Review Lectures 5-10

Introduction to Database Management CS348 Fall 2022

Announcements (Tue, Oct 25)

Milestone 1

Feedback on Nov 2

Midterm Exam

- Fri, Nov 4, 4:30-6:00pm
- Cover Lectures 1-6 [instead of Lectures 1-10]

Assignment 2

- Due date [Thur, Oct 27, 11:59pm → Mon, Oct 31, 11:59pm]
- Grade won't be released before midterm exam, but we will cover solutions related to Lectures 1-6 on the midterm review lecture on Thur, Nov 3.

Final Exam

• Tue, Dec 13, 7:30pm – 10:00pm

SQL

• Basic SQL (queries, modifications, and constraints)

- Intermediate SQL
 - Triggers
 - Views
 - Indexes
- Advanced SQL
 - Programming
 - Recursive queries (Optional)

Lectures 5-6

Triggers

- A trigger is an event-condition-action (ECA) rule
 - When event occurs, test condition; if condition is satisfied, execute action

```
CREATE TRIGGER PickySGroup
                                      Event
AFTER UPDATE OF pop ON User
                                         Transition variable
REFERENCING NEW ROW AS newUser
FOR EACH ROW
                                        Condition
      WHEN (newUser.pop < 0.5)
             AND (newUser.uid IN (SELECT uid
                           FROM Member
                           WHERE gid = 'sgroup'))
             DELETE FROM Member
                                                  Action
             WHERE uid = newUser.uid AND gid = 'sgroup';
```

Transition variables/tables

- OLD ROW: the modified row before the triggering event
- NEW ROW: the modified row after the triggering event
- OLD TABLE: a hypothetical read-only table containing all rows to be modified before the triggering event
- NEW TABLE: a hypothetical table containing all modified rows after the triggering event

Event	Row	Statement
Delete	old r; old t	old t
Insert	new r; new t	new t
Update	old/new r; old/new t	old/new t

AFTER Trigger

Event	Row	Statement
Update	old/new r	-
Insert	new r	-
Delete	old r	-

BEFORE Trigger

Statement- vs. row-level triggers

- Simple row-level triggers are easier to implement
 - Statement-level triggers: require significant amount of state to be maintained in OLD TABLE and NEW TABLE
- Exercise 1: However, can you think of a case when a row-level trigger may be less efficient?
- Exercise 2: Certain triggers are only possible at statement level. Can you think of an example?

INSTEAD OF triggers for views

CREATE VIEW AveragePop(pop_avg) AS SELECT AVG(pop) FROM User; CREATE TRIGGER AdjustAveragePop **INSTEAD OF UPDATE ON AveragePop** REFERENCING OLD ROW AS o, NEW ROW AS n 0.5 User FOR EACH ROW 0.4 pop **UPDATE** User SET pop = pop + (n.pop_avg-o.pop_avg); 0.4 +0.1 0.4 + 0.1 What does this trigger do? 0.5 + 0.1UPDATE AveragePop SET pop_avg = 0.5; 0.3+0.1

Programming (Lecture 6)

- Pros and cons of SQL
 - Very high-level, possible to optimize
 - Not intended for general-purpose computation
- Solutions
 - Augment SQL with constructs from general-purpose programming languages
 - E.g.: SQL/PSM
 - Use SQL together with general-purpose programming languages: many possibilities
 - Through an API, e.g., Python psycopg2
 - Embedded SQL, e.g., in C
 - Automatic object-relational mapping, e.g.: Python SQLAlchemy
 - Extending programming languages with SQL-like constructs,
 e.g.: LINQ

Database Design

- Entity-Relationship (E/R) model (Lecture 7)
- Translating E/R to relational schema (Lecture 8)

Relational design principles (Lectures 9-10)

E/R basics (Lecture 7)

- Entity: a "thing," like an object
- Entity set: a collection of things of the same type, like a relation of tuples or a class of objects
 - Represented as a rectangle
- Relationship: an association among entities
- Relationship set: a set of relationships of the same type (among same entity sets)
 - Represented as a diamond
- Attributes: properties of entities or relationships, like attributes of tuples or objects
 - Represented as ovals

