
Review Lectures 2-4
Introduction to Database Management

CS348 Fall 2022

Announcements (Thur. Sep 22)

• Project milestone 0 due by Sep 27 (Tue), 11:59pm
• Form a team on Learn
• Report.pdf and link to GitHub repo
• Not graded, but very important!

• Assignment 1 due by Sep 29 (Thur), 11:59pm
• Part 1: general questions and r.a.

• Submit via Crowdmark
• Part 2: writing SQL on DB2 on school servers (try soon)

• Submit via Marmoset

2

Outline

• Lecture 2: Intro to the relational model
• Relational data model
• Relational algebra

• Lectures 3 & 4: SQL (1) & (2)

3

Relational data model

• A database is a collection of relations (or tables)
• Each relation has a set of attributes (or columns)
• Each attribute has a name and a domain (or type)
• The domains are required to be atomic

• Each relation contains a set of tuples (or rows)
• Each tuple has a value for each attribute of the relation
• Duplicate tuples are not allowed

• Two tuples are duplicates if they agree on all attributes

FSimplicity is a virtue!

4

Example for Relational data model
5

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

gid name

abc Book Club

gov Student Government

dps Dead Putting Society

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User
Group

Member

tuples (or rows)

Ordering of rows doesn’t matter
(even though output is
always in some order)

Duplicates are not allowed

Schema vs. instance

• Schema (metadata)
• Specifies the logical structure of data
• Is defined at setup time, rarely changes

• Instance
• Represents the data content
• Changes rapidly, but always conforms to the schema

6

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

User: {〈142, Bart, 10, 0.9〉, 〈857, Milhouse, 10, 0.2〉, …}
Group: {〈abc, Book Club〉, 〈gov, Student Government〉, …}
Member: {〈142, dps〉, 〈123, gov〉, …}

Types of integrity constraints

• Tuple-level
• Domain restrictions, attribute comparisons, etc.

• E.g. age cannot be negative

• Relation-level
• Key constraints (focus in this lecture)

• E.g. uid should be unique in the User relation
• Functional dependencies (Textbook, Ch. 7)

• Database-level
• Referential integrity – foreign key (focus in this lecture)

• uid in Member must refer to a row in User with the same uid

7

Key (Candidate Key)

Def: A set of attributes 𝐾 for a relation 𝑅 if
• Condition 1: In no instance of 𝑅 will two different

tuples agree on all attributes of 𝐾
• That is, 𝐾 can serve as a “tuple identifier”

• Condition 2: No proper subset of 𝐾 satisfies the
above condition
• That is, 𝐾 is minimal

• Example: User (uid, name, age, pop)
• uid is a key of User
• age is not a key (not an identifier)
• {uid, name} is not a key (not minimal)

8

Only Check
Condition 1

, but a superkey

More examples of keys
• Member (uid, gid)
• {uid, gid}
FA key can contain multiple attributes

• Address (street_address, city, state, zip)
• Key 1: {street_address, city, state}
• Key 2: {street_address, zip}
FA relation can have multiple keys!

• Primary key: a designated candidate key in the
schema declaration
• Underline all its attributes, e.g., Address (street_address,
city, state, zip)

9

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

Member

“Pointers” to other rows

• Foreign key: primary key of one relation appearing
as attribute of another relation

10

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

gid name

abc Book Club

gov Student Government

dps Dead Putting Society

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User Group

Member

“Pointers” to other rows

• Referential integrity: A tuple with a non-null value
for a foreign key that does not match the primary
key value of a tuple in the referenced relation is not
allowed.

11

gid name

abc Book Club

gov Student Government

dps Dead Putting Society

uid gid

142 dps

123 gov

857 Xi

857 gov

456 abc

456 gov

… …

Group

Member

Outline

• Lecture 2: Intro to the relational model
• Relational data model
• Relational algebra

• Lectures 3 & 4: SQL (1) & (2)

12

Relational algebra

A language for querying relational data
based on “operators”

13

RelOp

RelOp

• Core operators:
• Selection, projection, cross product, union, difference,

and renaming

• Additional, derived operators:
• Join, natural join, intersection, etc.

