JavaFX

The GUI Stack
JavaFX

May 17

The GUI Stack

GUI Stack Components

OS Kernel: hardware access,
device management, see CS350

Layers “above” the OS Kernel are
responsible for handling

- Window management
- User-interaction (input/output)
- Executing applications

Application

UI Toolkit
Desktop Environment

Window Manager
Windowing System

0S Kernel

Window Manager (WM)

A WM provides the following
functionality:

- Communication with the OS for
creating, destroying, and
managing application windows.
This includes tiling windows,
overlapping windows, etc.

« Routing of (user and system) input
to the correct window. Typically,
the window that “has focus”
receives input.

A WM shields the application from
the frame buffer and graphics
drivers, its own location and
visibility, and any other
application window.

Application

UI Toolkit
Desktop Environment

Window Manager
Windowing System

0S Kernel

Window Manager — Canvas Abstraction

Each window contains a “canvas”
or drawing area for the

application

Each window is independent and P T e

has no knOW|edge Of Other ;ergai': vylewlncII::I:inlier:—yv Share with ¥ New folder

windows. o

Each window has its own o

coordinate system: .

« The WM transforms between _

global (screen) and local (window) T VRt
coordinates i

11 items

« An application does not worry
where it is on screen; it assumes
its top-left coordinate is (0,0)

Window Manager — Window components

While the windows manager
“owns” the application window,
the application "owns” the
content of the application
window.

Window Manager - Additional Functionality

A window manager also provides:

« Facilities to modify size and M RSo0n: an = ML FSRSS
location of each window ' '
(resize handle, move handle,
etc.) | =

@Qv‘ » Computer » Local Disk (C:) » Users » virtual » - ‘l,H Search virtua

File Edit View Tools Help

® W i n d OW - re I ated i nte ra Ct i Ve Organize v Include in library v Share with v New folder i:: >+ [‘e,
components (close button, e eed =

& Downloads

o no
=g
>
]

L] L] L]
minimize button, etc Membies W R
File folder File folde
’ . \ 4
9 Libraries
= S Links T = My Documen ts
B)iDocuments d File folder £ Filefold
J Music
=] Pictures h My Music My Pictures
B Videos 4’} File folder File fold
+& Homegroup My Videos Saved Gam
E File folder File fold
1% Computer

j(Searches

& Z
& Local Disk (C:) / Filefolder

¥# CD Drive (D:) Virtual
G Transfer (\\VBoxSvr)

@il Network

| 11 items
— '

Window Manager - Architectures

Examples of Window Manager
architectures:

- X11, Wayland (Linux)
* Quartz (macQOS)

* Desktop Window Manager
(Windows)

Application

UI Toolkit
Desktop Environment

Window Manager
Windowing System

0S Kernel

libwayland-client (@

libwayland-server .

'Libwayland-EGL .IibEGL-mesa-driverS

Weston, Mutter, KWin, Clayland, EGL

Enlightenment, ...

OpenGL|ES
OpenVG

Graphics device drivers

1ibDRM

Kernel

USB, PS/2, ...

CPU & main memory
GPU & graphic memory

Window Manager - Examples

Examples of Window Managers:

« Windows 1.0
1985
« Tiling
Integrated
« Window Maker
1997
Stacking

- X11 as Windowing System; e.q.,
GNUstep as Desktop Environment

Mutter
2011
Compositing

« Wayland as Windowing System;
e.g., GNOME as Desktop
Environment

Gane

Skill

Write - RERDME.DOC
' File Edit Search
Character Paragraph
Document

Copyright © 1985, Microsoft Corp.