Summary of E/R concepts

- Entity sets
 - Keys
 - Weak entity sets
- Relationship sets
 - Attributes of relationships
 - Multiplicity
 - Roles
 - Supporting relationships (related to weak entity)
 - ISA relationships
- Other extensions:
 - Generalization
 - Structured attributes
 - Aggregation

Case study 3 (Exercise)

• A Registrar's Database:

- Zero or more sections of a course are offered each term. Courses have names and numbers. In each term, the sections of each course are numbered starting with 1.
- Most course sections are taught on-site, but a few are taught at off-site locations.
- Students have student numbers and names.
- Each course section is taught by a professor. A professor may teach more than one section in a term, but if a professor teaches more than one section in a term, they are always sections of the same course. Some professors do not teach every term.
- Up to 50 students may be registered for a course section. Sections with 5 or fewer students are cancelled.
- A student receives a mark for each course in which they are enrolled. Each student has a cumulative grade point average (GPA) which is calculated from all course marks the student has received.

Case study 3 (Exercise)

- A Registrar's Database:
 - Zero or more sections of a course are offered each term. Courses have names and numbers. In each term, the sections of each course are numbered starting with 1
 - Most course sections are taught on-site, but a few are taught at off-site locations
 - Students have student numbers and names.
 - Each course section is taught by a professor. A professor may teach more than one section in a term, but if a professor teaches more than one section in a term, they are always sections of the same course. Some professors do not teach every term.
 - Up to 50 students may be registered for a course section. Sections with 5 or fewer students are cancelled.
 - A student receives a mark for each course in which they are enrolled. Each student has a cumulative grade point average (GPA) which is calculated from all course marks the student has received.

Case study 3 (Exercise)

- A Registrar's Database:
 - Zero or more sections of a course are offered each term. Courses have names and numbers. In each term, the sections of each course are numbered starting with 1.
 - Most course sections are taught on-site, but a few are taught at off-site locations.
 - Students have student numbers and names.
 - Each course section is taught by a professor. A professor may teach more than one section in a term, but if a professor teaches more than one section in a term, they are always sections of the same course. Some professors do not teach every term.
 - Up to 50 students may be registered for a course section. Sections with 5 or fewer students are cancelled.
 - A student receives a mark for each course in which they are enrolled. Each student has a cumulative grade point average (GPA) which is calculated from all course marks the student has received.

Zero or more sections of a course are offered each term. Courses have names and numbers. In each term, the sections of each course are numbered starting with 1.

Each course section is taught by a professor. A professor may teach more than one section in a term, but if a professor teaches more than one section in a term, they are always sections of the same course. Some professors do not teach every term.

Each course section is taught by a professor. A professor may teach more than one section in a term, but if a professor teaches more than one section in a term, they are always sections of the same course. Some professors do not teach every term.

Up to 50 students may be registered for a course section. Sections with 5 or fewer students are cancelled.

A student receives a mark for each course in which they are enrolled. Each student has a cumulative grade point average (GPA) which is calculated from all course marks the student has received.

Case study 3: possible solution

A student receives a mark for each course in which they are enrolled Each student has a cumulative grade point average (GPA) which is calculated from all course marks the student has received.

More examples (Exercise) (Lecture 8)

• ER Diagram

Relational Schema

?

More examples

• ER Diagram

Design Theory (Lectures 9-10)

- Functional dependencies: provide clues towards elimination of (some) redundancies in a schema.
 - Closure of FDs (rules, e.g. Armstrong's axioms)
 - Compute attribute closure (1 algorithm + 2 uses)
- Schema decomposition
 - 2 properties for good schema decomposition
 - Property 1: Lossless join decompositions
 - Property 2: Dependency preserving decompositions
 - Normal forms based on FDs
 - BCNF → lossless join decompositions (1 algorithm)
 - 3rd NF → lossless join and dependency-preserving decompositions with more redundancy (2 algorithms)