• Compose operators to make complex queries

Summary of operators
Core Operators
1. Selection: 𝜎!𝑅
2. Projection: 𝜋"𝑅
3. Cross product: 𝑅×𝑆
4. Union: 𝑅 ∪ 𝑆
5. Difference: 𝑅 − 𝑆
6. Renaming: 𝜌# $!→$!" ,$#→$#" ,… 𝑅

Does not really add “processing” power

Derived Operators
1. Join: 𝑅 ⋈! 𝑆
2. Natural join: 𝑅 ⋈ 𝑆
3. Intersection: 𝑅 ∩ 𝑆

14

Note: Only use
these operators for
assignments & quiz

More on selection

• Selection condition can include any column of 𝑅,
constants, comparison (=, ≤, etc.) and Boolean
connectives (∧: and, ∨: or,¬: not)
• Example: users with popularity at least 0.9 and age

under 10 or above 12
𝜎%&%'(.* ∧ ,-./0(∨ ,-.203 𝑈𝑠𝑒𝑟

• You must be able to evaluate the condition over
each single row of the input table!
• Example: the most popular user

𝜎%&% ' .4.56 %&% 78 9:.5 𝑈𝑠𝑒𝑟

15

WRONG!

More on projection

• Duplicate output rows are removed (by definition)
• Example: user ages

𝜋,-. 𝑈𝑠𝑒𝑟

16

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

𝜋!"#

age

10

10

8

8

…

age

10

8

…

Core operator 3: Cross product

• Input: two tables 𝑅 and 𝑆
• Natation: 𝑅×𝑆
• Purpose: pairs rows from two tables
• Output: for each row 𝑟 in 𝑅 and each 𝑠 in 𝑆, output

a row 𝑟𝑠 (concatenation of 𝑟 and 𝑠)

17

⋈ !"#$.&'()
*#+,#$.&'(

Derived operator 1: Join

• Info about users, plus IDs of their groups
𝑈𝑠𝑒𝑟 ⋈!"#$.&'()*#+,#$.&'(𝑀𝑒𝑚𝑏𝑒𝑟

18

uid name age pop uid gid

123 Milhouse 10 0.2 123 gov

123 Milhouse 10 0.2 857 abc

123 Milhouse 10 0.2 857 gov

857 Lisa 8 0.7 123 gov

857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

… … … … … …

uid name age pop

123 Milhouse 10 0.2

857 Lisa 8 0.7

… … … …

uid gid

123 gov

857 abc

857 gov

… …×⋈ !"#$.&'()
*#+,#$.&'(

uid name age pop uid gid

123 Milhouse 10 0.2 123 gov

857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

… … … … … …

Prefix a column reference
with table name and “.” to
disambiguate identically named
columns from different tables

uid name age pop uid gid

123 Milhouse 10 0.2 123 gov

857 Lisa 8 0.7 857 abc

857 Lisa 8 0.7 857 gov

… … … … … …

uid name age pop gid

123 Milhouse 10 0.2 gov

857 Lisa 8 0.7 abc

857 Lisa 8 0.7 gov

… … … … …

Derived operator 2: Natural join
19

𝑈𝑠𝑒𝑟 ⋈ 𝑀𝑒𝑚𝑏𝑒𝑟
= 𝜋&'(,./+#,/0#,121,0'(𝑈𝑠𝑒𝑟 ⋈ !"#$.&'()

*#+,#$.&'(
𝑀𝑒𝑚𝑏𝑒𝑟

uid name age pop

123 Milhouse 10 0.2

857 Lisa 8 0.7

… … … …

uid gid

123 gov

857 abc

857 gov

… …

⋈⋈ !"#$.&'()
*#+,#$.&'(⋈

Core operator 4: Union

• Input: two tables 𝑅 and 𝑆
• Notation: 𝑅 ∪ 𝑆
• 𝑅 and 𝑆 must have identical schema

• Output:
• Has the same schema as 𝑅 and 𝑆
• Contains all rows in 𝑅 and all rows in 𝑆 (with duplicate

rows removed)

