Review Lectures 5-10

Introduction to Database Management

CS348 Fall 2022
Announcements (Tue, Oct 25)

• Milestone 1
 • Feedback on Nov 2

• Midterm Exam
 • Fri, Nov 4, 4:30-6:00pm
 • Cover Lectures 1-6 [instead of Lectures 1-10]

• Assignment 2
 • Due date [Thur, Oct 27, 11:59pm → Mon, Oct 31, 11:59pm]
 • Grade won’t be released before midterm exam, but we will cover solutions related to Lectures 1-6 on the midterm review lecture on Thur, Nov 3.

• Final Exam
 • Tue, Dec 13, 7:30pm – 10:00pm
SQL

• Basic SQL (queries, modifications, and constraints)

• Intermediate SQL
 • Triggers
 • Views
 • Indexes

• Advanced SQL
 • Programming
 • Recursive queries (Optional)

Lectures 5-6
Triggers

- A trigger is an event-condition-action (ECA) rule
 - When event occurs, test condition; if condition is satisfied, execute action

CREATE TRIGGER PickySGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW
 WHEN (newUser.pop < 0.5)
 AND (newUser.uid IN (SELECT uid
 FROM Member
 WHERE gid = 'sgroup'))
 DELETE FROM Member
 WHERE uid = newUser.uid AND gid = 'sgroup';
Transition variables/tables

- **OLD ROW**: the modified row before the triggering event
- **NEW ROW**: the modified row after the triggering event
- **OLD TABLE**: a hypothetical read-only table containing all rows to be modified before the triggering event
- **NEW TABLE**: a hypothetical table containing all modified rows after the triggering event

<table>
<thead>
<tr>
<th>Event</th>
<th>Row</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>old r; old t</td>
<td>old t</td>
</tr>
<tr>
<td>Insert</td>
<td>new r; new t</td>
<td>new t</td>
</tr>
<tr>
<td>Update</td>
<td>old/new r; old/new t</td>
<td>old/new t</td>
</tr>
</tbody>
</table>

AFTER Trigger

<table>
<thead>
<tr>
<th>Event</th>
<th>Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update</td>
<td>old/new r</td>
</tr>
<tr>
<td>Insert</td>
<td>new r</td>
</tr>
<tr>
<td>Delete</td>
<td>old r</td>
</tr>
</tbody>
</table>

BEFORE Trigger
Statement- vs. row-level triggers

• Simple row-level triggers are easier to implement
 • Statement-level triggers: require significant amount of state to be maintained in OLD TABLE and NEW TABLE

• Exercise 1: However, can you think of a case when a row-level trigger may be less efficient?

• Exercise 2: Certain triggers are only possible at statement level. Can you think of an example?
INSTEAD OF triggers for views

CREATE VIEW AveragePop(pop_avg) AS
 SELECT AVG(pop) FROM User;

CREATE TRIGGER AdjustAveragePop
INSTED OF UPDATE ON AveragePop
REFERENCING OLD ROW AS o,
 NEW ROW AS n
FOR EACH ROW
 UPDATE User
 SET pop = pop + (n.pop_avg - o.pop_avg);

• What does this trigger do?

UPDATE AveragePop SET pop_avg = 0.5;
Programming (Lecture 6)

• Pros and cons of SQL
 • Very high-level, possible to optimize
 • Not intended for general-purpose computation

• Solutions
 • Augment SQL with constructs from general-purpose programming languages
 • E.g.: SQL/PSM
 • Use SQL together with general-purpose programming languages: many possibilities
 • Through an API, e.g., Python psycopg2
 • Embedded SQL, e.g., in C
 • Automatic object-relational mapping, e.g.: Python SQLAlchemy
 • Extending programming languages with SQL-like constructs, e.g.: LINQ
Database Design

• Entity-Relationship (E/R) model (Lecture 7)

• Translating E/R to relational schema (Lecture 8)

• Relational design principles (Lectures 9-10)
E/R basics (Lecture 7)

- **Entity**: a “thing,” like an object
- **Entity set**: a collection of things of the same type, like a relation of tuples or a class of objects
 - Represented as a rectangle
- **Relationship**: an association among entities
- **Relationship set**: a set of relationships of the same type (among same entity sets)
 - Represented as a diamond
- **Attributes**: properties of entities or relationships, like attributes of tuples or objects
 - Represented as ovals
Summary of E/R concepts

• Entity sets
 • Keys
 • Weak entity sets

• Relationship sets
 • Attributes of relationships
 • Multiplicity
 • Roles
 • Supporting relationships (related to weak entity)
 • ISA relationships

