
SQL: Transactions
Introduction to Database Management

CS348 Fall 2022

Announcements (Thur., Nov 17)

• Project
• Milestone 2 due Nov 17 (Thu)
• Final demo in the week of Nov 25th – Dec 1st (Week 13)

• Email your TA the choice of your demo (online/video) by Nov 24
• Lose points if failing to do so
• No lecture in that week

• Final report is due Dec 1st (Thu)

• Assignment 3
• Cover Lectures 11-15
• Due Nov 24 (Thu)

• Final exam
• Final Review Session (online), on Tue Dec 6th

• Exam on Dec 13 (7:30pm – 10pm)
• Cover Lectures 1- 15

2

Why we need transactions

• A database is a shared resource accessed by many
users and processes concurrently.
• Both queries and modifications

• Not managing this concurrent access to a shared
resource will cause problems (not unlike in
operating systems)
• Problems due to concurrency

• Problems due to failures

3

Problems caused by concurrency

• Accounts(Anum, CId, BranchId, Balance)

• Application 1: You are depositing money to your bank
account.

update Accounts
set Balance = Balance + 100
where Anum = 9999

• Application 2: The branch is calculating the balance of
the accounts.

select Sum(Balance)
from Accounts

• Problem – Inconsistent reads
• If the applications run concurrently, the total balance

returned to application 2 may be inaccurate

4

Another concurrency problem

• Application 1: You are depositing money to your
bank account at an ATM.

update Accounts
set Balance = Balance + 100
where Anum = 9999

• Application 2: Your partner is withdrawing money
from the same account at another ATM.

update Accounts
set Balance = Balance – 50
where Anum = 9999

• Problem – Lost Updates
• If the applications run concurrently, one of the updates

may be “lost”, and the database may be inconsistent.
5

Yet another concurrency problem

• Application 1:

update Employee
set Salary = Salary + 1000
where WorkDept = ’D11’

• Application 2:
select * from Employee
where WorkDept = ’D11’

select * from Employee
where Lastname like ’A%’

• Problem – Non-Repeatable Reads
• If there are employees in D11 with surnames that begin with

“A”, Application 2’s queries may see them with different
salaries.

6

High-level lesson

• We need to worry about interaction between two
applications when
• one reads from the database while the other writes to

(modifies) the database; or

• both write to (modify) the database.

• We do not worry about interaction between two
applications when both only read from the
database.

7

Problems caused by failures

• Update all account balances at a bank branch.
update Accounts
set Balance = Balance * 1.05
where BranchId = 12345

• Problem: If the system crashes while processing
this update, some, but not all, tuples with BranchId
= 12345 (i.e., some account balances) may have
been updated.

• Problem: If the system crashes after this update is
processed but before all of the changes are made
permanent (updates may be happening in the
buffer), the changes may not survive.

8

Another failure-related problem

• transfer money between accounts:

update Accounts
set Balance = Balance – 100
where Anum = 8888

update Accounts
set Balance = Balance + 100
where Anum = 9999

• Problem: If the system fails between these updates,
money may be withdrawn but not redeposited.

9

High-level lesson

• We need to worry about partial results of
applications on the database when a crash occurs.

• We need to make sure that when applications are
completed their changes to the database survive
crashes.

10

Transactions

• A transaction is a sequence of database operations
with the following properties (ACID):
• Atomic: Operations of a transaction are executed all-or-

nothing, and are never left “half-done”

• Consistency: Assume all database constraints are
satisfied at the start of a transaction, they should remain
satisfied at the end of the transaction

• Isolation: Transactions must behave as if they were
executed in complete isolation from each other

• Durability: If the DBMS crashes after a transaction
commits, all effects of the transaction must remain in
the database when DBMS comes back up

11

SQL transactions

• A transaction is automatically started when a user executes
an SQL statement

• Subsequent statements in the same session are executed as
part of this transaction
• Statements see changes made by earlier ones in the same

transaction

• Statements in other concurrently running transactions do not

• COMMIT command commits the transaction
• Its effects are made final and visible to subsequent transactions

