
JavaFX
The GUI Stack
JavaFX

May 17

The GUI Stack

GUI Stack Components
OS Kernel: hardware access,
device management, see CS350

Layers “above” the OS Kernel are
responsible for handling
- Window management
- User-interaction (input/output)
- Executing applications

3

Window Manager (WM)
A WM provides the following
functionality:
• Communication with the OS for

creating, destroying, and
managing application windows.
This includes tiling windows,
overlapping windows, etc.

• Routing of (user and system) input
to the correct window. Typically,
the window that “has focus”
receives input.

A WM shields the application from
the frame buffer and graphics
drivers, its own location and
visibility, and any other
application window.

4

Window Manager – Canvas Abstraction
Each window contains a “canvas”
or drawing area for the
application

Each window is independent and
has no knowledge of other
windows.

Each window has its own
coordinate system:
• The WM transforms between

global (screen) and local (window)
coordinates

• An application does not worry
where it is on screen; it assumes
its top-left coordinate is (0,0)

5

Window Manager – Window components
While the windows manager
“owns” the application window,
the application ”owns” the
content of the application
window.

6

Window Manager – Additional Functionality
A window manager also provides:
• Facilities to modify size and

location of each window
(resize handle, move handle,
etc.)

• Window-related interactive
components (close button,
minimize button, etc.)

7

Window Manager – Architectures
Examples of Window Manager
architectures:
• X11, Wayland (Linux)
• Quartz (macOS)
• Desktop Window Manager

(Windows)

8

Window Manager – Examples
Examples of Window Managers:
• Windows 1.0
• 1985
• Tiling
• Integrated

• Window Maker
• 1997
• Stacking
• X11 as Windowing System; e.g.,

GNUstep as Desktop Environment
• Mutter
• 2011
• Compositing
• Wayland as Windowing System;

e.g., GNOME as Desktop
Environment

9

UI Toolkits
Window Managers include only basic
capabilities for input, output, and
window management.

For implementing the actual content of a
UI, we need a UI Toolkit – a set of
classes for building User Interfaces.

10

Low-level (or native or heavyweight) toolkits:
Built into or tightly integrated with the underlying OS.
Examples: Win32 on Windows, Xlib on Unix, Cocoa on Mac
Often provided by OS vendor.

High-level (or lightweight) toolkits:
Sit “above” the operating system, with no tight integration.
Examples: Qt, Gtk+, wxWidgets, Swing, and JavaFX
Often provided by a third-party.

Toolkit Features: I/O
Toolkits provide class
abstractions for IO devices.

Input
• Keyboard
• Mouse (or pointing device)
• Cameras, sensors, etc.

Output
• User interface widgets
• Graphics primitives, e.g., shapes

and images
• Animation
• Media

11

Toolkit Features: Desktop Functionality

12

Other “standard” desktop features are provided by toolkits.

Standard menu bars
• File: New, Open, Close, Print, Quit.
• Edit: Cut, Copy, Paste.
• Window: Minimize, Maximize.
• Help: About.

• Keyboard shortcuts
• Ctrl-N for File-New, Ctrl-O for File-Open, Ctrl-Q for Quit.
• Ctrl-X for Cut, Ctrl-C for Copy, Ctrl-V for Paste.
• F1 for Help.

Toolkit Style 1: Imperative

13

Benefits
• You have complete control over how objects are created and managed.

Drawbacks
• Requires programming knowledge to create or change.
• It’s can be tedious to build a complex UI in this fashion!

Code is used to manually
construct the view.
Instantiate classes and set
fields/properties.

Virtually every programming
environment offers some
ability to do this (e.g.
Java/Swing, C++/Qt,
Python, Javascript/HTML).

Python w. Qt toolkit

Toolkit Style 2: Declarative

14

The layout is described in some
other format. Graphical
elements are associated with
code (somehow).
Format may be binary or
human-readable (XML, JSON).
Android is an example of this:
you describe a UI in XML,
which is then loaded
dynamically at runtime. Code is
written in Java or Kotlin.

Benefits
• Non-programmers can build the UI.

Drawbacks
• May require proprietary tools to generate or modify to the UI.
• Binary formats cannot be ‘diff’d.

Android GUI builder and Layout

JavaFX

History of Java FX

16

• Java 1.0 (1996)
• Cross-platform
• Java wrappers for native

widgets
• In practice, underlying

platform differences
meant that they looked
and behaved differently
across platforms

• Support imperative
programming

• “heavyweight” toolkit

§ Java 1.1 (1998)

§ Cross-platform

§ Java implementations of
core widgets

§ Often lower than native
widgets, and missing
modern features like
animations, shading
and so on.

