Query Optimization

Introduction to Database Management
CS348 Fall 2022



Overview

* Many different ways of processing the same query
 Scan? Sort? Hash? Use an index? ]

* All have different performance characteristics and/or | last lecture
make different assumptions about data

——

* Best choice depends on the situation
* Implement all alternatives
* Let the query optimizer choose at run-time (this lecture)

As some materials (sorting/hashing-based

algorithms) are made optional in this term, some
part of the edited video may not be smooth.




Outline

* System view of query processing
* Logical plan and physical plan

* Cost calculation of the physical plan
* Cardinality estimation

* Search space and search strategy
* Transformation rules



A query’s trip through the DBMS

SELECT name, uid
SQL %uery FROM Member, Group
WHERE Member.gid =
<Qulery> ‘ ' Group.gid;
—2fWa_
<select-list> |<where—cond> Parse tree
/1 <f9m-@> \\ ¥
" <table> <table> ‘ " ‘ 7;[name, i
Member Group LOg"CCy plan ?I\/lember.gid:Group.gid
X
. 7 N\
PROJ EfLT (name, gid) ‘ } Member Group
MERGE-JOIN (gid) Physical plan
7 ¥
SORT (gid
|(g’ ) SCAN (Group) ‘ y ‘

SCAN (Member)

Result



Parsing and validation

Detect and reject errors

Detect and reject errors
* Nonexistent tables/views/columns?
* Insufficient access privileges?

* Type mismatches?
* Examples: AVG(name), name + pop, User UNION Member

Also
* Expand *
* Expand view definitions

Information required for semantic checking is found in
(which contains all schema information)



Logical plan

* Nodes are operators (often relational
algebra operators)

* There are many equivalent logical plans

7;[Group.name

Ol-User.name:“Bart” A User.uid = Member.uid A Member.gid = Group.gid

X

7 N

X« Group

7 N\
User Member

T[Group name

Member.gid = Group.gid
/ Group

X User uid= Member.uid

/ Member

Io-name = “Bart”

User



Physical (execution) plan

* A complex query may involve multiple tables and
various query processing algorithms

* E.g., table scan, index nested-loop join, sort-merge join,
hash-based duplicate elimination... (Lecture 13)

* A for a query tells the DBMS query
processor how to execute the query
* Atree of
* Each operator implements a query processing algorithm

* Each operator accepts a number of input tables/streams
and produces a single output table/stream



Examples of physical plans

SELECT Group.name

FROM User, Member, Group

WHERE User.name = 'Bart’

AND User.uid = Member.uid AND Member.gid = Group.gid;

PROJECT (Group.name) PROJECT (Group.name)
| |
INDEX-N ESTED-L%)P-JOIN (gid) MERGE-JOIN (gid)
. N
Index on Group(gid) SOR}(gid) SCAN (Group)

INDEX-NESTED\-LOOP-JOIN (uid) MERGE-JOIN (uid)
Adex on Member(uid) / N

o SORT (uid
INDEX-SCAN (name = “Bart”) FILTER (name = “Bart”) \( )

I I SCAN (Member)
Index on User(name) SCAN (User)

* Many physical plans for a single query
* Equivalent results, but different costs and assumptions!



How to pick the “best” physical plan?

* Questions
* How to estimate costs
* How to enumerate possible plans
* How to pick the “best” one

* Often the goal is not getting the optimum plan, but
instead avoiding the horrible ones

/ Any of these will do

—+ A - — —

1second 1 minute 1 hour



Cost estimation

Physical plan example: PROJECT (Group.name)

INDEX-N ESTED-LC{)P-JOI N (gid)

Index on Group(gid)

.......................................................................................
.

Input to Join(uid): | INDEX-NESTED-LOOP-JOIN (uid)

\ .
Index on Member(uid) :
What is its input size? INDEX-SCAN (name = “Bart”)

......................................................................................