nformalion shoul +
findows. Also co
Acdendum enc

Microsoft Vindows
HS-D0S Executive

Uersion 1.0

@ 'his may be ore1
pnfiguration as A

" hure change the
Disk Space Free: 3J0@25K Mon of the WiN |
Memory Free: 303K

CONTROL.EXE
COURA.FON
COURB.FON
COURC.FON

pooler=no will g
e = Ty

EGANOND . GRB f
EGAMOND.LGO 16ME

RUNNING BATCH [BAT) FILE
r\c % ron & standard ocnl cati

EMM.AT
EMN.PC KER

. ru uanaq

o 5
uum ader idown

@ you el
Tor minalfm lato

: ﬂ Use the command ine

(WQBB

\J Browse the w

Application Finder
% Fnd and launch appic

Archive Manager
and modéy a

Ul Toolkits

: - . Applicati
Window Managers include only basic pplication
capabilities for input, output, and UI Toolkit
window management. Desktop Environment

Window Manager
Windowing System

For implementing the actual content of a

0S Kernel
Ul, we need a Ul Toolkit — a set of

classes for building User Interfaces.

Low-level (or native or heavyweight) toolkits:

Built into or tightly integrated with the underlying OS.
Examples: Win32 on Windows, Xlib on Unix, Cocoa on Mac
Often provided by OS vendor.

High-level (or lightweight) toolkits:

Sit “above” the operating system, with no tight integration.
Examples: Qt, Gtk+, wxWidgets, Swing, and JavaFX
Often provided by a third-party.

Toolkit Features: 1/0

Toolkits provide class

¥ Node 2

abstractions for 10 devices. —

‘ Hyperlink

Graphic Button

« Keyboard g

rizontal List View

« Mouse (or pointing device)
- Cameras, sensors, etc.

O UtpUt Graphic
« User interface widgets

- Graphics primitives, e.g., shapes
and images

« Animation
« Media

Toolkit Features: Desktop Functionality
Other “standard” desktop features are provided by toolkits.

Standard menu bars

- File: New, Open, Close, Print, Quit.
- Edit: Cut, Copy, Paste.

« Window: Minimize, Maximize.

* Help: About.

- Keyboard shortcuts

« Ctrl-N for File-New, Ctrl-O for File-Open, Ctrl-Q for Quit.
« Ctrl-X for Cut, Ctrl-C for Copy, Ctrl-V for Paste.

« F1 for Help.

12

Toolkit Style 1: Imperative

Code is used to manually
construct the view.
Instantiate classes and set
fields/properties.

Virtually every programming
environment offers some
ability to do this (e.qg.
Java/Swing, C++/Qt,
Python, Javascript/HTML).

Benefits

~ o
— pythonw E]@

1 import sys TE

2 from PyQt4.QtCore import *

3 from PyQt4.QtGui import *

4 from PyQt4.Qsci import QsciScintilla, QscilexerPython

=

(3

7 class SimplePythonEditor(QsciScintilla):

8 ARROW_MARKER NUM = 8

9

10 def init (self, parent=None): B

11 ’» super (SimplePythonEditor, self). init (parent)

12

i3 # Set the default font

14 font = QFont()

15 font.setFamily('Courierxr’')

16 font.setFixedPitch(True)

17 font.setPointSize (10)

is8 self.setFont (font)

19 self.setMarginsFont (font)

20

21 # Margin 0 is used for line numbers

22 ’» fontmetrics = QFontMetrics (font)

23 self.setMarginsFont (font)

24 self.setMarginWidth (0, fontmetrics.width("00000") + &)

25 self.setMarginLineNumbers (0, True)

26 gelf.setMarginsBackgroundColor (QColoxr ("#ccccecc™))

Python w. Qt toolkit

* You have complete control over how objects are created and managed.

Drawbacks

* Requires programming knowledge to create or change.

* It’s can be tedious to build a complex Ul in this fashion!

13

Toolkit Style 2: Declarative

The layout is described in some
other format. Graphical
elements are associated with
code (somehow).

Format may be binary or
human-readable (XML, JSON).

Android is an example of this:
you describe a Ul in XML,
which is then loaded
dynamically at runtime. Code is
written in Java or Kotlin.

