Concurrency control &

recovery system
Transaction Processing (optional)

Introduction to Database Management
CS348 Fall 2022

Review

: TX’s are either completely done or not done
at all

: TX’s should leave the database in a
consistent state

: TX’s must behave as if they are executed in
isolation

: Effects of committed TX’s are resilient against
failures

* SQL transactions

SELECT ..,
UPDATE ...;

| ;

Outline

* Concurrency control -- isolation
* Review serializable execution histories
* Locking-based concurrency control

* Recovery — atomicity and durability
* Naive approaches
* Logging for undo and redo

Concurrency control

* Goal: ensure the “I” (isolation) in ACID

Ty:
r1(x);
w1(x);
r(y);

wi(y);
commit;

T,:
r2(x);
w2(x);
r2(z);
w2(2);
commit;

s —

X

y

Z

Good versus bad execution histories

T, |T, T, |T, T, | T,
r1(x) r1(x) r1(x)
w1(x) r2(x) w1(x)
ri(y) w1(x) r2(x)
wi1(y) w2(x) w2(x)
r2(x) r1(y) r1(y)
w2(x) r2(z) r2(C)
r2(z) wi(y) wi(y)
H, [w2(z) H, |w2(z) H. [w2(0)

Good versus bad execution histories

Iy |13
r1(x)
Serialization graph h W1(X)i
(Lecture 17) r2(x)
T, WZ(X)
r1(y)
r2(C)
wi(y)

H, w2(C)

Good versus bad execution histories

Iy | Ty
r1(x)
I
How to avoid wi(x) 2(x)
1<?
this: (w2(x) T,
r1(y)
r2(z)
wi(y)

Concurrency control

Possible classification

* Pessimistic — assume that conflicts will happen and
take preventive action
* Two-phase locking (2PL)
* Timestamp ordering

* Optimistic — assume that conflicts are rare and run
transactions and fix if there is a problem

* We will only review 2PL

Locking

* Rules

* If a transaction wants to read an object, it must first
request a shared lock (S mode) on that object

* If a transaction wants to modify an object, it must first
request an exclusive lock (X mode) on that object

* Allow one exclusive lock, or multiple shared locks

Mode of the lock requested

%
Yes No | Grantthelock?
No No

Mode of lock(s)
currently held
by other transactions

Compatibility matrix

Basic locking is not enough

I | Tz
lock-X(x
r1(x)
W1(x)|
unlock(x)
lock-X(x)
Possible schedule FZ(X) I
under locking WZ(X)
unlock(x) T
But still not loc{-X(y) ;
. - r2(y)
conflict-serializable!
w2(y)
unlock(y)
lock-X(y) .
r1(y)
wi(y)|

unlock(y)

10

Basic locking is not enough

Add 1to both xandy T1

T> multiply both x and y by 2

(preserve x=y)
lock-X(x

Read 100 F1(X

(preserves x=y)

Write 100+1 W1(
unlock(x)

Possible schedule
under locking

But still not
conflict-serializable!

ock-X(x)
FZ(X) Read 101 @
WZ(X)\/\/rite 101%2

unlock(x) e
loc{-x(y)

r2(Y) Read 100
W2(y)Write 100*2

unlock(y)
lock-X(y) //
Read 200 r1(y X%Ey!

Write 200+1 W1 (y)
unlock(y)

I 1

Two-phase locking (2PL)

* All lock requests precede all unlock requests
* Phase 1: obtain locks, phase 2: release locks

T, T,
Iock-X(r>1<2X)
w1(x)
lock-X(y)
unlock(x)
r2(x)
w2(x)
r2(y)
w2(y)
r(y)
wi(y)

unlock(y)

I T
r1(x)
w1(x) \
h\ r2(x)
w2(x)
r1(y)
wi(y)
\r2(y)
w2(y)

Remaining problems of 2PL

Iy

i * T, has read uncommitted

r1(x)

wi1(x)

r1(y)
wi(y)

data written by T;

() e [f T; aborts, then T, must

w2(x) abort as well

possible if
() other transactions have
w2(y) read data written by T,

* Even worse, what if T, commits before T;?

* Scheduleis if the system crashes right
after T, commits

Deadlocks

* A transaction is deadlocked if it is blocked and will remain
blocked until there is an intervention.