• ROLLBACK command aborts the transaction
• Its effects are undone

12

Fine prints

• Schema operations (e.g., CREATE TABLE) implicitly
commit the current transaction
• Because it is often difficult to undo a schema operation

• Many DBMS support an AUTOCOMMIT feature,
which automatically commits every single
statement
• You can turn it on/off through the API

• For PostgreSQL:
• psql command-line processor turns it on by default

• You can turn it off at the psql prompt by typing:
\set AUTOCOMMIT 'off'

13

Atomicity

• Partial effects of a transaction must be undone
when
• User explicitly aborts the transaction using ROLLBACK

• The DBMS crashes before a transaction commits

• Partial effects of a modification statement must be
undone when any constraint is violated
• Some systems roll back only this statement and let the

transaction continue; others roll back the whole
transaction

• How is atomicity achieved?
• Logging (to support undo) – next lecture [optional]

14

Durability

• DBMS accesses data on stable storage by bringing
data into memory

• Effects of committed transactions must survive
DBMS crashes

• How is durability achieved?
• Forcing all changes to disk at the end of every

transaction?
• Too expensive

• Logging (to support redo) – next lecture [optional]

15

Consistency

• Guaranteed by constraints and triggers declared in
the database and/or transactions themselves

• Whenever inconsistency arises,
• abort the statement or transaction, or

• fix the inconsistency within the transaction

16

Isolation (focus of this lecture)

• Transactions must appear to be executed in a serial
schedule (with no interleaving operations)

• For performance, DBMS executes transactions
using a serializable schedule
• In this schedule, operations from different transactions

can interleave and execute concurrently
• But the schedule is guaranteed to produce the same

effects as a serial schedule

• How is isolation achieved?
• Locking, multi-version concurrency control, etc. (next

lecture) [optional]

17

Outline

• Transactions
• Properties: ACID

• Isolation
• Different isolation levels

• Based on allowed anomalies: dirty reads, non-repeatable reads,
phantoms

• Serializability (focus)

• How to set isolation level for transactions?

18

SQL isolation levels

• Strongest isolation level: SERIALIZABLE
• Complete isolation

• Weaker isolation levels: REPEATABLE READ,
READ COMMITTED, READ UNCOMMITTED
• Increase performance by eliminating overhead and

allowing higher degrees of concurrency

• Trade-off: sometimes you get the “wrong” answer

19

READ UNCOMMITTED

• Can read “dirty” data
• A data item is dirty if it is written by an uncommitted

transaction

• Problem: What if the transaction that wrote the
dirty data eventually aborts?

• Example: wrong average
• -- T1: -- T2:

UPDATE User
SET pop = 0.99
WHERE uid = 142; SELECT AVG(pop)

FROM User;
ROLLBACK;

COMMIT;

20

READ COMMITTED

• No dirty reads, but non-repeatable reads possible
• Reading the same data item twice can produce different

results

• Example: different averages
• -- T1: -- T2:

SELECT AVG(pop)
FROM User;

UPDATE User
SET pop = 0.99
WHERE uid = 142;
COMMIT;

SELECT AVG(pop)
FROM User;
COMMIT;

21

REPEATABLE READ

• Reads are repeatable, but may see phantoms

• Example: different average (still!)
• -- T1: -- T2:

SELECT AVG(pop)
FROM User;

INSERT INTO User
VALUES(789, 'Nelson',

10, 0.1);
COMMIT;

SELECT AVG(pop)
FROM User;
COMMIT;

22

Serializable

• All the three anomalies should be avoided:
• Dirty reads

• Unrepeatable reads

• Phantoms

• Serial executions of T1 and T2 definitely prevent the
three anomalies:
• T1 followed by T2 or T2 followed by T1

• Can we run T1 and T2 concurrently and achieve the
same serial effect?

23

Outline

• Transactions
• Properties: ACID

• Isolation
• Different isolation levels

• Based on allowed anomalies: dirty reads, non-repeatable reads,
phantoms

• Serializability (focus)
• Execution history

• Conflict equivalence to a serial execution history

• How to check if a execution history is serializable

• Which isolation level to choose for SQL transactions?

