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Review

• ACID
• Atomicity: TX’s are either completely done or not done 

at all
• Consistency: TX’s should leave the database in a 

consistent state
• Isolation: TX’s must behave as if they are executed in 

isolation
• Durability: Effects of committed TX’s are resilient against 

failures

• SQL transactions
-- Begins implicitly
SELECT …;
UPDATE …;
ROLLBACK | COMMIT;
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Outline 

• Concurrency control -- isolation
• Review serializable execution histories

• Locking-based concurrency control 

• Recovery – atomicity and durability
• Naïve approaches

• Logging for undo and redo
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Concurrency control

• Goal: ensure the “I” (isolation) in ACID
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x    y    z

𝑇1:
r1(x);
w1(x);
r1(y);
w1(y);
commit;

𝑇2:
r2(x);
w2(x);
r2(z);
w2(z);
commit;



Good versus bad execution histories
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𝑇1 𝑇2

r1(x)
w1(x)
r1(y)
w1(y)

r2(x)
w2(x)
r2(z)
w2(z)

𝑇1 𝑇2

r1(x)
w1(x)

r2(x)
w2(x)

r1(y)
r2(C)

w1(y)
w2(C)

𝑇1 𝑇2

r1(x)
r2(x)

w1(x)
w2(x)

r1(y)
r2(z)

w1(y)
w2(z)

Good! Good!  Why?Bad!

Read 400

Read 400Write
400 – 100

Write
400 – 50

𝐻𝑎 𝐻𝑏 𝐻𝑐

Serial 



𝑇1 𝑇2

r1(x)
w1(x)

r2(x)
w2(x)

r1(y)
r2(C)

w1(y)
w2(C)

Good versus bad execution histories
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𝐻𝑐

𝑇1

𝑇2

Good! 
Serializable 

Serialization graph 
(Lecture 17)



Good versus bad execution histories
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𝑇1 𝑇2

r1(x)
r2(x)

w1(x)
w2(x)

r1(y)
r2(z)

w1(y)
w2(z)

Bad!

𝐻𝑏

Not serializable

𝑇1

𝑇2

How to avoid 
this?



Concurrency control

Possible classification

• Pessimistic – assume that conflicts will happen and 
take preventive action
• Two-phase locking (2PL)

• Timestamp ordering

• Optimistic – assume that conflicts are rare and run 
transactions and fix if there is a problem

• We will only review 2PL
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Locking

• Rules
• If a transaction wants to read an object, it must first 

request a shared lock (S mode) on that object

• If a transaction wants to modify an object, it must first 
request an exclusive lock (X mode) on that object

• Allow one exclusive lock, or multiple shared locks
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Mode of lock(s)
currently held

by other transactions

Mode of the lock requested

Grant the lock?

Compatibility matrix

S X

S Yes No

X No No



𝑇1 𝑇2

r1(x)
w1(x)

r2(x)
w2(x)

r2(y)
w2(y)

r1(y)
w1(y)

Basic locking is not enough
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lock-X(x)

lock-X(y)

unlock(y)

unlock(x)
lock-X(x)

unlock(x)

unlock(y)
lock-X(y)

Possible schedule
under locking

But still not
conflict-serializable!

𝑇1

𝑇2



𝑇1 𝑇2

r1(x)
w1(x)

r2(x)
w2(x)

r2(y)
w2(y)

r1(y)
w1(y)

Basic locking is not enough
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lock-X(x)

lock-X(y)

unlock(y)

unlock(x)
lock-X(x)

unlock(x)

unlock(y)
lock-X(y)

Possible schedule
under locking

But still not
conflict-serializable!

𝑇1

𝑇2

Read 100

Write 100+1

Read 101

Write 101*2

Read 100

Write 100*2

Read 200

Write 200+1

Add 1 to both x and y
(preserve x=y)

Multiply both x and y by 2
(preserves x=y)

x ≠ y !