Lecture 13
* We have: cost estimation for each operator

- Example: INDEX-NESTED-LOOP-JOIN(uid)
takes O(B(R) + |R| - (index lookup))

e We need: size of intermediate results



Cardinality estimation

http://www.learningresources.com/product/estimation+station.do

11



Selections with equality predicates

o Q:
* Suppose the following information is available

e Size of R:
e Number of distinct 4 values in R:

* Assumptions
* Values of A4 are uniformly distributed in R

* Values of v in Q are uniformly distributed over all
R. A values

e Selectivity factor of (4 = v) is



Example

PROJECT (Group.name)

. . |
PhySICaI plan examp|e° INDEX—NESTED—L%)P-JOIN(gid)

Index on Group(gid)

INDEX-N ESTED\-LOOP-JOIN (uid)

Index on Member(uid)

* |User|=1000, |Tpame (User)| = 50 = |0name="gart"(User)| =7

* Assumptions:
* Values of name are uniformly distributed in User
* Values of v in g, gme="part"(User) are uniformly distributed over all
User.name values

1000
* Io'name="Bart"(US€7")| = o = 20



Range predicates

° Q: O-A>vR

* Not enough information!
» Just pick, say, |0| =~ [R| - /5 high(R. A) — low(R. A)

* With more information

l I
* Largest R.A value: high(R. A) M-F-@

* Smallest R.A value: low(R.A)
. - . high(R.A)—v
Q] ~ IR] high(R.4)—low(R.A)
* In practice: sometimes the second highest and lowest
are used instead

* The highest and the lowest are often used by inexperienced
database designer to represent invalid values!

high(R.A) — v

14



Example

e Database:
* User(uid, name, age, pop), Member(gid,uid,date), Group(gid, gname)
* |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
* |Tname(User)| = 50, my,, (User) = {1,2,3,4,5}
o |myiqg(Member)| =900

* Estimate size |User @ Member| =?



Two-way equi-join

] Q:
* Assumption:

* Every tuple in the “smaller” relation (one with fewer
distinct values for the join attribute) joins with some
tuple in the other relation

* Thatis, if [T4R| < |m4S| thenmyR S m,4S
* Certainly not true in general
* But holds in the common case of foreign key joins

* Selectivity factorof R.A=S5.4is



Example

e Database:
* User(uid, name, age, pop), Member(gid,uid,date), Group(gid, gname)
* |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
* |Tname(User)| = 50, my,, (User) = {1,2,3,4,5}
o |myiqg(Member)| = 500

* Estimate size |User @ Member| =?
* | myiq(User)| = 1000
o |myiq(Member)| = 500
* 1000*%50000/mMax(500,1000)=50000



Other estimations

* Using similar ideas, we can estimate the size of
projection, duplicate elimination, union, difference,
aggregation (with grouping)

* Lots of assumptions and very rough estimation
* Accurate estimate is not needed

* Maybe okay if we overestimate or underestimate
consistently

* May lead to very nasty optimizer “hints”

SELECT * FROM User WHERE pop > 0.9;
SELECT * FROM User WHERE pop > 0.9

* Not covered: better estimation using



Case Study

PROJECT (Group.name)

. . |
PhySICaI plan examp|e° INDEX—NESTED—L%)P-JOIN(gid)

Index on Group(gid)

INDEX-N ESTED\-LOOP-JOIN (uid)

Index on Member(uid)
INDEX-SCAN (name = “Bart”’)

|
Index on User(nhame)

* System requirements:
* Each disk/memory block can hold up to 10 rows (from any table);
» Alltables are stored compactly on disk (10 rows per block);
* 8 memory blocks are available for query processing:

* Database:
* User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)
|User|=1000 rows, |Group|=100 rows, [Member|=50000 rows
+ #of blocks: B(User)=1000/10=100; B(Group)=100/10=10; B(Member)=50000/10=5k



Case Study

PROJECT (Group.name)

. . |
PhySICaI plan examp|e° INDEX—NESTED—L%)P-JOIN(gid)

Index on Group(gid)

INDEX-N ESTED\-LOOP-JOIN (uid)

. INDEX-SCAN (name = “Bart”)

: |
: Index on User(name

1000
* |User|=1000, |Tpgme (User)| = 50 = |0ame="pare"(User)| = o = 20records

* INDEX-SCAN on User
* 10 COST:index lookup (4 10s, depending on the height of the tree)



Case Study

PROJECT (Group.name)

. . |
PhySICaI plan examp|e° INDEX—NESTED—L%)P-JOIN(gid)

Index on Group(gid)

INDEX-N ESTED\-LOOP-JOIN (uid)

. INDEX-SCAN (name = “Bart”)

: |
: Index on User(name

1000
* |User|=1000, |Tpgme (User)| = 50 = |6ame="pare"(User)| = o = 20records
* INDEX-SCAN on User
* 10 COST:index lookup (4 10s, depending on the height of the index tree)