20

uid gid

123 gov

857 abc

uid gid

123 gov

901 edf

∪ =
uid gid

123 gov

857 abc

901 edf

Core operator 5: Difference

• Input: two tables 𝑅 and 𝑆
• Notation: 𝑅 − 𝑆
• 𝑅 and 𝑆 must have identical schema

• Output:
• Has the same schema as 𝑅 and 𝑆
• Contains all rows in 𝑅 that are not in 𝑆

21

uid gid

123 gov

857 abc

uid gid

123 gov

901 edf

− =
uid gid

857 abc

Derived operator 3: Intersection

• Input: two tables 𝑅 and 𝑆
• Notation: 𝑅 ∩ 𝑆
• 𝑅 and 𝑆 must have identical schema

• Output:
• Has the same schema as 𝑅 and 𝑆
• Contains all rows that are in both 𝑅 and 𝑆

• Shorthand for
• Also equivalent to 𝑆 − 𝑆 − 𝑅
• And to 𝑅 ⋈ 𝑆

22

𝑅 − 𝑅 − 𝑆

Core operator 6: Renaming

• Input: a table 𝑅
• Notation: 𝜌3 𝑅, 𝜌 4!→4!" ,… 𝑅, or 𝜌3 4!→4!" ,… 𝑅
• Purpose: “rename” a table and/or its columns
• Output: a table with the same rows as 𝑅, but called

differently

23

𝜌>0 ?7@→?7@",-7@→-7@" 𝑀𝑒𝑚𝑏𝑒𝑟
uid gid

123 gov

857 abc

uid1 gid1

123 gov

857 abc

Member M1

9. Basic operator: Renaming

• IDs of users who belong to at least two groups
𝑀𝑒𝑚𝑏𝑒𝑟 ⋈? 𝑀𝑒𝑚𝑏𝑒𝑟

24

uid gid

100 gov

100 abc

200 gov⋈?

uid gid uid gid

100 gov 100 gov

100 gov 100 abc

100 gov 200 gov

100 abc 100 gov

100 abc 100 abc

100 abc 200 gov

200 gov 100 gov

200 gov 100 abc

200 gov 200 gov

uid gid

100 gov

100 abc

200 gov

Condition 1: same uid

Condition 2: different gids

Renaming example

• IDs of users who belong to at least two groups
𝑀𝑒𝑚𝑏𝑒𝑟 ⋈? 𝑀𝑒𝑚𝑏𝑒𝑟

𝜋&'(𝑀𝑒𝑚𝑏𝑒𝑟 ⋈*#+,#$.&'()*#+,#$.&'(∧
#+,#$.0'(9#+,#$.0'(

𝑀𝑒𝑚𝑏𝑒𝑟

𝜋&'(!

𝜌 &'(→&'(!,0'(→0'(! 𝑀𝑒𝑚𝑏𝑒𝑟
⋈&'(!)&'(# ∧ 0'(!90'(#

𝜌 &'(→&'(#,0'(→0'(# 𝑀𝑒𝑚𝑏𝑒𝑟

25

WRONG!

Expression tree notation
26

𝜌 !"#→!"#(,&"#→&"#(𝜌 !"#→!"#),&"#→&"#)

𝑀𝑒𝑚𝑏𝑒𝑟 𝑀𝑒𝑚𝑏𝑒𝑟

⋈!"#('!"#) ∧ &"#()&"#)

𝜋!"#(

Take-home Exercises

• Exercise 1: IDs of groups who have at least 2 users?

• Exercise 2: IDs of users who belong to at least three
groups?

27

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A trickier example

• Who are the most popular?
• Who do NOT have the highest pop rating?
• Whose pop is lower than somebody else’s?

28

𝜋!"#

𝑈𝑠𝑒𝑟

−

𝑈𝑠𝑒𝑟𝑈𝑠𝑒𝑟

𝜌*+,-(𝜌*+,-)

⋈*+,-(./0/1*+,-)./0/

𝜋*+,-(.!"#

A deeper question:
When (and why) is “−” needed?

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Non-monotone operators

• If some old output rows may become invalid, and need to
be removed à the operator is non-monotone

• Example: difference operator 𝑅 − 𝑆

29

RelOp
Add more rows

to the input...