Two-phase locking (2PL)

• All lock requests precede all unlock requests
• Phase 1: obtain locks, phase 2: release locks
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𝑇1 𝑇2

r1(x)
w1(x)

r2(x)
w2(x)

r2(y)
w2(y)

r1(y)
w1(y)

lock-X(x)

lock-X(y)

unlock(y)

unlock(x)
lock-X(x)

lock-X(y)

Cannot obtain the lock on y
until 𝑇1 unlocks

𝑇1 𝑇2

r1(x)
w1(x)

r2(x)
w2(x)

r1(y)
w1(y)

r2(y)
w2(y)

2PL guarantees a
conflict-serializable

schedule



Remaining problems of 2PL

• 𝑇2 has read uncommitted 
data written by 𝑇1

• If 𝑇1 aborts, then 𝑇2 must 
abort as well

• Cascading aborts possible if 
other transactions have 
read data written by 𝑇2

13

• Even worse, what if 𝑇2 commits before 𝑇1?
• Schedule is not recoverable if the system crashes right 

after 𝑇2 commits

𝑇1 𝑇2

r1(x)
w1(x)

r2(x)
w2(x)

r1(y)
w1(y)

r2(y)
w2(y)

Abort!



Deadlocks 

• A transaction is deadlocked if it is blocked and will remain 
blocked until there is an intervention.

• Locking-based concurrency control algorithms may cause 
deadlocks requiring abort of one of the transactions

• Consider the partial history 
• Neither 𝑇1 nor 𝑇2 can make progress
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𝑇1 𝑇2

r1(x)
w1(x)

r2(y)

r1(y)
w1(y)
… …

lock-X(x)

lock-X(y)

lock-S(y)

lock-S(x)

Cannot obtain 
the lock on y
until 𝑇1 unlocks

Cannot obtain 
the lock on y
until 𝑇2 unlocks

unlock-X(x)
unlock-S(y)



Strict 2PL

• Only release X-locks at commit/abort time
• A writer will block all other readers until the writer 

commits or aborts

• Used in many commercial DBMS
• Oracle is a notable exception

• Why do we use strict 2PL? (assignment question)
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Outline 

• Concurrency control -- isolation
• Review serializable execution histories

• Locking-based concurrency control 

• Recovery – atomicity and durability
• Naïve approaches

• Logging for undo and redo
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Execution model

To read/write X

• The disk block containing X must be first brought 
into memory

• X is read/written in memory

• The memory block containing X, if modified, must 
be written back (flushed) to disk eventually
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CPU
Memory
buffer

Disk

X
Y…

X
Y…

X
Y…

X
Y…



Failures

• System crashes right after a transaction T1 commits; 
but not all effects of T1 were written to disk
• How do we complete/redo T1 (durability)?

• System crashes in the middle of a transaction T2; 
partial effects of T2 were written to disk
• How do we undo T2 (atomicity)?

18

T1start end

time

T2start end



Naïve approach: Force -- durability
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read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700

500

T1 (balance transfer of $100 from A to B) Memory buffer

A = 800
B = 400

Disk

700

commit;

500

Force: all writes must be reflected on disk 
when a transaction commits



Naïve approach: Force -- durability
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read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700

500

T1 (balance transfer of $100 from A to B) Memory buffer

A = 800
B = 400

Disk
commit;

Force: all writes must be reflected on disk 
when a transaction commits

If system crashes right after T1 commits, effects of T1 will be lost

Without force: not all writes are on disk when T1 commits
Bad!



Naïve approach: No steal -- atomicity
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read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700

500

T1 (balance transfer of $100 from A to B) Memory buffer

A = 800
B = 400

Disk

700

No steal:  Writes of a transaction can only 
be flushed to disk at commit time: 
• e.g. A=700 cannot be flushed to disk 

before commit.

commit;

If system crashes before T1 commits, there is no way to undo the 
changes

With steal: some writes are on disk before T commits
Bad!



Naïve approach

• Force: When a transaction commits, all writes of 
this transaction must be reflected on disk
• Ensures durability

Problem of force: Lots of random writes hurt 
performance

• No steal: Writes of a transaction can only be flushed 
to disk at commit time
• Ensures atomicity

Problem of no steal: Holding on to all dirty blocks 
requires lots of memory

22



Logging

• Database log: sequence of log records, recording all 
changes made to the database, written to stable 
storage (e.g., disk) during normal operation

• Hey, one change turns into two—bad for 
performance?
• But writes are sequential (append to the end of log)

23

Update 
operation

Old stable 
database state

New stable 
database state

Database 
log



Log format

• When a transaction Ti starts
• 〈 Ti, start 〉

• Record values before and after each modification:
• 〈 Ti, X, old_value_of_X, new_value_of_X 〉

• Ti is transaction id 

• X identifies the data item

• A transaction Ti is committed 
when its commit log record 
is written to disk
• 〈 Ti, commit 〉
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〈 T1, start 〉
〈 T1, A, 800, 700 〉
〈 T1, B, 400, 500 〉
〈 T1, commit 〉

Log



When to write log records into stable store?