• Other extensions:
 • Generalization
 • Structured attributes
 • Aggregation
Case study 3 (Exercise)

• A Registrar’s Database:
 • Zero or more sections of a course are offered each term. Courses have names and numbers. In each term, the sections of each course are numbered starting with 1.
 • Most course sections are taught on-site, but a few are taught at off-site locations.
 • Students have student numbers and names.
 • Each course section is taught by a professor. A professor may teach more than one section in a term, but if a professor teaches more than one section in a term, they are always sections of the same course. Some professors do not teach every term.
 • Up to 50 students may be registered for a course section. Sections with 5 or fewer students are cancelled.
 • A student receives a mark for each course in which they are enrolled. Each student has a cumulative grade point average (GPA) which is calculated from all course marks the student has received.
Case study 3 (Exercise)

• A Registrar’s Database:
 • Zero or more sections of a course are offered each term. Courses have names and numbers. In each term, the sections of each course are numbered starting with 1.
 • Most course sections are taught on-site, but a few are taught at off-site locations.
 • Students have student numbers and names.
 • Each course section is taught by a professor. A professor may teach more than one section in a term, but if a professor teaches more than one section in a term, they are always sections of the same course. Some professors do not teach every term.
 • Up to 50 students may be registered for a course section. Sections with 5 or fewer students are cancelled.
 • A student receives a mark for each course in which they are enrolled. Each student has a cumulative grade point average (GPA) which is calculated from all course marks the student has received.
Case study 3 (Exercise)

• A Registrar’s Database:
 • Zero or more sections of a course are offered each term. Courses have names and numbers. In each term, the sections of each course are numbered starting with 1.
 • Most course sections are taught on-site, but a few are taught at off-site locations.
 • Students have student numbers and names.
 • Each course section is taught by a professor. A professor may teach more than one section in a term, but if a professor teaches more than one section in a term, they are always sections of the same course. Some professors do not teach every term.
 • Up to 50 students may be registered for a course section. Sections with 5 or fewer students are cancelled.
 • A student receives a mark for each course in which they are enrolled. Each student has a cumulative grade point average (GPA) which is calculated from all course marks the student has received.
Case study 3 (Exercise) cont.
Zero or more sections of a course are offered each term. Courses have names and numbers. In each term, the sections of each course are numbered starting with 1.

Assume it is unique

Optional, but good to state

Assume (term, sectionNum) is unique given the courseNum

Question: can we place “term” as an attribute of Course?
Most course sections are taught on-site, but a few are taught at off-site locations.
Each course section is taught by a professor. A professor may teach more than one section in a term, but if a professor teaches more than one section in a term, they are always sections of the same course. Some professors do not teach every term.
Each course section is taught by a professor. A professor may teach more than one section in a term, but if a professor teaches more than one section in a term, they are always sections of the same course. Some professors do not teach every term.
Up to 50 students may be registered for a course section. Sections with 5 or fewer students are cancelled.
A student receives a mark for each course in which they are enrolled. Each student has a cumulative grade point average (GPA) which is calculated from all course marks the student has received.

Can “EnrolledIn” be a relationship set between Course and Student instead?

No, we may not be able to specify “(6, 50)”

We did not capture this requirement
A student receives a mark for each course in which they are enrolled. Each student has a cumulative grade point average (GPA) which is calculated from all course marks the student has received.
More examples (Exercise) (Lecture 8)

- ER Diagram

```
CourseNum  Course  CourseName
              (0, N)
    SectionOf
            (1, 1)
Term
(1, 1)
  TaughtBy
  Section
        (6, 50)
  Off-Site
  Section
Professor
        ProfName
           ProfNum
Student
        Location
           StudentNum
        GPA
            StudentName
EnrolledIn
    Mark
Relational Schema

?```

- Relational Schema

```
More examples

• ER Diagram
Design Theory (Lectures 9-10)

• Functional dependencies: provide clues towards elimination of (some) redundancies in a schema.
 • Closure of FDs (rules, e.g. Armstrong’s axioms)
 • Compute attribute closure (1 algorithm + 2 uses)

• Schema decomposition
 • 2 properties for good schema decomposition
 • Property 1: Lossless join decompositions
 • Property 2: Dependency preserving decompositions
 • Normal forms based on FDs
 • BCNF \rightarrow lossless join decompositions (1 algorithm)
 • 3^{rd} NF \rightarrow lossless join and dependency-preserving decompositions with more redundancy (2 algorithms)