Query Processing
Sort/Hash-based (Optional)

Introduction to Database Management
CS348 Fall 2022

Outline

* Sort (Optional)
* External merge sort, sort-merge join, union (set), difference,

intersection, duplicate elimination, grouping and
aggregation

Sorting-based algorithms

http://en.wikipedia.org/wiki/Mail_sortertmediaviewer/File:Mail_sorting,1951.jpg

External merge sort

Remember (internal-memory) merge sort?
- sort M blocks of data with M blocks of memory, e.g. quick sort
Problem: sort R, but R does not fit in memory

:read M blocks)
of R at a time, them,
and write out a

[]
LCCd

(M —-1)
level-0 runs at a time,
and write out a

T il T
__ Disk

)
E)

e

¥_/

(M — 1) level-1 runs at a time, and write out

produces one sorted run

el-1

Toy example

* 3 memory blocks available; each holds one number

* InPUt: 1,745, 2 8} 3) 6) 9
e Phase 0

*1,7,4—14,7
° 572)8_)275)8

*9,6,3—3,6,9
* Phase 1
*1,4,7+2,58—>1,2,4,5,7,8
* 3,69
* Phase 2 (final)
*1,24,578+3,6,9—1,2,3,4,5,6,7,8,9

Analysis

: read M blocks of R at a time, sort them,
and write out a level-0 run

B(R)

/O costis 2 - B(R
e There are [7 level-0 sorted runs O costis 2 - B(R)

: merge (M — 1) level-(i — 1) runs at a time,
and write out a level-i run
* (M — 1) memory blocks for input, 1 to buffer output

number of level—(i—1) runs}
M-1

e The number of level-i runs = [

number of such phases
1/O costis 2 - B(R)
produces one sorted run times # of phases

Subtract B(R) for the final pass

Performance of external merge sort

* |/O’s
» Roughly, this is

* Memory requirement: // (as much as possible)

Case study:

* System requirements:

* Each disk/memory block can hold up to 10 rows (from any table);
* All tables are stored compactly on disk (10 rows per block);
* 8 memory blocks are available for query processing:

* Database:
* User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)
* |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
» #of blocks

* Q3: select * from User order by age asg;
* 1/O cost using external merge sort?

Case study:

* System requirements:
* Each disk/memory block can hold up to 10 rows (from any table);
* All tables are stored compactly on disk (10 rows per block);
* 8 memory blocks are available for query processing:

« Database:
« User(uid, age, pop), Member(gid,uid,date), Group(gid, gname) T

¥/
* |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows -
» #of blocks: ; B(Group)=100/10=10; Im[R
tiock]
 Q3: select * from User order by age asc;
* 1/O cost using external merge sort? I Level-0
Phase 0: read 8 blocks into memory at a time and sort it => ceil(100/8)=13 runs
Phase 1: merge 7 runs at a time => ceil(13/7)=2 runs :l
Phase 2: merge last 2 runs into a single run I_—} Level-1
L.
L |
Level-2

Sort-merge join

* Sort R and S by their join attributes; then merge
* 1, s =the first tuplesin sorted R and S

* Repeat until one of R and § is exhausted:
If r.A > s.B then s = next tuplein §
elseifr.A < s.B thenr =nexttupleinR
else output all matching tuples, and
r,s=nextinRand$S

¢ |/O’s:
* In most cases (e.g., join of key and foreign key)
* Worst caseis : everything joins

- MmN T M FT 1N
h i ! \”h n 0
AR QU O GC GO

— N MMOO
1 L [T |
bt

e = AN M < 1N
LN n n ». h \»n

— M M N OO
I L | O O VR VO |
TS SNSTSS

x ST L

Example of merge join

Case study:

* System requirements:

* Each disk/memory block can hold up to 10 rows (from any table);
* All tables are stored compactly on disk (10 rows per block);
« 8 memory blocks are available for query processing: M=8

* Database:
* User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)
* |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
 #of blocks: B(User)=1000/10=100; B(Group)=100/10=10; B(Member)=50000/10=5k

* Q2:select * from User, Member where User.uid = Member.uid;

* 1/O cost using SMJ?

* Sorting cost for User:
(assume uid unsorted yet)

 Sorting cost for Member:
(assume uid unsorted)

 Join cost: foreign-key and primary key join

Case study:

* System requirements:

* Each disk/memory block can hold up to 10 rows (from any table);
* All tables are stored compactly on disk (10 rows per block);
« 8 memory blocks are available for query processing: M=8

* Database:
* User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)
* |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
 #of blocks: B(User)=1000/10=100; B(Group)=100/10=10; B(Member)=50000/10=5k

* Q2:select * from User, Member where User.uid = Member.uid;

* 1/O cost using SMJ?