What happens
to the output?

uid gid

123 gov

857 abc

uid gid

123 gov

901 edf

− =
uid gid

857 abc

857 abc

This old row
becomes invalid
because the new
row added to S

𝑆𝑅

Classification of relational operators

• Selection: 𝜎1𝑅
• Projection: 𝜋:𝑅
• Cross product: 𝑅×𝑆
• Join: 𝑅 ⋈1 𝑆
• Natural join: 𝑅 ⋈ 𝑆
• Union: 𝑅 ∪ 𝑆
• Difference: 𝑅 − 𝑆
• Intersection: 𝑅 ∩ 𝑆

30

Monotone
Monotone
Monotone
Monotone
Monotone
Monotone
Monotone w.r.t. 𝑅; non-monotone w.r.t 𝑆

Monotone

Why do we need core operator 𝑋?

• Difference
• The only non-monotone operator

• Projection
• The only operator that removes columns

• Cross product
• The only operator that adds columns

• Union
• ?

• Selection
• ?

31

Extensions to relational algebra

• Duplicate handling (“bag algebra”)
• Grouping and aggregation
• “Extension” (or “extended projection”) to allow

new column values to be computed

FAll these will come up when we talk about SQL
FBut for now we will stick to standard relational

algebra without these extensions

32

Outline

• Lecture 2: Intro to the relational model
• Relational data model
• Relational algebra

• Lectures 3 & 4: SQL (1) & (2)
• Data-definition language (DDL): define/modify schemas,

delete relations
• Data-manipulation language (DML): query information,

and insert/delete/modify tuples
• Integrity constraints: specify constraints that the data

stored in the database must satisfy

33

DDL

• CREATE TABLE table_name
(…, column_name column_type, …);

• DROP TABLE table_name;

34

CREATE TABLE User(uid DECIMAL(3,0), name VARCHAR(30), age DECIMAL
(2,0), pop DECIMAL(3,2));
CREATE TABLE Group (gid CHAR(10), name VARCHAR(100));
CREATE TABLE Member (uid DECIMAL (3,0), gid CHAR(10));

DROP TABLE User;
DROP TABLE Group;
DROP TABLE Member;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

-- everything from -- to the end of line is ignored.
-- SQL is insensitive to white space.
-- SQL is insensitive to case (e.g., ...CREATE... is
-- equivalent to ...create...).

Basic queries for DML: SFW statement

• SELECT 𝐴=, 𝐴>, …, 𝐴.
FROM 𝑅=, 𝑅>, …, 𝑅+
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;

• Also called an SPJ (select-project-join) query

• Corresponds to (but not really equivalent to)
relational algebra query:

𝜋4!,4#,…,4$ 𝜎?2.('@'2. 𝑅=×𝑅>×⋯×𝑅+

35

Forcing set semantics

• ID’s of all pairs of users that belong to one group

àSay Lisa and Ralph are in both the book club and the
student government, they id pairs will appear twice

• Remove duplicate (uid1, uid2) pairs from the output

36

SELECT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2
WHERE m1.gid = m2.gid

AND m1.uid > m2.uid;

SELECT DISTINCT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2
WHERE m1.gid = m2.gid;

AND m1.uid > m2.uid;

Semantics of SFW
• SELECT [DISTINCT] 𝐸*, 𝐸+, …, 𝐸,

FROM 𝑅*, 𝑅+, …, 𝑅-
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;
• For each 𝑡* in 𝑅*:

For each 𝑡+ in 𝑅+: … …
For each 𝑡- in 𝑅-:

If 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is true over 𝑡*, 𝑡+, …, 𝑡-:
Compute and output 𝐸*, 𝐸+, …, 𝐸, as a row

If DISTINCT is present
Eliminate duplicate rows in output

• 𝑡*, 𝑡+, …, 𝑡- are often called tuple variables

37

SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra
• Duplicates in input tables, if any, are first eliminated
• Duplicates in result are also eliminated (for UNION)

