
Query Processing
Introduction to Database Management

CS348 Fall 2022

Announcements (Tue., Nov 08)

• Project
• Milestone 1 Reach your assigned TA for grading remark

(cc Xi and Glaucia)
• Milestone 2 due Nov 17 (Thu)
• Final demo in the week of Nov 25th – Dec 1st (Week 13)

• Email your TA the choice of your demo (online/video) by Nov 24
• Lose points if failing to do so
• No lecture in that week

• Final report is due Dec 1st (Thu)

• Assignment 3
• Cover Lectures 11-15
• Due Nov 24 (Thu)

2

Overview

• Many different ways of processing the same query
• Scan? Sort? Hash? Use an index?
• All have different performance characteristics and/or

make different assumptions about data

• Best choice depends on the situation
• Implement all alternatives
• Let the query optimizer choose at run-time (next

lecture)

3

Outline

• Scan

• Index

• Sort (Optional)

• Hash (Optional)

4

Memory

Disk

select * from User where pop =0.8

u1
u2
…

m1
m2
…

u1, u2

u3,u4

…

MemberUser

select * from User, Member where
User.uid = Member.uid;

Number of memory
blocks available: 𝑀

Number of rows for a table 𝑈𝑠𝑒𝑟𝑠
Number of disk blocks for a table

𝐵 𝑈𝑠𝑒𝑟𝑠 =
𝑈𝑠𝑒𝑟𝑠

𝑜𝑓 𝑟𝑜𝑤𝑠 𝑝𝑒𝑟 𝑏𝑙𝑜𝑐𝑘

Notation

• Relations: 𝑅, 𝑆
• Tuples: 𝑟, 𝑠
• Number of tuples: 𝑅 , 𝑆
• Number of disk blocks: 𝐵 𝑅 , 𝐵 𝑆
• Number of memory blocks available: 𝑀
• Cost metric
• Number of I/O’s
• Memory requirement

5

Scanning-based algorithms

6

Table scan
• Scan table R and process the query
• Selection over R
• Projection of R without duplicate elimination

• I/O’s: 𝐵 𝑅
• Trick for selection:

• stop early if it is a lookup by key

• Memory requirement: 2 (blocks)
• 1 for input, 1 for buffer output
• Increase memory does not improve I/O

• Not counting the cost of writing the result out
• Same for any algorithm!
• Maybe not needed—results may be pipelined into

another operator
7

Disk

r1 r2 R

Memory

r3 r4

….

r1 r2

r1 r2

Buffer output

1 for input

Nested-loop join

𝑅 ⋈! 𝑆
• For each block of 𝑅, and for each 𝑟 in the block:

For each block of 𝑆, and for each 𝑠 in the block:
Output 𝑟𝑠 if 𝑝 evaluates to true over 𝑟 and 𝑠

• 𝑅 is called the outer table; 𝑆 is called the inner table
• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ 𝐵 𝑆

• Memory requirement: 3

8

Blocks of R are moved
into memory only once

Blocks of S are moved into memory
with |R| number of times

Example for basic nested loop join

• 1block =2 tuples, 3 blocks of memory
• R

• S

• Number of I/O:
B(R) + |R| * S(R) = 2 blocks + 4 * 3blocks = 14

9

r1,r2

r3,r4

s1,s2

s3,s4

s5,s6

r1,r2

s1,s2

output

r1,r2

s3,s4

output

r1,r2

s5,s6

output

r1,r2

s1,s2

output

r1,r2

s3,s4

output

r1,r2

s5,s6

output

r3,r4

s1,s2

output

r3,r4

s3,s4

output

r3,r4

s5,s6

output

Only compares (r1,s1), (r1,s2)
Disk

Time 1 2 3 4 5 6 7 8 9

Nested-loop join

𝑅 ⋈! 𝑆
• For each block of 𝑅, and for each 𝑟 in the block:

For each block of 𝑆, and for each 𝑠 in the block:
Output 𝑟𝑠 if 𝑝 evaluates to true over 𝑟 and 𝑠

• 𝑅 is called the outer table; 𝑆 is called the inner table
• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ 𝐵 𝑆
• Memory requirement: 3

Improvement: block-based nested-loop join
• For each block of 𝑅, for each block of 𝑆:

For each 𝑟 in the 𝑅 block, for each 𝑠 in the 𝑆 block: …
• I/O’s: 𝐵 𝑅 + 𝐵 𝑅 ⋅ 𝐵 𝑆
• Memory requirement: same as before

10

Example for block-based nested loop
join
• 1block =2 tuples, 3 blocks of memory
• R

• S

• Number of I/O:
B(R) + B(R)* B(S) = 2 blocks + 2 * 3blocks = 8

11

r1,r2

r3,r4

s1,s2

s3,s4

s5,s6

r1,r2

s1,s2

output

r1,r2

s3,s4

output

r1,r2

s5,s6

output

r3,r4

s1,s2

output

r3,r4

s3,s4

output

r3,r4

s5,s6

output

Compares (r1,s1), (r2,s1),
(r1,s2),(r2,s2)

Time 1 2 3 4 5 6

More improvements

• Stop early if the key of the inner table is being
matched
• Make use of available memory
• Stuff memory with as much of 𝑅 as possible, stream 𝑆

by, and join every 𝑆 tuple with all 𝑅 tuples in memory

• I/O’s: 𝐵 𝑅 + 1 2
345 ⋅ 𝐵 𝑆

• Or, roughly: 𝐵(𝑅) ⋅ 𝐵(𝑆)/𝑀
• Memory requirement: 𝑀 (as much as possible)

• Which table would you pick as the outer? (exercise)