* Sorting cost for User:
(assume uid unsorted yet)

 Sorting cost for Member:
(assume uid unsorted)

 Join cost: foreign-key and primary key join

Optimization of SMJ

* Idea: combine join with the (last) merge phase of merge sort

* Sort: produce sorted runs for R and S such that there are
fewer than M of them total

* Merge and join: merge the runs of R, merge the runs of S, and
merge-join the result streams as they are generated!

)

s{

A
Y

Y Y Y

AT
_/

Sorted runs

Y ¥

14

Performance of SMJ

* If SMJ completes in two phases:
* 1/0’s:3 - (B(R) + B(S))

« 15t phase: read B(R) + B(S) into memory for sorting and write sorted B(R) +B(S)
to disk

« 2" phase: read B(R) + B(S) into memory to merge and join
* Memory requirement

* We must have enough memory to accommodate one block
B(R) , B(S)

from each run: M > y + v
B(R)/M number
* M >/B(R) + B(S)
Disk Memory
m Merge

§R{ — P
E —— in_|
ES { q

RPN B (S)/M number
of runs

15

Performance of SMJ

* If SMJ completes in two passes:
e |/O’s:

* Memory requirement
* We must have enough memory to accommodate one block
from each run:

* If SMJ cannot complete in two passes:

* Repeatedly merge to reduce the number of runs as
necessary before final merge and join

Other sort-based algorithms

* Union (set), difference, intersection
* More or less like SMJ

* Duplication elimination

* External merge sort
 Eliminate duplicates in sort and merge

* Grouping and aggregation

* External merge sort, by group-by columns

* Trick: produce “partial” aggregate values in each run, and
combine them during merge

* This trick doesn’t always work though
* Examples: SUM(DISTINCT ...), MEDIAN(...)

Outline

* Hash (Optional)
* Hash join, union (set), difference, intersection, duplicate
elimination, grouping and aggregation

Hashing-based algorithms

http://global.rakuten.com/en/store/citygas/item/041233/

19

Hash join

R Xpa=sp5 S
* Main idea

* Partition R and S by hashing their join attributes, and
then consider corresponding partitions of R and S

* If r.A and s. B get hashed to different partitions, they
don’t join

12 3,_1,2 4 5

-_—

Nested-loop join
considers all slots

Hash join considers only
those along the diagonal!

- -

w oA w ANy

20

Partitioning phase

* Partition R and S according to the same hash
function on their join attributes

Memory < Disk >
[]
- @
~
L]
L]

M — 1 partitions of R
SN—— -

Same for S

Each partition has a size of

B(R)/(M-1)

Probing phase

* Read in each partition of R, stream in the
corresponding partition of §, join

* Typically build a hash table for the partition of R
* Not the same hash function used for partition, of course!

R <

partitions (_

A <

partitions (_

< Disk
_/

Memory

stream

LN
-

P

For each S tuple,
= [probe and join

22

Performance of (two-pass) hash join

* If hash join completes in two phases:
e |/O’s:

* Memory requirement:
* In the probing phase, we should have enough memory to fit
one partition of R:

* We can always pick R to be the smaller relation, so:

Generalizing for larger inputs

* What if a partition is too large for memory?
* Read it back in and partition it again!
» Re-partition 0 (log,,B(R)) times

Hash join versus SMJ

(Assuming two-pass)
* |/O’s: same
* Memory requirement: hash join is lower

. \/min(B(R),B(S)) +1 < /B(R) + B(S)
* Hash join wins when two relations have very different sizes

* Other factors
* Hash join performance depends on the quality of the hash
* Might not get evenly sized buckets
* SMJ can be adapted for inequality join predicates
* SMJ wins if R and/or § are already sorted
* SMJ wins if the result needs to be in sorted order

What about nested-loop join?

* May be best if many tuples join
* Example: non-equality joins that are not very selective

* Necessary for black-box predicates
* Example: WHERE user_defined_pred(R.A, S.B)

Other hash-based algorithms

* Union (set), difference, intersection
* More or less like hash join

* Duplicate elimination
* Check for duplicates within each partition/bucket

* Grouping and aggregation
* Apply the hash functions to the group-by columns

Summary of techniques

* Scan
* Selection, duplicate-preserving projection, nested-loop join

* Index
* Selection, index nested-loop join, zig-zag join

* Sort (Optional)
 External merge sort, sort-merge join, union (set), difference,
intersection, duplicate elimination, grouping and aggregation

 Hash (Optional)

 Hash join, union (set), difference, intersection, duplicate
elimination, grouping and aggregation

Another view of techniques

* Selection
* Scan without index (linear search):
* Scan with index - selection condition must be on search-key of index
* B+index:
* Hashindex:
* Projection
* Without duplicate elimination:
* With duplicate elimination

* Sorting-based:
* Hash-based: where t is the result of the hashing phase

* Join
* Block-based nested loop join (scan table):
* Index nested loop join
* Sort-merge join
* Hashjoin