Benefits

* Non-programmers can build the Ul.

Drawbacks

Palette

Common
Text
Buttons
Widgets
Layouts
Containers
Google

Legacy

Component Tree

“\, ConstraintLay

Ab Text

B4 toolbar

Ab TextView
@B Button
Mima

o«

S [J Nexus 4
[N Jx | L

8dp I

i=Rec <IlextView

<> <fre
B Scre
=® Swi'

View

android:id="@+id/name_title"
android: layout_width="wrap_content"
android: layout_height="wrap_content"

android: layout_alignBaseline="@+id/name"

android: layout_alignBottom="@+id/name"
android: layout_toLeftOf="@+id/name"
android: layout_toStartOf="@+id/name"
android: layout_marginRight="10dp"
android: layout_marginEnd="10dp"
android:gravity="end"
android:text="@string/name"
tools:ignore="RelativeOverlap"/>

<EditText

android: id="@+id/name"

android: layout_width="wrap_content"
android: layout_height="wrap_content"
android: layout_alignParentTop="true"
android: layout_centerHorizontal="true"
android: layout_marginTop="30dp"
android:inputType="textPersonName"
android: text="">

<requestFocus/>

</EditText>

Android GUI builder and Layout

« May require proprietary tools to generate or modify to the Ul.

« Binary formats cannot be ‘diff’d.

28 (© AppTher

14

>
L1
)
>
L")
—

History of Java FX

AWT
é_i) Java

e
—

Java 1.0 (1996)
Cross-platform

Java wrappers for native
widgets

In practice, underlying
platform differences
meant that they looked
and behaved differently
across platforms

Support imperative
programming

“heavyweight” toolkit

(Swing
= Javar

Java 1.1 (1998)
Cross-platform

Java implementations of
core widgets

Often lower than native
widgets, and missing
modern features like
animations, shading
and so on.

Support imperative
programming

“lightweight” toolkit

€

=’ JavaFfx

Java 6 (2007)
Cross-platform

Java implementation of
full framework + widgets

Competitor w. Adobe
Flash; designed for “rich
multimedia apps”

A “better Swing” with 3D,
graphs, more controls.

Imperative + declarative
with GUI builder

“Lightweight” toolkit

Create a JavaFX Project

When creating a project:

Option 1: Empty Project
- Blank project.

« You can always add JavaFX
dependencies by-hand.

Option 2: JavaFX

- Will create a populated
project for you (declarative).

« May need to remove unused
classes and change
structure.

New Project

New Project

Empty Project

Maven Archetype
Kotlin Multiplatform

VU Compose Multiplatform
IDE Plugin

Android

Artifact:

JDK:

HalloFX

temurin-17

17

Option 1: Add JavaFX to an Existing/Empty Project

You will need to add the javafx dependencies to the project’s
build.gradle file, Gradle will download and import the libraries
automatically.

plugins {

application
kotlin("jvm") version "1.8.20" .
id("org.openjfx.javafxplugin") version "0.0.14"

application {
mainClass.set("Main")

javafx {
version = "18.0.2" _ _
modules("javafx.controls", "javafx.graphics")

18

Option 2: JavaFX Wizard

This will generate some starter code and resources, which you may
need to modify, but the build configuration doesn’t need changes.

Project (7 build.gradle (fxml) hello-view.fxml (@ HelloController.kt [HelloApplication.kt
v [foml ~/Downloads/fxml 1 I)ackage com.example.fxml
> .gradle -
> [J.idea import ...
> [gradle
o class HelloApplication : Application() {
v src
) of override fun start(stage: Stage) {
v Cg main val fxmlLoader = FXMLLoader(HelloApplication::class.java.getResource(name: "hello-vi
> Djava val scene = Scene(fxmlLoader.load(), width: 320.0, height: 240.0)
v [kotlin

stage.title = "Hello!"

stage.scene = scene
[< HelloApplication.kt stage.show()

(G HelloController }

v [¢J com.example.fxml

v [Zresources }

v [J com.example.fxml

</> hello-view.fxml > fun main() {
@ gitignore Application.launch(HelloApplication::class.java)
&7 build.gradle ¥
gradlew
= gradlew.bat

&7 settings.gradle
> [{h External Libraries

FXML is

declarative...