38

fruit

apple

apple

orange

fruit

orange

orange

orange

Bag1 Bag2 (SELECT * FROM Bag1)
UNION
(SELECT * FROM Bag2);

fruit

apple

orange

(SELECT * FROM Bag1)
EXCEPT
(SELECT * FROM Bag2);

fruit

apple

(SELECT * FROM Bag1)
INTERSECT
(SELECT * FROM Bag2);

fruit

orange

SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra

• Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL
• Think of each row as having an implicit count (the

number of times it appears in the table)

39

fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
UNION ALL
(SELECT * FROM Bag2);

fruit

apple

apple

orange

apple

orange

orange

sum up the counts
from two tables

apple: 2
orange:1

apple: 1
orange:2

apple: 3
orange:3

SQL features covered so far

• SELECT-FROM-WHERE statements
• Set and bag operations

FNext: how to nest SQL queries

40

• Use query result as a table
• In set and bag operations, FROM clauses, etc.

• Example: names of users who poked others more
than others poked them

Table subqueries

41

SELECT DISTINCT name
FROM User,

(SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke) AS T

WHERE User.uid = T.uid;

• A query that returns a single row can be used as a
value in WHERE, SELECT, etc.
• Example: users at the same age as Bart

• When can this query go wrong?
• Return more than 1 row
• Return no rows

Scalar subqueries
42

SELECT *
FROM User,
WHERE age = (SELECT age

FROM User
WHERE name = ‘Bart’);

• 𝑥 IN (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if 𝑥 is in the result of
𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦

• Example: users at the same age as (some) Bart

IN subqueries
43

SELECT *
FROM User,
WHERE age IN (SELECT age

FROM User
WHERE name = ‘Bart’);

• EXISTS (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦
is non-empty

• Example: users at the same age as (some) Bart

• This happens to be a correlated subquery—a subquery
that references tuple variables in surrounding queries

EXISTS subqueries
44

SELECT *
FROM User AS u,
WHERE EXISTS (SELECT * FROM User

WHERE name = ‘Bart’
AND age = u.age);

Quantified subqueries

• Universal quantification (for all):
• … WHERE 𝑥 𝑜𝑝 ALL(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True iff for all 𝑡 in the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦, 𝑥 𝑜𝑝 𝑡

• Existential quantification (exists):
• … WHERE 𝑥 𝑜𝑝 ANY(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True iff there exists some 𝑡 in 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 result s.t. 𝑥 𝑜𝑝 𝑡

45

SELECT *
FROM User
WHERE NOT

(pop < ANY(SELECT pop FROM User);

SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

More ways to get the most popular

• Which users are the most popular?

46

Q2. SELECT *
FROM User
WHERE NOT

(pop < ANY(SELECT pop FROM User);

Q1. SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

Q3. SELECT *
FROM User AS u
WHERE NOT [EXITS or IN?]

(SELECT * FROM User
WHERE pop > u.pop);

Q4. SELECT * FROM User
WHERE uid NOT [EXISTS or IN?]

(SELECT u1.uid
FROM User AS u1, User AS u2
WHERE u1.pop < u2.pop);

EXISTS or IN?

SQL features covered so far

• SELECT-FROM-WHERE statements
• Set and bag operations
• Subqueries
• Subqueries allow queries to be written in more

declarative ways (recall the “most popular” query)
• But in many cases, they don’t add expressive power

FNext: aggregation and grouping

47

Aggregates

• Standard SQL aggregate functions: COUNT, SUM,
AVG, MIN, MAX

• Example: number of users under 18, and their
average popularity
• COUNT(*) counts the number of rows

48

SELECT COUNT(*), AVG(pop)
FROM User
WHERE age <18;

Aggregates with DISTINCT

• Example: How many users are in some group?

49

SELECT COUNT(*)
FROM (SELECT DISTINCT uid FROM Member);

SELECT COUNT(DISTINCT uid)
FROM Member;

Is equivalent to

Example of computing GROUP BY
50

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Compute GROUP BY: group
rows according to the values
of GROUP BY columns

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

Compute SELECT
for each group

age avg_pop

10 0.55

8 0.50

SELECT age, AVG(pop) FROM User GROUP BY age;

Aggregates with no GROUP BY

• An aggregate query with no GROUP BY clause =
all rows go into one group
SELECT AVG(pop) FROM User;

51

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Group all rows
into one group

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Aggregate over
the whole group

avg_pop

0.525

SELECT AVG(pop) FROM User;

Restriction on SELECT

• If a query uses aggregation/group by, then every
column referenced in SELECT must be either
• Aggregated, or
• A GROUP BY column

Why?
FThis restriction ensures that any SELECT expression

produces only one value for each group

52

SELECT uid, age FROM User GROUP BY age;

SELECT uid, MAX(pop) FROM User;

WRONG!