* Locking-based concurrency control algorithms may cause
deadlocks requiring abort of one of the transactions

T1 T2
* Consider the partial history lock-X(x)
r1(x)

wi(x) lock-S(y)
r2(y)
lock-S(x)

* Neither T; nor T, can make progress

lock-X(y)

ri(y)
wi(y)

unlock-X(x)4

unlock-S(y)

Strict 2PL

* Only release X-locks at commit/abort time

* A writer will block all other readers until the writer
commits or aborts

* Used in many commercial DBMS
* Oracle is a notable exception

* Why do we use strict 2PL? (assignment question)

Outline

* Concurrency control -- isolation
* Review serializable execution histories
* Locking-based concurrency control

Execution model

To read/write X

* The disk block containing X must be first brought
iInto memory

X is read/written in memory

* The memory block containing X, if modified, must
be written back (flushed) to disk eventually

CPU

buffer

l\/\emory

—

Disk

U

Failures

* System crashes right after a transaction T1 commits;

* How do we complete/redo T1 ()?

* System crashes in the middle of a transaction T2;

* How do we undo T2 ()?
start T1 end
start T2 end
b time

A

¥

S 4)

Naive approach: Force -- durability

T1 (balance transfer of $100 from A to B)

Memory buffer
read(A, a); a=a—-100;
write(A, a); A =860
read(B, b); b = b + 100; B =460
write(B, b);
_Disk 3
A =800
B =400 5¢
r)

Naive approach: Force -- durability

T1 (balance transfer of $100 from A to B)

read(A, a); a=a—-100;

write(A, a);

read(B, b); b = b +100;

write(B, b);

commit;

————————— / 4 \ -—e— -

Force: all writes must be reflected on disk
when a transaction commits

B =

Memory buffer

A =

860 700
460 500

 Disk

N——

A =800
B =400

—B3d!

Without force: not all writes are on disk when T1 commits
If system crashes right after T1 commits, effects of T1 will be lost

20

Naive approach: No steal -- atomicity

T1 (balance transfer of $100 from A to B)

read(A, a); a=a—-100;

write(A, a); e ", 4 #
read(B, b); b = b +100; ~
write(8,b), DN
commit;

No steal: Writes of a transaction can only

be flushed to disk at commit time:

* e.g. A=700 cannot be flushed to disk
before commit.

Memory buffer

A = 880 700

B =460 500

 Disk
A =800 70

\B = 400
ad!

With steal: some writes are on disk before T commits

If system crashes before T1 commits, there is no way to undo the

changes

21

Naive approach

: When a transaction commits, all writes of
this transaction must be reflected on disk
* Ensures durability

& Problem of force: Lots of hurt
performance

: Writes of a transaction can only be flushed
to disk at commit time
* Ensures atomicity

® Problem of no steal: Holding on to all dirty blocks
requires lots of memory

Logging

sequence of , recording all
changes made to the database, written to stable
storage (e.g., disk) during normal operation

Database
log

Old stable Update New stable
database state operation database state

* Hey, one change turns into two—>bad for
performance?

 But writes are (append to the end of log)

Log format

* When a transaction T, starts

 Record values before and after each modification:

* T.is transaction id

X identifies the data item Loz
(T, start)
. . . (T, A, 800,700)
* A transaction T;is committed (T, B, 400,500)
. . 1))
when its commit log record (T, commit)
is written to disk

\ /

When to write log records into stable store?

(): Before X is modified on
disk, the log record pertaining to X must be flushed

* Without WAL, system might crash after X is modified
on disk but before its log record is written to disk—
no way to undo

Undo/redo logging example

T1 (balance transfer of $100 from A to B)

read(A, a); a=a—-100;

Memory buffer
write(A, a);
read(B, b); b = b + 100; A =860
write(B, b); B =460

< Disk Y [—_log 3
(T, start)

A =800 (T, A, 800,700)
B\: 400 _ (Tw B, 400, 500)

Undo/redo logging example cont.

T1 (balance transfer of $100 from A to B)

read(A, a); a=a—-100;

i Memory buffer
write(A, a); e #
read(B, b); b = b + 100; : A =860
write(B, b); 2 i B = 460

< Disk Y f[—_log 3

(T, start)
A =860 (T, A, 800,700)
B\: 400 —— (T4y B, 400,500)

Undo/redo logging example cont.