19

Hello JavaFX

package ul.lectures.hellofx

import ...

B Hello CS349!

Hello CS349!

class HelloApplication : Application() A{

override fun start(stage: Stage) {

val root = Pane()

val scene = Scene(root, 320.00, 240.00)

stage.scene = scene

stage.title = "Hello CS349!"

stage.isResizable =
stage.show()

false

B Hello CS349! - O X

Hello JavaFX

Hello CS349!

package ul.lectures.hellofx

import ...

class HelloApplication : Application() {
override fun start(stage: Stage) {
stage.apply {

title = "Hello CS349!"
scene = Scene(StackPane(Label("Hello CS349!")),
300.0, 240.0)
}.show()

}

This implementation has a different style:
* The StackPane and the Label remain anonymous.
- We use apply to setup the stage in a single block.

21

Application Lifecycle

JavaFX applications extend the Application class, which is the core
class in JavaFX.

The JavaFX runtime does the following when an application is
launched:

- Creates an instance of the specified Application class
- Calls the instance’s init() method
 Calls its start() method
Most time is

- Waits for the application to finish, when either > spent here,

+ the application calls P1latform.exit() V{;”,‘:ESS Igr

+ the last application window has been closed. happen

« Calls its stop() method.

The start() method is abstract and must be overridden.

The init () and stop() methods are optional but may be overridden.

22

Application Lifecycle

import javafx.stage.Stage

class Stages : Application() {

override fun init() {
super.init()
printin("init")

override fun start(stage: Stage) {
println("start")

override fun stop() {
super.stop()
println("stop")

Methods are invoked in
this order.

. main()
. init()
. start()
. stop()

DNW DN

Note that all of these are
abstract base class
methods and have default
implementations.

Start() is the only required
method

23

Scene Graph

Scene

In computer graphics, a scene graph is a tree

structure that arranges all the elements of a
screen into a hierarchy.

@ AutoSave '(. Off)' pptCCO6.pptm - AutoRecovered = Saved to this PC pe) Adrian Reetz e & - (] X
File Home Insert Draw Design Transitions Animations Slide Show Record Review View Help Shape Format ® =
Helvetica Neue Medium ~ 32 v = = = RS ﬁ/:'
2 & . B QO 8 £
¢ Paste @~ Slides B I US &~ P 3 Drawing Editing Dictate = Designer
- g v 2 A~ pay AA A §|§\§ = - v v v
Undo Clipboard ~ Font N Paragraph ~ Voice Designer v
12 10] 3] 4 2 0 2 4 [;] 10 12 =
1
© e oo Ll
2 & (?,
(o 0 o
L I [
1= ()0 O i
L L Y S
O O O
o C e e e e e e s e e e e s e e e e s e e s e e e e e e e
v
= s
¥

Slide1of2 [} English (Canada) ﬁ)’(Accessibility: Investigate

Undo
Button

Redo
Button

Undo
Label

— Menu bar
. Undo
Group
| | Clipboard
Group
] Slides
Group
|| Presentation
Object
L Slide
Object
—| Status bar

24

Scene Graph

In computer graphics, a scene graph is a
tree structure that arranges all the elements
of a screen into a hierarchy:

- Manages dependencies between objects on
the screen

- Makes drawing, event dispatch, and other
operations more efficient

JavaFX stores an interface as a scene
graph.

- Stage is the main window

- Scene is the content of the application,

which includes the scene-graph containing
the Ul

« Everything in a scene is a Node, ordered in a
tree-like hierarchy

| Stage

Scene Scene Graph
Root Node

//\

Branch Node Leaf Node

o e

Leaf Node Leaf Node

25

Stage -

javafx.stage.Stage

Stage is the top-level container, representing the entire application

window.