• Write-ahead logging (WAL): Before X is modified on 
disk, the log record pertaining to X must be flushed

• Without WAL, system might crash after X is modified 
on disk but before its log record is written to disk—
no way to undo
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Undo/redo logging example
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read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

〈 T1, start 〉
〈 T1, A, 800, 700 〉
〈 T1, B, 400, 500 〉

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log

WAL: Before A,B are modified on disk, their log info must be flushed



Undo/redo logging example cont.
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read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

〈 T1, start 〉
〈 T1, A, 800, 700 〉
〈 T1, B, 400, 500 〉

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log

700Steal: can flush
before commit

If system crashes before T1 commits, we have 
the old value of A stored on the log to undo T1



Undo/redo logging example cont.
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read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

〈 T1, start 〉
〈 T1, A, 800, 700 〉
〈 T1, B, 400, 500 〉
〈 T1, commit 〉

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log

commit;

No force: can flush
after commit

If system crashes before we flush the changes 
of A, B to the disk, we have their new 
committed values on the log to redo T1



Log example
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T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

Start of log

End of log

• Redo phase:

x: 99 
y: 199
z: 51
w: 1000 

100

redo
redo

redo

200
redo

redo
50

redo
10

redo

List of active transactions at crash:
T1 T2T3



Log example
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T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99 
y: 199
z: 51
w: 1000 

100

redo
redo

redo

200
redo

redo
50

redo
10

redo

List of active transactions at crash:
T1 T2T3

redo

Start of log



Log example
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T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99 
y: 199
z: 51
w: 1000 

100

redo
redo

redo

200
redo

redo
50

redo
10

redo

List of active transactions at crash:
T1 T2T3

redo

redo

T4

Start of log



Log example
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T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99 
y: 199
z: 51 
w: 1000 

100

redo
redo

redo

200
redo

redo

redo
10

redo

List of active transactions at crash:
T1 T2T3

redo

redo

redo

Start of log

5150

T4



Log example
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T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99 
y: 199
z: 51 
w: 1000 

100

redo
redo

redo

200
redo

redo

redo
10

redo

List of active transactions at crash:
T1 T2T3

redo

redo

redo

redo

50

Start of log

5150

T4



Log example
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T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Undo phase: T1, T4

x: 99 
y: 199
z: 51
w: 1000 

100

undo

200

10

List of active transactions at crash:
T1 T2T3 T4

undo

50

Start of log

99
200

50 51

T4, abort
T1, abort

*

*



Undo/redo logging

• U: used to track the set of active transactions at crash

• Redo phase: scan forward to end of the log
• For a log record 〈 T, start 〉, add T to U
• For a log record 〈 T, commit | abort 〉, remove T from U
• For a log record 〈 T, X, old, new 〉, issue write(X, new)
Basically repeats history!

• Undo phase: scan log backward
• Undo the effects of transactions in U
• That is, for each log record 〈 T, X, old, new 〉 where T is in U, 

issue write(X, old), and log this operation too (part of the 
“repeating-history” paradigm)

• Log 〈 T, abort 〉 when all effects of T have been undone
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Checkpointing

• Shortens the amount of log that need to be undone 
or redone when a failure occurs

• A checkpoint record contains a list of active 
transactions

• Steps:
1. Write a begin_checkpoint record into the log

2. Collect the checkpoint data into the stable storage

3. Write an end_checkpoint record into the log
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Summary

• Concurrency control
• 2PL: guarantees a conflict-serializable schedule

• Deadlock problem

• Recovery: undo/redo logging
• Normal operation: write-ahead logging, no force, steal

• Recovery: first redo (forward), and then undo 
(backward)
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