WRONG!

HAVING examples

• List the average popularity for each age group with
more than a hundred users

• Can be written using WHERE and table subqueries

53

SELECT age, AVG(pop)
FROM User
GROUP BY age
HAVING COUNT(*)>100;

SELECT T.age, T.apop
FROM (SELECT age, AVG(pop) AS apop, COUNT(*) AS gsize

FROM User GROUP BY age) AS T
WHERE T.gsize>100;

ORDER BY example

• List all users, sort them by popularity (descending)
and name (ascending)

• ASC is the default option
• Strictly speaking, only output columns can appear in

ORDER BY clause (although some DBMS support more)
• Can use sequence numbers instead of names to refer to

output columns: ORDER BY 4 DESC, 2;

54

SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC, name;

Outline

• Lecture 2: Intro to the relational model
• Lectures 3 & 4: SQL (1) & (2)
• Data-definition language (DDL)
• Data-manipulation language (DML)

• SELECT-FROM-WHERE statements
• Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
• Aggregation and grouping (GROUP BY, HAVING)
• Ordering (ORDER)
• Outerjoins (and Nulls)
• INSERT/DELETE/UPDATE

• Integrity constraints: specify constraints that the data
stored in the database must satisfy

55

Incomplete information

• Example: User (uid, name, age, pop)
• Value unknown
• We do not know Nelson’s age

• Value not applicable
• Suppose pop is based on interactions with others on our

social networking site
• Nelson is new to our site; what is his pop?

56

SQL’s solution

• A special value NULL
• For every domain
• Special rules for dealing with NULL’s

• Example: User (uid, name, age, pop)
• 789, “Nelson”, NULL, NULL

57

Three-valued logic

• Comparing a NULL with another value (including
another NULL) using =, >, etc., the result is NULL

• WHERE and HAVING clauses only select rows for
output if the condition evaluates to TRUE
• NULL is not enough

• Aggregate functions ignore NULL, except COUNT(*)

58

TRUE = 1, FALSE = 0, UNKNOWN = 0.5
𝑥 AND 𝑦 = min(𝑥, 𝑦)
𝑥 OR 𝑦 = max(𝑥, 𝑦)

NOT 𝑥 = 1 − 𝑥

Unfortunate consequences

• Q1a = Q1b?

• Q2a = Q2b?

• Be careful: NULL breaks many equivalences

59

Q1a. SELECT AVG(pop) FROM User;

Q1b. SELECT SUM(pop)/COUNT(*) FROM User;

Q2a. SELECT * FROM User;

Q2b SELECT * FROM User WHERE pop=pop;

Another problem

• Example: Who has NULL pop values?

• SQL introduced special, built-in predicates
IS NULL and IS NOT NULL

60

SELECT * FROM User WHERE pop = NULL; Does not work!

(SELEC * FROM User)
EXCEPT ALL
(SELECT * FROM USER WHERE pop=pop);

Works, but ugly

SELECT * FROM User WHERE pop IS NULL;

Outerjoin examples
61

gid name

abc Book Club

gov Student Government

dps Dead Putting Society

nuk United Nuclear Workers

uid gid

142 dps

123 gov

857 abc

857 gov

789 foo

Group

Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

Group⟗Member

A full outerjoin between R and S:
• All rows in the result of 𝑅 ⋈ 𝑆, plus
• “Dangling” 𝑅 rows (those that do not join

with any 𝑆 rows) padded with NULL’s for
𝑆’s columns

• “Dangling” 𝑆 rows (those that do not join
with any 𝑅 rows) padded with NULL’s for
𝑅’s columns

nuk United Nuclear Workers NULL

foo NULL 789

Outerjoin examples
62

gid name

abc Book Club

gov Student Government

dps Dead Putting Society

nuk United Nuclear Workers

uid gid

142 dps

123 gov

857 abc

857 gov

789 foo

Group

Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

nuk United Nuclear Workers NULL

Group⟕Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

foo NULL 789

Group⟖Member

• A left outerjoin (𝑅⟕𝑆) includes rows in 𝑅 ⋈ 𝑆
plus dangling 𝑅 rows padded with NULL’s