24

Example for a single transaction

• Consider a transaction 𝑇:

𝑇 = {𝑅𝑒𝑎𝑑 𝑥 , 𝑅𝑒𝑎𝑑 𝑦 , 𝑥 ← 𝑥 + 𝑦,𝑊𝑟𝑖𝑡𝑒 𝑥 , 𝑐𝑜𝑚𝑚𝑖𝑡}

A set of operations: 𝑟 𝑥 , 𝑟 𝑦 , 𝑤 𝑥 , 𝑐
A set of partial orders between operations: {ሺ

ሻ
𝑟 𝑥 <

𝑤 𝑥 , 𝑟 𝑦 < 𝑤 𝑥 , 𝑟 𝑥 < 𝑐 , 𝑟 𝑦 < 𝑐 , 𝑤 𝑥 < 𝑐 }

• DAG representation

25

r(x)

r(y)

w(x) c

Transaction definition – formal

• Let
• 𝑜𝑖ሺ𝑥ሻ be some operation of transaction 𝑇 operating on

data item 𝑥, where 𝑜𝑖 ∈ {𝑟𝑒𝑎𝑑,𝑤𝑟𝑖𝑡𝑒} and 𝑜𝑖 is atomic;

• 𝑂𝑆 = {∪ 𝑜𝑖};

• 𝑁 ∈ {𝑎𝑏𝑜𝑟𝑡, 𝑐𝑜𝑚𝑚𝑖𝑡}

• Transaction 𝑇 is a partial order 𝑇 = {Σ,<}, where
• Σ = 𝑂𝑆 ∪ 𝑁

• For any two operations 𝑜𝑖 , 𝑜𝑗 ∈ 𝑂𝑆, if 𝑜𝑖 =
𝑟 𝑥 𝑜𝑟 𝑤 𝑥 and 𝑜𝑗 = 𝑤ሺ𝑥ሻ for any data item 𝑥, then

either 𝑜𝑖 < 𝑜𝑗 or 𝑜𝑗 < 𝑜𝑖
• ∀𝑜𝑖 ∈ 𝑂𝑆, 𝑜𝑖 < 𝑁

26

Execution histories

• An execution history over a set of transactions 𝑇1…𝑇𝑛
is an interleaving of the operations of 𝑇1…𝑇𝑛 in which
the operation ordering imposed by each transaction is
preserved.

• Two important assumptions:
• Transactions interact with each other only via reads and

writes of objects
• A database is a fixed set of independent objects

• Example: 𝑇1 = {𝑤1 𝑥 ,𝑤1 𝑦 , c1}, 𝑇2 = { 𝑟2 𝑥 , 𝑟2 𝑦 , 𝑐2 }
• 𝐻𝑎 = 𝑤1 𝑥 𝑟2 𝑥 𝑤1 𝑦 𝑟2 𝑦 c1c2
• 𝐻𝑏 = 𝑤1 𝑥 𝑤1 𝑦 c1𝑟2 𝑥 𝑟2 𝑦 𝑐2
• 𝐻𝑐 = 𝑤1 𝑥 𝑟2 𝑥 𝑟2[𝑦]𝑤1 𝑦 c1c2
• 𝐻𝑑 = 𝑟2 𝑥 𝑟2 𝑦 𝑐2 𝑤1 𝑥 𝑤1 𝑦 𝑐1

27

[next slide expands this example]

Examples for valid execution history

• 𝑇1 = {𝑤1 𝑥 ,𝑤1 𝑦 , c1}, 𝑇2 = { 𝑟2 𝑥 , 𝑟2 𝑦 , 𝑐2 }

28

𝑇1 𝑇2

w1(x)
r2(x)

w1(y)
r2(y)

c1
c2

𝐻𝑎 𝐻𝑏 𝐻𝑐 𝐻𝑑

𝑇1 𝑇2

w1(x)
w1(y)
c1

r2(x)
r2(y)
c2

𝑇1 𝑇2

w1(x)
r2(x)
r2(y)

w1(y)
c1

c2

𝑇1 𝑇2

r2(x)
r2(y)
c2

w1(x)
w1(y)
c1

Serial execution histories

• 𝑇1 = {𝑤1 𝑥 ,𝑤1 𝑦 , c1}, 𝑇2 = { 𝑟2 𝑥 , 𝑟2 𝑦 , 𝑐2 }

29

𝑇1 𝑇2

w1(x)
r2(x)