* JOIN: For each record with name = “Bart”, probe the index on Member (uid)
* 10 cost:
* 20rows are not clustered = at worst case, 20 blocks of data to be retrieved
* 20+20 *(410s for index lookup)



Case Study

Physical plan example:

Index on Group(gid)

. INDEX-N ESTED-LOOP-JOIN (uid)
Index on Member(uid)

INDEX-SCAN (name = “Bart”’)

|
Index on User(nhame)

* Given l T[uid(o-name="Bart"User)| = 20, |7Tuid(Member)| =500

* Exercise: what is the 10 cost for the next INDEX-NESTED-LOOP-JOIN(gid)?



Outline

* Search space and search strategy
* Transformation rules
* Heuristic approach



Search space is huge

* Characterized by “equivalent” logical query plans

* select E.Ename, W. Resp
from Employee E, Projects P, Works W
where E.ENo = W.Eno and W.Pno=P.Pno and W.Dur > 37

HEname,Resp HEname,Resp
f f
P>Pno ™Eno 1_[Ename,Resr_)
/N /N t
>dEno Project >pno Employee >dpno
7N 7N /N
Employee  Opur>37 Project ODur>37 X ODur>37
f ! /N N\

Works Works Project ~ Employee Works



This gets complicated very quickly

* Each logical plan can have multiple physical plans

HEnume,Resp HEnume,Resp
t t
Dppo (hash join) Bpno (hash join)
DEno (hash join) Project MEno (nested loop join) Project
Employee  opur>37 (indexed scan) Employee  opur>37 (indexed scan)
A A
Works (sequential scan) Works (sequential scan)
HEnume,Resp HEnume,Resp
t t
D<lpno (hash join) B<pno (hash join)
Dgno (hash join) Project Egno (nested loop join) Project
Employee opur>37 (sequential scan) Employee opur>37 (sequential scan)
) 1
Works (indexed scan) Works (indexed scan)

* Do we need to exam all the logical plans?

* No. We can use apply heuristic transformation rules to find a
cheaper logical plan



Transformation rules (a sample)

* Convert g,,-X toffrom ,;:

* Example: oyseruid=memperuia (UserXMember) = User X< Member

* Merge/split o’s:

* Example: O-age>20(0-pop=0.8User ) = O-age>20/\pop=0.8User

* Merge/split ir’s: ,wherelL; € L,

* Example: nage(nage,popUser) = MggeUser



Transformation rules (a sample)

* Push down/pull up o
, where

* p, is a predicate involving only R columns

* ps is a predicate involving only S columns

* p and p’ are predicates involving both R and S columns
* Example:

O-U1.name=U2.name/\Ul.pop>0.8/\U2.pop>O.8(pUlUser X1 uidzU2uid PuzUser)
= O'pop>0.8(pU1User) NU1.uid#U2.uid, U1.name=U2.name (O-pop>0.8(pU2User))



Transformation rules (a sample)

e Push down m: , where

L' is the set of columns referenced by p that are notin L
* Example:

7Tage (Upop>0.8 US@T') = T[age (Gpop>0.8 (T[age,pop US@T'))

* Many more (seemingly trivial) equivalences...

* Can be systematically used to transform a plan to new
ones



Relational query rewrite example

7FGroup.name

OI-User.name:“Bart” A User.uid = Member.uid A Member.gid = Group.gid
X

N
PN roup
User Member T[Group name
O-Member gid = Group.gid
/ Group T[Group name
OI-User.uxd Member.uid
X Member.gid = Group.gid
N /
Member Group
O name = “Bart” X User uid = Member.uid
U;er IVlember

Io-name = “Bart”

User



Heuristics-based query optimization

* Start with a logical plan

* Why? Reduce the size of intermediate results
* Why not? May be expensive; maybe joins filter better

* Why? Reduce the size of intermediate results
* Why not? Size depends on join selectivity too

* Convert the transformed logical plan to a physical
plan (by choosing appropriate physical operators)



Search strategy

* Apply heuristics to rewrite “logical plans” into cheaper
ones

 Need statistics to estimate sizes of intermediate results
to find the best “physical plan”

—> Course CS448 “Database Systems Implementation”



Summary

* System view of query processing
* Logical plan and physical plan

* Apply heuristics to rewrite “logical plans” into cheaper
ones

 Need statistics to estimate sizes of intermediate results
to find the best “physical plan”