It is automatically created by the platform. Use properties to

set or change behavior of the window.

override fun start(stage: Stage) {

val

val
val
val

greeting = Label("Hello CS349 :-)")

vendor = Label(System.getProperty("java.vendor"))
version = Label(System.getProperty("java.version"))
javaInfo = HBox(vendor, version).apply {

alignment = Pos.CENTER

} 57 Hello CS349! — O X
val root = VBox(greeting, javalnfo).apply

alignment = Pos.CENTER
}

Hello CS349:-)

Stage . app Ly { Eclipse Adoptium 17.0.5

scene = Scene(root, 300.0, 200.0)

title = "Hello CS349!"
}.show()

26

Scene - javafx.scene.Scene

Scene is the container for the content. It must specify the root node for

the scene graph.

override fun start(stage: Stage) {

val

val
val
val

}

val

}

greeting = Label("Hello CS349 :-)")

vendor = Label(System.getProperty("java.vendor"))
version = Label(System.getProperty("java.version"))
javaInfo = HBox(vendor, version).apply {

alignment = Pos.CENTER

root = VBox(greeting, javalnfo).apply
alignment = Pos.CENTER

stage.apply {

scene = Scene(root, 300.0, 200.0)

title = "Hello CS349!"

}.show()

@7 Hello CS349! -

Hello CS349:-)
Eclipse Adoptium 17.0.5

27

Nodes - javafx.scene.Node

Nodes are either the displayable objects or layouts for structuring
displayable objects.

override fun start(stage: Stage) {
val greeting = Label("Hello CS349 :-)")

val vendor = Label(System.getProperty("java.vendor"))
val version = Label(System.getProperty("java.version"))
val javalInfo = HBox(vendor, version)lapply {

alignment = Pos.CENTER

}

[Hello CS349! — O

val root = VBox(greeting, javalnfo)lapply L4 e |
alignment = Pos.CENTER

greeting |

}

javaInfo

vendor |

stage.apply {
scene = Scene(root, 300.0, 200.0)
title = "Hello CS349!"

}.show()

version |

Nodes - javafx.scene.Node

Root Node

- If a Group is used as the root, the contents of the scene graph will be
clipped by the scene's width and height.

- If a resizable node (layout Region or Control is set as the root, then the
root's size will track the scene's size, causing the contents to be resized as
necessary.

Internal Nodes

- Layouts, such as: Group; (Region); Pane: GridPane , StackPane, VBox, etc.

Leaf Nodes

- Controls (“Widgets”), such as: Button, Choicebox, Label, Slider,
Spinner, etc.

- Shapes, such as: Circle, Line, Polygon, Rectangle, Text, etc.

29

What can we draw on a Scene?

In this course, we will focus on the following:

Layouts (javafx.scene.layout subclasses)
e HBoXx, VBox, Pane, FlowPane, GridPane, StackPane, TilePane, etc.

Controls (“Widgets”) (javatx.scene.control subclasses)

 Accordion, ButtonBar, ChoiceBox, ComboBoxBase, HTMLEditor, Labeled,
ListView, MenuBar, Pagination, Progressindicator, ScrollBar, ScrollPane,
Separator, Slider, Spinner, SplitPane, TableView, TabPane,
TextlnputControl, ToolBar, TreeTableView, TreeView

Graphics Primitives (javafx.scene.shape subclasses)

- Arc, Circle, CubicCurve, Ellipse, Line, Path, Polygon, Polyline, QuadCurve,
Rectangle, SVGPath, and Text

In upcoming lectures, we will talk about each of these in greater detail.

30

End of the Chapter

* The elements of the Ul stack.
- Scene Graph, Scene Graph, Scene Graph!

Any further questions?

31