12

• 1block =2 tuples, 4 blocks of memory
• R

• S

• Number of I/O:
B(R) + B(R)/(M-2)* S(R) = 2 blocks + 1 * 3blocks = 5

Example for block-based nested loop
join

13

r1,r2

r3,r4

s1,s2

s3,s4

s5,s6

r1,r2

s1,s2

r1,r2

s3,s4

r1,r2

s5,s6

r3,r4 r3,r4 r3,r4

Compares (r1,s1), (r2,s1), (r1,s2),(r2,s2),
(r3,s1),(r3,s2),(r4,s1),(r4,s2)

output output output

Time 1 2 3

Case study:
• System requirements:

• Each disk/memory block can hold up to 10 rows (from any table);
• All tables are stored compactly on disk (10 rows per block);
• 8 memory blocks are available for query processing: M=8

• Database:
• User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)
• |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
• #of blocks: B(User)=1000/10=100; B(Group)=100/10=10; B(Member)=50000/10=5k

• Q1: select * from User where pop =0.8
• I/O cost using table scan?

• Q2: select * from User, Member where User.uid = Member.uid;
• I/O cost using blocked-based nested loop join (slide 12)

14

𝐵 𝑈𝑠𝑒𝑟 = 100 (slide 7)

𝐵 𝑈𝑠𝑒𝑟 +
𝐵 𝑈𝑠𝑒𝑟
𝑀 − 2

⋅ 𝐵 𝑀𝑒𝑚𝑏𝑒𝑟 = 100 +
100
8 − 2

⋅ 5000

Outline

• Scan
• Selection, duplicate-preserving projection, nested-loop join

• Index

• Sort (Optional)

• Hash (Optional)

15

Index-based algorithms

16http://i1.trekearth.com/photos/28820/p2270994.jpg

Selection using index

• Equality predicate: 𝜎*+, 𝑅
• Use an ISAM, B+-tree, or hash index on 𝑅 𝐴

• Range predicate: 𝜎*-, 𝑅
• Use an ordered index (e.g., ISAM or B+-tree) on 𝑅(𝐴)
• Hash index is not applicable

• Indexes other than those on 𝑅(𝐴) may be useful
• Example: B+-tree index on 𝑅 𝐴, 𝐵
• How about B+-tree index on 𝑅 𝐵, 𝐴 ?

17

Index versus table scan

Situations where index clearly wins:
• Index-only queries which do not require retrieving

actual tuples
• Example: 𝜋6 𝜎678 𝑅

• Primary index clustered according to search key
• One lookup leads to all result tuples in their entirety

18

Index versus table scan (cont’d)

BUT(!):
• Consider 𝜎*-, 𝑅 and a secondary, non-clustered

index on 𝑅(𝐴)
• Need to follow pointers to get the actual result tuples
• Say that 20% of 𝑅 satisfies 𝐴 > 𝑣

• Could happen even for equality predicates
• I/O’s for scan-based selection: 𝐵 𝑅
• I/O’s for index-based selection: lookup + 20% 𝑅
• Table scan wins if a block contains more than 5 tuples!

• B(R) = |R|/5 < 20%|R|+lookup

19

Index nested-loop join
𝑅 ⋈2.6:;.1 𝑆
• Idea: use a value of 𝑅. 𝐴 to probe the index on 𝑆(𝐵)
• For each block of 𝑅, and for each 𝑟 in the block:

Use the index on 𝑆 𝐵 to retrieve 𝑠 with 𝑠. 𝐵 = 𝑟. 𝐴
Output 𝑟𝑠

• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ index lookup
• Typically, the cost of an index lookup is 2-4 I/O’s (depending on the

index tree height if B+ tree)
• Beats other join methods if 𝑅 is not too big
• Better pick 𝑅 to be the smaller relation

• Memory requirement: 3 (extra memory can be used to
cache index, e.g. root of B+ tree).

20

Zig-zag join using ordered indexes
(Optional)
𝑅 ⋈!.#$%.& 𝑆
• Idea: use the ordering provided by the indexes on 𝑅 𝐴

and 𝑆 𝐵 to eliminate the sorting step of sort-merge join
• Use the larger key to probe the other index

• Possibly skipping many keys that don’t match

21

B+-tree on 𝑅 𝐴

B+-tree on 𝑆 𝐵

1 2 3 4 7 9 18

1 7 9 11 12 17 19

Outline

• Scan
• Selection, duplicate-preserving projection, nested-loop join

• Index
• Selection, index nested-loop join, zig-zag join

• Sort (Optional)

• Hash (Optional)

22

Optional (won’t
be tested)

Another view of techniques
• Selection

• Scan without index (linear search): O(𝐵 𝑅)
• Scan with index – selection condition must be on search-key of index

• B+ index: O(log(𝐵 𝑅)
• Hash index: O(1)

• Projection
• Without duplicate elimination: O(𝐵 𝑅)
• With duplicate elimination

• Sorting-based: 𝑂 𝐵 𝑅 ⋅ log!𝐵 𝑅
• Hash-based: O(𝐵 𝑅 + 𝑡)where t is the result of the hashing phase

• Join
• Block-based nested loop join (scan table): O(𝐵 𝑅 ⋅ 2 3

4
)

• Index nested loop join O(𝐵 𝑅 + 𝑅 ⋅ index lookup)
• Sort-merge join 𝑂 𝐵 𝑅 ⋅ log4𝐵 𝑅 + 𝐵 𝑆 ⋅ log4𝐵 𝑆
• Hash join 𝑂 𝐵 𝑅 ⋅ log4𝐵 𝑅 + 𝐵 𝑆 ⋅ log4𝐵 𝑆

23

