) \cdot \log_M B(R) + B(S) \cdot \log_M B(S))$
- Hash join $O(B(R) \cdot \log_M B(R) + B(S) \cdot \log_M B(S))$