w1(y)
r2(y)

c1
c2

𝐻𝑎 𝐻𝑏 𝐻𝑐 𝐻𝑑

𝑇1 𝑇2

w1(x)
w1(y)
c1

r2(x)
r2(y)
c2

𝑇1 𝑇2

w1(x)
r2(x)
r2(y)

w1(y)
c1

c2

𝑇1 𝑇2

r2(x)
r2(y)
c2

w1(x)
w1(y)
c1

Serial histories: no interleaving operations from different transactions

Equivalent histories

• 𝐻𝑎 is “equivalent” to 𝐻𝑏 (a serial execution)

30

𝑇1 𝑇2

w1(x)
r2(x)

w1(y)
r2(y)

c1
c2

𝐻𝑎 𝐻𝑏

𝑇1 𝑇2

w1(x)
w1(y)
c1

r2(x)
r2(y)
c2

𝑇2 sees all the updates made by 𝑇1
• 𝑇2 reads x written by 𝑇1
• 𝑇2 reads y written by 𝑇1

Write 4 Write 4

Write 5

Write 5

Read 4

Read 5

Read 4

Read 5

x=3, y=1 (before T1 and T2)

Equivalent histories

• 𝐻𝑐 is not “equivalent” to 𝐻𝑏 (a serial execution)

31

𝑇1 𝑇2

w1(x)
w1(y)
c1

r2(x)
r2(y)
c2

𝑇1 𝑇2

w1(x)
r2(x)
r2(y)

w1(y)
c1

c2

𝐻𝑏 𝐻𝑐

Write 4

Write 5

Read 1

Read 5

Write 4

Write 5Read 4

Read 4

x=3, y=1 (before T1 and T2)

𝑇2 reads different y in
𝐻𝑏 as in 𝐻𝑐

Check equivalence

• Two operations conflict if:
1. they belong to different transactions,

2. they operate on the same object, and

3. at least one of the operations is a write

2 types of conflicts: (1) Read-Write and (2) Write-Write

• Two histories are (conflict) equivalent if
1. they are over the same set of transactions, and

2. the ordering of each pair of conflicting operations is
the same in each history

32

Example

• Consider
• 𝐻𝑎 = 𝑤1 𝑥 𝑟2 𝑥 𝑤1 𝑦 𝑟2 𝑦 c1c2
• 𝐻𝑏 = 𝑤1 𝑥 𝑤1 𝑦 𝑟2 𝑥 𝑟2[𝑦]c1c2

Step 1: check if they are over the same set of transactions

• 𝑇1 = {𝑤1 𝑥 ,𝑤1 𝑦 }, 𝑇2 = { 𝑟2 𝑥 , 𝑟2[𝑦] }

Step 2: check if all the conflicting pairs have the same order

33

Conflicting pairs 𝐻𝑎 𝐻𝑏

𝑤1 𝑥 , 𝑟2 𝑥 < <

𝑤1 𝑦 , 𝑟2 𝑦 < <

More complicated example

Consider

• 𝐻𝐴: 𝑟1 𝑥 𝑟3 𝑥 𝑤4 𝑦 𝑟2 𝑢 𝑤4 𝑧 𝑟1 𝑦 𝑟3[𝑢]𝑟2 𝑧 𝑤2 𝑧 𝑟3 𝑧 𝑟1 𝑧 𝑤3[𝑦]

• 𝐻𝐵: 𝑟1 𝑥 𝑤4 𝑦 𝑟3 𝑥 𝑟2 𝑢 𝑟1 𝑦 𝑟3[𝑢]𝑟2 𝑧 𝑤2 𝑧 𝑤4 𝑧 𝑟1 𝑧 𝑟3 𝑧 𝑤3[𝑦]

Step 1: check if they are over the same set of transactions

Step 2: check if all the conflicting pairs have the same order

34

More complicated example

Consider

• 𝐻𝐴: 𝑟1 𝑥 𝑟3 𝑥 𝑤4 𝑦 𝑟2 𝑢 𝑤4 𝑧 𝑟1 𝑦 𝑟3[𝑢]𝑟2 𝑧 𝑤2 𝑧 𝑟3 𝑧 𝑟1 𝑧 𝑤3[𝑦]