T1 (balance transfer of $100 from A to B)
read(A, a); a=a—-100;

Memory buffer
write(A, a);
read(B, b); b = b + 100; A =860
W " / 5
write(B, b); g B =460
commit; e
4 W
(Disk N f—_log 3
(T, start)
A =800 (T, A, 800,700)
B\: 400 _ (Tw B, 400, 500)
(T,, commit)

\ /

Log example

* Redo phase:

3

X: 95

y: 105
Z: 51

w: 1800

N—

_

Start of log

List of active transactions at crash:

T1 T2T3

Y S End of log

redo
redo

redo
redo
redo

redo
redo

_ Log

T, start

TU X, 99,100
T, start

TZ: Y, 199, 200
Ts, start

T3) z, 51,50
T>, w, 1000, 10
T, commit
T,4, start

Ts, abort

T4) y, 200, 50

Log example

* Redo phase:

3

X: 95

y: 105
Z: 51

w: 1800

N—

_

Start of log

List of active transactions at crash:

T1 F2T3

Y S End of log

redo
redo

redo
redo
redo

redo
redo

redo

—

Log

T, start

TU X, 99,100
T, start

TZ: Y, 199, 200
Ts, start

T3) z, 51,50
T>, w, 1000, 10
T, commit
T,4, start

Ts, abort

T4) y, 200, 50

Log example

* Redo phase: ~—Los
Start of log redo | T, start
(> redo | T, x, 99, 100
e on redo| T,, start
199 redo| T, Y, 199,200
y: 105 redo] Ts, start
Z: 51 redo| Ts,z, 51,50
w: 1600 redo| T,, w, 1000, 10
" - redo| T., commit
List of active transactions at crash: redo 14’ Zt)a;t
- >
T1 F2T3T4 TS L oo T4, Y, 200, 50
g

Log example

C__ Lo
* Redo phase: g
Start of log redo| T, start
(> redo| T, X, 99,100
redo] T, start
X 09
. 105 redo| T Y, 199,200
s redo| T;, start
= redo| Ts,z, 51,50
. 3y 4y ’
i redo| T, w, 1000, 10
~— — redo| T,, commit
: , , q
List of active transactions at crash: redo| Ts, start
T1 T2 T redo| Ts, abort
A M T4, y, 200, 50
' % Endoflog

Log example

Lo
* Redo phase: g
Start oflog redo| Ty, start
(> redo| T, X, 99, 100
redo] T, start
X: 95
. 105 redo| T Y, 199,200
y: £ g redo| T;, start
2.0_1}00 redo| Ts,z, 51,50
e redo| T, w, 1000, 10
~— — redo| T,, commit
: , , q
List of active transactions at crash: redo| Ts, start
T1 72 T3 T4 redo T3, abort
W y % End of |Og redo T4, y, 200, 50

Log example

C__ log

* Undo phase: T1, T4

Startoflog T, start
(> undo | T, x, 99, 100
T, start
X: 05
y: 105 TZ: Y, 199, 200
z: 51 . Ts, start
1 T3) z, 51,50
w: 1800
) T>, w, 1000, 10
~— — T, commit
. . . *
List of active transactions at crash: T4, start
Ts, abort

23T
> W4 End of log undo | Ts, ¥, 200, 50

4 . T4, abort
T;, abort y

Undo/redo logging

 U: used to track the set of active transactions at crash

* Redo phase: scan to end of the log
* Foralogrecord ,add TtoU
* Foralogrecord ,remove T from U
 Foralogrecord , issue write(X, new)

* Undo phase: scan log
* Undo the effects of transactionsin U

* That is, for each log record where Tis in U,
issue write(X, old), and log this operation too (part of the
“repeating-history”” paradigm)

* Log when all effects of T have been undone

Checkpointing

* Shortens the amount of log that need to be undone
or redone when a failure occurs

* A checkpoint record contains a list of active
transactions

* Steps:
1. Writea record into the log
2. Collect the checkpoint data into the stable storage
3. Write an record into the log

Summary

* Concurrency control
* 2PL: guarantees a conflict-serializable schedule
* Deadlock problem

* Recovery: undo/redo logging
* Normal operation: write-ahead logging, no force, steal

* Recovery: first redo (forward), and then undo
(backward)

| FME EINLU