• A right outerjoin (𝑅⟖𝑆) includes rows in 𝑅 ⋈
𝑆 plus dangling 𝑆 rows padded with NULL’s

Outerjoin syntax

☞A similar construct exists for regular (“inner”) joins:

☞For natural joins, add keyword NATURAL; don’t use ON

63

SELECT * FROM Group LEFT OUTER JOIN Member
ON Group.gid = Member.gid;

SELECT * FROM Group RIGHT OUTER JOIN Member
ON Group.gid = Member.gid;

SELECT * FROM Group FULL OUTER JOIN Member
ON Group.gid = Member.gid;

≈ 𝐺𝑟𝑜𝑢𝑝 ⟕
$%&'(."*+,-#./#%."*+

𝑀𝑒𝑚𝑏𝑒𝑟

≈ 𝐺𝑟𝑜𝑢𝑝 ⟖
$%&'(."*+,-#./#%."*+

𝑀𝑒𝑚𝑏𝑒𝑟

≈ 𝐺𝑟𝑜𝑢𝑝 ⟗
$%&'(."*+,-#./#%."*+

𝑀𝑒𝑚𝑏𝑒𝑟

SELECT * FROM Group JOIN Member ON Group.gid = Member.gid;

SELECT * FROM Group NATURAL JOIN Member;

SQL features covered so far

• SELECT-FROM-WHERE statements
• Set and bag operations
• Table expressions, subqueries
• Aggregation and grouping
• Ordering
• NULL’s and outerjoins

FNext: data modification statements, constraints

64

INSERT

• Insert one row
• User 789 joins Dead Putting Society

• Insert the result of a query
• Everybody joins Dead Putting Society!

65

INSERT INTO Member VALUES (789, 'dps');

INSERT INTO Member
(SELECT uid, 'dps' FROM User
WHERE uid NOT IN (SELECT uid

FROM Member
WHERE gid = 'dps'));

DELETE

• Delete everything from a table

• Delete according to a WHERE condition
• Example: User 789 leaves Dead Putting Society

• Example: Users under age 18 must be removed from
United Nuclear Workers

66

DELETE FROM Member;

DELETE FROM Member
WHERE uid IN (SELECT uid FROM User WHERE age < 18)

AND gid = 'nuk';

DELETE FROM Member WHERE uid=789 AND gid=‘dps’;

UPDATE

• Example: User 142 changes name to “Barney”

• Example: We are all popular!

• But won’t update of every row causes average pop to
change?

FSubquery is always computed over the old table

67

UPDATE User
SET name = 'Barney’
WHERE uid = 142;

UPDATE User
SET pop = (SELECT AVG(pop) FROM User);

Outline

• Lecture 2: Intro to the relational model
• Lectures 3 & 4: SQL (1) & (2)
• Data-definition language (DDL)
• Data-manipulation language (DML)

• SELECT-FROM-WHERE statements
• Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
• Aggregation and grouping (GROUP BY, HAVING)
• Ordering (ORDER)
• Outerjoins (and Nulls)
• INSERT/DELETE/UPDATE

• Integrity constraints: specify constraints that the data
stored in the database must satisfy

68

Types of SQL constraints

• NOT NULL
• Key
• Referential integrity (foreign key)
• General assertion
• Tuple- and attribute-based CHECK’s

69

NOT NULL constraint examples
70

CREATE TABLE User
(uid DECIMAL(3,0) NOT NULL,
name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL,
age DECIMAL (2,0),
pop DECIMAL(3,2));

CREATE TABLE Group
(gid CHAR(10) NOT NULL,
name VARCHAR(100) NOT NULL);