• 𝐻𝐵: 𝑟1 𝑥 𝑤4 𝑦 𝑟3 𝑥 𝑟2 𝑢 𝑟1 𝑦 𝑟3[𝑢]𝑟2 𝑧 𝑤2 𝑧 𝑤4 𝑧 𝑟1 𝑧 𝑟3 𝑧 𝑤3[𝑦]

Step 1: check if they are over the same set of transactions

{𝑟1 𝑥 𝑟1 𝑦 𝑟1 𝑧 }, {𝑟2 𝑢 𝑟2 𝑧 𝑤2 𝑧 }, {𝑟3 𝑥 𝑟3[𝑢] 𝑟3 𝑧 𝑤3[𝑦]},
{𝑤4 𝑦 𝑤4 𝑧 }

Step 2: check if all the conflicting pairs have the same order

35

Identify all the conflicting pairs

• 𝐻𝐴: 𝑟1 𝑥 𝑟3 𝑥 𝑤4 𝑦 𝑟2 𝑢 𝑤4 𝑧 𝑟1 𝑦 𝑟3[𝑢]𝑟2 𝑧 𝑤2 𝑧 𝑟3 𝑧 𝑟1 𝑧 𝑤3[𝑦]

• Conflicting pairs:
• Related to x: no conflicting pairs, as all are reads
• Related to y: w4[y], r1[y], w3[y]

• 𝑤4 𝑦 < 𝑟1 𝑦
• 𝑤4 𝑦 < w3 𝑦
• 𝑟1 𝑦 < w3 𝑦

• Related to z: w4[z], r2[z], w2[z], r3[z], r1[z]
• 𝑤4 𝑧 < 𝑟2 𝑧
• 𝑤4 𝑧 < 𝑤2 𝑧
• 𝑤4 𝑧 < 𝑟3 𝑧
• 𝑤4 𝑧 < 𝑟1 𝑧
• 𝑟2 𝑧 , 𝑤2 𝑧 are not, as they are from the same transactions
• w2 𝑧 < 𝑟3 𝑧
• w2 𝑧 < 𝑟1 𝑧

36

More complicated example

Consider

• 𝐻𝐴: 𝑟1 𝑥 𝑟3 𝑥 𝑤4 𝑦 𝑟2 𝑢 𝑤4 𝑧 𝑟1 𝑦 𝑟3[𝑢]𝑟2 𝑧 𝑤2 𝑧 𝑟3 𝑧 𝑟1 𝑧 𝑤3[𝑦]

• 𝐻𝐵: 𝑟1 𝑥 𝑤4 𝑦 𝑟3 𝑥 𝑟2 𝑢 𝑟1 𝑦 𝑟3[𝑢]𝑟2 𝑧 𝑤2 𝑧 𝑤4 𝑧 𝑟1 𝑧 𝑟3 𝑧 𝑤3[𝑦]

Step 1: check if they are over the same set of transactions

{𝑟1 𝑥 𝑟1 𝑦 𝑟1 𝑧 }, {𝑟2 𝑢 𝑟2 𝑧 𝑤2 𝑧 }, {𝑟3 𝑥 𝑟3[𝑢] 𝑟3 𝑧 𝑤3[𝑦]},
{𝑤4 𝑦 𝑤4 𝑧 }

Step 2: check if all the conflicting pairs have the same order

37

Conflicting pairs 𝐻𝐴 𝐻𝐵

𝑤4 𝑦 , 𝑟1 𝑦 < <

𝑤4 𝑦 ,w3 𝑦 < <

… < <

𝑤4 𝑧 , 𝑤2 𝑧 < >

… < <

Serializable

• A history 𝐻 is said to be (conflict) serializable if there exists
some serial history 𝐻′ that is (conflict) equivalent to 𝐻.

