
Gradle

10



Build Systems

11

Let’s talk about compiling source code. Compilation takes source files from 
different locations, compiles and links the output to create an executable. 


C Compilation Process



12

However, building software often requires more than just compiling and linking code. Before you 
compile anything, you might need to: 


• Download/import new versions of libraries (dependencies). 


• Copy resources (graphics files, sound clips, preference files) into a  
directory structure. 


• Run a code analysis tool against your source code to check for  
suspicious code, formatting etc. or run a documentation tool to generate revised 
documentation.  

After compiling, you will want to: 


• Test your code to make sure it works properly (e.g. multiple environments). 


• Create an installer that you can use to deploy everything.  

For clarity: compiling refers to just compiling and linking. Building refers to the complete set of steps.  



13

Performing these steps manually is error prone, and very time-consuming. The ideal 
system would be automated and have the following characteristics. 


1. The system would guarantee consistency in my builds. 


2. It would be expressive enough to let me script any task that I need to perform. 


3. It would integrate with other systems so that I could report results,  
or delegate responsibility (e.g. to remote test under a different OS). 


4. Tasks could be initiated in response to external events. 


• Import the newest version of a library when it’s published. 


• Rebuild and test when someone commits to the Test branch. 


5. Tasks could be scheduled. 


• Rebuild and test everything nightly at 2 AM, and email the manager with the git 
blame results of the person that broke the build. 



14

Systems that do these things are called build systems: software that is used to build other 
software. 


Build systems provide consistency in how software is built, and let you automate steps that 
are required to build, test and deploy software. 


They addresses issues like: 


• How do I make sure that all of my steps (above) are being handled properly? 


• How do I ensure that everyone is building software the same way i.e. compiling with the 
same options? 


• How do I ensure that tests are being run everytime someone builds?  



15

GNU Make
Make is one of the most widely used build systems, which allows you to script 
your builds (by creating a makefile to describe how to build your project). Using 
make, you can ensure that the same steps are taken every time your software is 
built. 


For small or relatively simple projects, make is a perfectly reasonable choice6. 
It’s easy to setup, and is pre-installed on many systems. 




16

Makefiles are language-independent, and we can use them to ensure consistency in how builds 
are performed. 


We aim for a system that will provide the same results every time we build our software.


  

 default: 
    kotlinc Mean.kt -include-runtime -d out.jar 

  run: 
    java -jar out.jar 

  test: 
    java -jar out.jar 10 20 
    java -jar out.jar 1 2 3 4 

  clean: 
    rm out.jar 



17

Limitations with Make
However, make has limitations and may not be the best choice for large or more complex projects. 


1. Build dependencies must be explicitly defined. Libraries must be present on the build machine, 
manually maintained, and explicitly defined in your makefile. 


2. Make is fragile and tied to the underlying environment of the build machine. 


• e.g. $LIB environment variables to track libraries on the filesystem


• It’s difficult to completely isolate make’s runtime behaviour from the underlying environment. 


3. Performance is poor. Make doesn’t scale well to large projects. 


4. Its language isn’t very expressive, and has a number of inconsistencies. 


5. It’s very difficult to fully automate and integrate with other systems. 


• What is we want to update a live dashboard with build results? Email people when the build fails? 


• Make is fine for compiling, but isn’t designed to handle any other steps.



18

Gradle
There are a number of build systems on the market that attempt to address these problems. 
They are often programming-language or toolchain dependent. 


• C++: CMake, Scons, Premake 


• Java: Ant, Maven, Gradle 


We’re going to use Gradle in this course. Why? 


• It’s commonly used for large, complex projects. 


• It handles all of our requirements (which is frankly, pretty impressive). 


• It’s the official build tool for Android builds, so you will need it for Android applications.  



19

Gradle is a build system designed for large-scale projects. It’s cross-platform 
and language agnostic. 


• Gradle is the engine that drives the build.


• Groovy is a DSL scripting language that Gradle has adopted. 


You write Gradle build scripts in a DSL (Groovy), describing tasks to perform. 
Gradle figures out how to perform them. 


Gradle handles dependency management, multi-step build tasks and manages 
complex dependencies automatically! 




20

Task graph for a typical Java build



21

Gradle can be executed from the command-line. It supports a large range of commands. e.g. 


• gradle help: shows available commands


• gradle init: create a new project and dir structure.


• gradle tasks: shows available tasks from build.gradle. 


• gradle build: build project into build/


• gradle run: run from build/ 


  

$ gradle help 
  > Task :help 
  Welcome to Gradle 6.4.1. 
  To run a build, run gradle <task> 

Gradle Commands



22

Gradle Projects
A Gradle project is simply a set of source files, resources and configuration files structured so that 
Gradle can build it. 


Gradle projects require a very specific directory structure. We could create this by hand, but for now 
let’s use Gradle to create a starting directory structure and build configuration file that we can modify. 