CREATE TABLE Member
(uid DECIMAL(3,0) NOT NULL,
gid CHAR(10) NOT NULL);

Key declaration examples
71

CREATE TABLE User
(uid DECIMAL(3,0) NOT NULL PRIMARY KEY,
name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL UNIQUE,
age DECIMAL (2,0),
pop DECIMAL(3,2));

CREATE TABLE Group
(gid CHAR(10) NOT NULL PRIMARY KEY,
name VARCHAR(100) NOT NULL);

CREATE TABLE Member
(uid DECIMAL(3,0) NOT NULL,
gid CHAR(10) NOT NULL,
PRIMARY KEY(uid,gid));

This form is
required for multi-
attribute keys

At most one
primary key per
table

Any number of
UNIQUE keys per
table

CREATE TABLE Member
(uid DECIMAL(3,0) NOT NULL PRIMARY KEY,
gid CHAR(10) NOT NULL PRIMARY KEY,

Incorrect!

Referential integrity example

• If an uid appears in Member, it must appear in User
• Member.uid references User.uid

• If a gid appears in Member, it must appear in Group
• Member.gid references Group.gid

FThat is, no “dangling pointers”

72

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

gid name

abc …

gov …

dps …

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User GroupMember

Referential integrity in SQL

• Referenced column(s) must be PRIMARY KEY
• Referencing column(s) form a FOREIGN KEY
• Example

73

CREATE TABLE Member
(uid DECIMAL(3,0) NOT NULL REFERENCES User(uid),
gid CHAR(10) NOT NULL,

PRIMARY KEY(uid,gid),
FOREIGN KEY (gid) REFERENCES Group(gid));

This form is required for multi-
attribute foreign keys

CREATE TABLE MemberBenefits
(…..
FOREIGN KEY (uid,gid) REFERENCES Member(uid,gid));

Enforcing referential integrity

Example: Member.uid references User.uid
• Insert or update a Member row so it refers to a non-

existent uid
• Reject

74

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User Member

Reject000 gov

Enforcing referential integrity

Example: Member.uid references User.uid
• Delete or update a User row whose uid is

referenced by some Member row
• Multiple Options (in SQL)

75

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… ….

User Member

Option 1: Reject Option 2: Cascade
(ripple changes to all
referring rows)

CREATE TABLE Member
(uid DECIMAL(3,0) NOT NULL
REFERENCES User(uid)
ON DELETE CASCADE,
…..);

Enforcing referential integrity

Example: Member.uid references User.uid
• Delete or update a User row whose uid is

referenced by some Member row
• Multiple Options (in SQL)

76

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

NULL abc

NULL gov

… ….

User Member

Option 3: Set NULL
(set all references to NULL)

CREATE TABLE Member
(uid DECIMAL(3,0) NOT NULL
REFERENCES User(uid)
ON DELETE SET NULL,
…..);

General assertion

• CREATE ASSERTION 𝑎𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛_𝑛𝑎𝑚𝑒
CHECK assertion_condition;
• assertion_condition is checked for each

modification that could potentially violate it

• Example: Member.uid references User.uid

77

CREATE ASSERTION MemberUserRefIntegrity
CHECK (NOT EXISTS

(SELECT * FROM Member
WHERE uid NOT IN
(SELECT uid FROM User)));

Tuple- and attribute-based CHECK’s
78

• Associated with a single table
• Only checked when a tuple/attribute is

inserted/updated
• Reject if condition evaluates to FALSE
• TRUE and UNKNOWN are fine

• Examples:
CREATE TABLE User(...
age INTEGER CHECK(age IS NULL OR age > 0),
...);

CREATE TABLE Member
(uid INTEGER NOT NULL,
CHECK(uid IN (SELECT uid FROM User)),
...);

Exercise Question:
How does it differ
from a referential
integrity constraint
(slides 26-27)?

SQL features covered so far

• Query
• SELECT-FROM-WHERE statements
• Set and bag operations
• Table expressions, subqueries
• Aggregation and grouping
• Ordering
• Outerjoins (and NULL)

• Modification
• INSERT/DELETE/UPDATE

• Constraints
FNext: triggers, views, indexes (lecture 5)

79