38

𝑇1 𝑇2

w1(x)
r2(x)

w1(y)
r2(y)

c1
c2

𝑇1 𝑇2

w1(x)
r2(x)
r2(y)

w1(y)
c1

c2

𝐻𝑎 = 𝐻𝑏 𝐻𝑐

Serializable

• Does 𝐻𝑐 have an equivalent serial execution?
• 𝐻𝑐 = 𝑤1 𝑥 𝑟2 𝑥 𝑟2[𝑦]𝑤1 𝑦 c1c2

• Only 2 serial execution to check:
• 𝐻𝑏: 𝑇1 followed by 𝑇2: 𝑤1 𝑥 𝑤1 𝑦 c1𝑟2 𝑥 𝑟2 𝑦 𝑐2

• 𝑟2[𝑦] reads different value as in 𝐻𝑐

• 𝐻𝑑: 𝑇2 followed by 𝑇1: 𝑟2 𝑥 𝑟2 𝑦 𝑐2𝑤1 𝑥 𝑤1 𝑦 𝑐1
• 𝑟2[𝑥] reads different value as in 𝐻𝑐

• Do we need to check all the serial executions?

39

Conflicting pairs 𝐻𝑏 𝐻𝑐 𝐻𝑑

𝑤1 𝑥 , 𝑟2 𝑥 < < >

𝑤1 𝑦 , 𝑟2 𝑦 < > >

How to test for serializability?

• Serialization graph 𝑆𝐺𝐻ሺ𝑉, 𝐸ሻ for history 𝐻:
• 𝑉 = {𝑇|𝑇 is a committed transaction in 𝐻}

• 𝐸 = {𝑇𝑖 → 𝑇𝑗 if 𝑜𝑖 ∈ 𝑇𝑖 and 𝑜𝑗 ∈ 𝑇𝑗 conflict and 𝑜𝑖 < 𝑜𝑗}

• A history is serializable iff its serialization graph is
acyclic.

40

Example

• Example: 𝐻𝑎 = 𝑤1 𝑥 𝑟2 𝑥 𝑤1 𝑦 𝑟2[𝑦] c1c2

41

𝑇1 𝑇2

𝑇1 𝑇2

w1(x)
r2(x)

w1(y)
r2(y)

c1
c2

𝐻𝑎

𝑤1 𝑥 and 𝑟2 𝑥 conflict, and 𝑤1 𝑥 < 𝑟2 𝑥
𝑤1 𝑦 and 𝑟2[𝑦] conflict, and 𝑤1 𝑦 < 𝑟2 𝑦

Serialization graph: no cycles → serializable

Example

• Example: 𝐻𝑐 = 𝑤1 𝑥 𝑟2 𝑥 𝑟2[𝑦]𝑤1 𝑦 c1c2

42

𝑇1 𝑇2
Not serializable𝐻𝑐

𝑇1 𝑇2

w1(x)
r2(x)
r2(y)

w1(y)
c1

c2

𝑤1 𝑥 and 𝑟2 𝑥 conflict, and 𝑤1 𝑥 < 𝑟2 𝑥 ;
𝑤1 𝑦 and 𝑟2[𝑦] conflict, and 𝑟2[𝑦] < 𝑤1 𝑦

More complicated example

• 𝑟1 𝑥 𝑟3 𝑥 𝑤4 𝑦 𝑟2 𝑢 𝑤4 𝑧 𝑟1 𝑦 𝑟3[𝑢]𝑟2 𝑧 𝑤2 𝑧 𝑟3 𝑧 𝑟1 𝑧 𝑤3[𝑦]

• Conflicting pairs:
• Related to x: no conflicting pairs, as all are reads
• Related to y: w4[y], r1[y], w3[y]

• 𝑤4 𝑦 < 𝑟1 𝑦 T4 → T1

• 𝑤4 𝑦 <w3 𝑦 T4 → T3

• 𝑟1 𝑦 < w3 𝑦 T1 → T3

• Related to z: w4[z], r2[z], w2[z], r3[z], r1[z]
• 𝑤4 𝑧 < 𝑟2 𝑧 T4 → T2

• 𝑤4 𝑧 < 𝑤2 𝑧 T4 → T2
• 𝑤4 𝑧 < 𝑟3 𝑧 T4 → T3

• 𝑤4 𝑧 < 𝑟1 𝑧 T4 → T1

• 𝑟2 𝑧 , 𝑤2 𝑧 are not, as they are from the same transactions
• w2 𝑧 < 𝑟3 𝑧 T2 → T3