  $ gradle init 
  Select type of project to generate: 
    1: basic 
    2: application 
    3: library 
    4: Gradle plugin 
  Enter selection (default: basic) [1..4] 2 
  ... 



23

The starter project that we just created includes some basic code. Let’s use Gradle to 
build and run it. 


$ gradle build 
BUILD SUCCESSFUL in 8s  
8 actionable tasks: 8 executed 

$ gradle run 
> Task :run 
Hello world. 
BUILD SUCCESSFUL in 1s 
2 actionable tasks: 1 executed, 1 up-to-date  

Example: Hello Gradle

Runs the “build” task

Task output

Runs the “run” task

Program output

Gradle is very 
“chatty”. This is 

actually very useful 
when debugging 

build issues.



24

You can use gradle tasks to see all supported actions. The available tasks will vary based on the type of project you create. 


$ gradle tasks 

> Task :tasks 

------------------------------------------------------------ 
Tasks runnable from root project 
------------------------------------------------------------ 

Application tasks 
----------------- 
run - Runs this project as a JVM application 

Build tasks 
----------- 
assemble - Assembles the outputs of this project. 
build - Assembles and tests this project. 
buildDependents - Assembles and tests this project and all projects that depend on it. 
buildNeeded - Assembles and tests this project and all projects it depends on. 
classes - Assembles main classes. 
clean - Deletes the build directory. 
jar - Assembles a jar archive containing the main classes. 

. . . .

A “standard” Gradle 
project has about 30 

tasks. Many of them are 
called infrequently, or called 

by other tasks (e.g. build 
—> buildNeeded)



25

A standard Gradle project directory is structured like this: 


Gradle project structure



26

The build.gradle file contains our project configuration. 


plugins { 
     // Kotlin JVM plugin to add support for Kotlin.  
     id 'org.jetbrains.kotlin.jvm' version '1.3.72'  

     // Application plugin for CLI applications. 
     id 'application' 
} 

repositories { 
     // Use jcenter for resolving dependencies.  
     // You can declare any Maven repository here.  
     jcenter()  
}  

dependencies { 
    implementation platform('org.jetbrains.kotlin:kotlin-bom') 
    implementation 'org.jetbrains.kotlin:kotlin-stdlib-jdk8' 
    testImplementation 'org.jetbrains.kotlin:kotlin-test' 
    testImplementation 'org.jetbrains.kotlin:kotlin-test-junit' 
} 
application { 
    mainClassName = 'gradle.AppKt' 
}

build.gradle file

Support for Kotlin language/builds

Adds ‘application’ tasks e.g. run

Libraries required for above

Settings for ‘application’ plugin e.g. main class



27

Benefits of Gradle
The build.gradle file contains information about your project, including the versions of all 
external libraries that you require. In this project file, you define how your project should be built: 


• You define the versions of each tool that Gradle will use e.g. compiler version. This ensures 
that your toolchain is consistent.  

• You define versions of each dependency e.g. library that your build requires. During the 
build, Gradle downloads and caches those libraries. This ensures that your dependencies 
remain consistent. 


• Finally, Gradle has a wrapper around itself. You define the version of the build tools that you 
want to use, and when you run Gradle commands using the wrapper script, it will download 
and use the correct version of Gradle to actually create the builds. This ensures that your 
build tools are consistent. 



28

Example: Calc.kt
package calc 

fun main(args: Array<String>) { 
    try { 
        println(Calc().calculate(args)) 
    } catch (e: Exception ) { 
        print("Usage: number [+|-|*|/] number") 
    } 
} 

class Calc() { 
    fun calculate(args:Array<String>):Any {    

        if (args.size != 3) throw Exception("Invalid number of arguments") 
         
        val op1:String = args.get(0) 
        val operation:String = args.get(1) 
        val op2:String = args.get(2) 

        return( 
            when(operation) { 
                "+" -> op1.toInt() + op2.toInt() 
                "-" -> op1.toInt() - op2.toInt() 
                "*" -> op1.toInt() * op2.toInt() 
                "/" -> op1.toInt() / op2.toInt() 
                else -> "Unknown operator" 
            }             
        ) 
    } 
}



29

Example: Calc.kt build
Let’s migrate this code into a Gradle project.


1. Use Gradle to create the directory structure. Select “application” as the project type, and “Kotlin” as the language. 


$ gradle init 

Select type of project to generate: 
  1: basic 
  2: application 

2. Copy the calc.kt file into src/main, and modify the build.gradle file to point to that source file. 


application { 
     // Main class for the application.  
     mainClassName = 'calc.CalcKt'  
}  

3. Use gradle to make sure that it builds. 

$ gradle build  

BUILD SUCCESSFUL in 975ms 

Kotlin generates a 
wrapper class for our 
main method, since 
the JVM expects a 

class.
…



30

4. If you use gradle run, you will see some unhelpful output: 


$ gradle run  
> Task :run 
Usage: number [+|-|*|/] number 

We need to pass arguments to the executable, which we can do with --args. 


$ gradle run --args="2 + 3" 
> Task :run 
5 