• w2 𝑧 < 𝑟1 𝑧 T2 → T1

43

𝑇1 𝑇2

𝑇3 𝑇4

More complicated example

• 𝑟1 𝑥 𝑟3 𝑥 𝑤4 𝑦 𝑟2 𝑢 𝑤4 𝑧 𝑟1 𝑦 𝑟3[𝑢]𝑟2 𝑧 𝑤2 𝑧 𝑟3 𝑧 𝑟1 𝑧 𝑤3[𝑦]

• No cycles in this serialization graph
• Topological sort: T4 -> T2 -> T1->T3

• The history above is (conflict) equivalent to
𝑤4 𝑦 𝑤4 𝑧 𝑟2 𝑢 𝑟2 𝑧 𝑤2 𝑧 𝑟1 𝑥 𝑟1 𝑦 𝑟1 𝑧 𝑟3 𝑥 𝑟3[𝑢]𝑟3 𝑧 𝑤3[𝑦]
• Note: we ignore the commits at the end for simplicity

44

𝑇1 𝑇2

𝑇3 𝑇4

Outline

• Transactions
• Properties: ACID

• Isolation
• Different isolation levels

• Based on allowed anomalies: dirty reads, non-repeatable reads,
phantoms

• Serializability (focus)

• Which isolation level to choose for SQL transactions?

45

SQL isolation levels

• Syntax: At the beginning of a transaction,
SET TRANSACTION ISOLATION LEVEL isolation_level
[READ ONLY | READ WRITE];
• READ UNCOMMITTED can only be READ ONLY

• Update/Insertion/deletion query cannot have READ
UNCOMMITED

• PostgreSQL defaults to READ COMMITTED
46

Isolation level/anomaly Dirty reads Non-repeatable reads Phantoms

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Impossible Possible Possible

REPEATABLE READ Impossible Impossible Possible

SERIALIZABLE Impossible Impossible Impossible

The lowest isolation level to set?

• -- T1:
UPDATE User
SET pop = 0.99
WHERE uid = 142;
COMMIT;

• Consider other possible concurrent transactions
• Assume each table is an object

• T1 reads User only once, i.e. read(User), write(User)

• For example, another transaction T’ is updating uid

• Lowest isolation level: read committed

47

Isolation level Possible anomalies for T1

READ UNCOMMITTED

READ COMMITTED

REPEATABLE READ

SERIALIZABLE No

No phantoms

No unrepeatable reads

Dirty reads

The lowest isolation level to set?

• -- T2:
SELECT AVG(pop)
FROM User;
COMMIT;

• Consider other possible concurrent transactions
• Assume each table is an object

• T1 reads User only once, i.e., Read(User)

• For example, another transaction T’ is updating pop

• Lowest isolation level: read committed

48

Isolation level Possible anomalies for T2

READ UNCOMMITTED

READ COMMITTED

REPEATABLE READ

SERIALIZABLE No

No phantoms

No unrepeatable reads

Dirty reads

The lowest isolation level to set?

• -- T3:
SELECT AVG(pop)
FROM User;

SELECT MAX(pop)
FROM User;
COMMIT;

• Consider other possible concurrent transactions
• Assume each table is an object
• T1 reads User twice: READ(User), READ(User)
• For example, another transaction T’ is

inserting/updating/deleting a row to User
• Lowest isolation level: serializable

49

Isolation level Possible anomalies for T3

READ UNCOMMITTED Dirty reads

READ COMMITTED

REPEATABLE READ

SERIALIZABLE* No

Unrepeatable reads

Phantoms

Summary

• Transactions
• Properties: ACID

• Isolation
• Different isolation levels

• Serializability (focus)

• Which isolation level to choose for SQL transactions?

50

Isolation level/anomaly Dirty reads Non-repeatable reads Phantoms

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Impossible Possible Possible

REPEATABLE READ Impossible Impossible Possible

SERIALIZABLE Impossible Impossible Impossible