§ Support imperative
programming

§ “lightweight” toolkit

§ Java 6 (2007)

§ Cross-platform

§ Java implementation of
full framework + widgets

§ Competitor w. Adobe
Flash; designed for “rich
multimedia apps”

§ A “better Swing” with 3D,
graphs, more controls.

§ Imperative + declarative
with GUI builder

§ “Lightweight” toolkit

Swing

Create a JavaFX Project
When creating a project:

Option 1: Empty Project
• Blank project.
• You can always add JavaFX

dependencies by-hand.

Option 2: JavaFX
• Will create a populated

project for you (declarative).
• May need to remove unused

classes and change
structure.

17

Option 1: Add JavaFX to an Existing/Empty Project

18

You will need to add the javafx dependencies to the project’s
build.gradle file, Gradle will download and import the libraries
automatically.

plugins {
application
kotlin("jvm") version "1.8.20"
id("org.openjfx.javafxplugin") version "0.0.14"

}

application {
mainClass.set("Main")

}

javafx {
version = "18.0.2"
modules("javafx.controls", "javafx.graphics")

}

Option 2: JavaFX Wizard

19

This will generate some starter code and resources, which you may
need to modify, but the build configuration doesn’t need changes.

FXML is
declarative…

Hello JavaFX

package ui.lectures.hellofx

import ...

class HelloApplication : Application() {
override fun start(stage: Stage) {

val root = Pane()
val scene = Scene(root, 320.00, 240.00)

stage.scene = scene
stage.title = "Hello CS349!"
stage.isResizable = false
stage.show()

}

20

Hello JavaFX

package ui.lectures.hellofx

import ...

class HelloApplication : Application() {
override fun start(stage: Stage) {

stage.apply {
title = "Hello CS349!"
scene = Scene(StackPane(Label("Hello CS349!")),

300.0, 240.0)
}.show()

}
}

This implementation has a different style:
• The StackPane and the Label remain anonymous.
• We use `apply` to setup the stage in a single block.

21

Application Lifecycle
JavaFX applications extend the Application class, which is the core
class in JavaFX.

The JavaFX runtime does the following when an application is
launched:
• Creates an instance of the specified Application class
• Calls the instance’s init() method
• Calls its start() method
• Waits for the application to finish, when either
• the application calls Platform.exit()
• the last application window has been closed.

• Calls its stop() method.

The start() method is abstract and must be overridden.
The init() and stop() methods are optional but may be overridden.

22

Application Lifecycle

23

Methods are invoked in
this order.

1. main()
2. init()
3. start()
4. stop()

Note that all of these are
abstract base class
methods and have default
implementations.

Start() is the only required
method

Scene Graph
In computer graphics, a scene graph is a tree
structure that arranges all the elements of a
screen into a hierarchy.

24

Scene Graph
In computer graphics, a scene graph is a
tree structure that arranges all the elements
of a screen into a hierarchy:
• Manages dependencies between objects on

the screen
• Makes drawing, event dispatch, and other

operations more efficient

JavaFX stores an interface as a scene
graph.
• Stage is the main window
• Scene is the content of the application,

which includes the scene-graph containing
the UI

• Everything in a scene is a Node, ordered in a
tree-like hierarchy

25

Stage – javafx.stage.Stage
Stage is the top-level container, representing the entire application
window. It is automatically created by the platform. Use properties to
set or change behavior of the window.

override fun start(stage: Stage) {
val greeting = Label("Hello CS349 :-)")

val vendor = Label(System.getProperty("java.vendor"))
val version = Label(System.getProperty("java.version"))
val javaInfo = HBox(vendor, version).apply {

alignment = Pos.CENTER
}

val root = VBox(greeting, javaInfo).apply {
alignment = Pos.CENTER

}

stage.apply {
scene = Scene(root, 300.0, 200.0)
title = "Hello CS349!"

}.show()
} 26

Scene – javafx.scene.Scene
Scene is the container for the content. It must specify the root node for
the scene graph.

override fun start(stage: Stage) {
val greeting = Label("Hello CS349 :-)")

val vendor = Label(System.getProperty("java.vendor"))
val version = Label(System.getProperty("java.version"))
val javaInfo = HBox(vendor, version).apply {

alignment = Pos.CENTER
}

val root = VBox(greeting, javaInfo).apply {
alignment = Pos.CENTER

}

stage.apply {
scene = Scene(root, 300.0, 200.0)
title = "Hello CS349!"

}.show()
} 27

Nodes – javafx.scene.Node
Nodes are either the displayable objects or layouts for structuring
displayable objects.

override fun start(stage: Stage) {
val greeting = Label("Hello CS349 :-)")

val vendor = Label(System.getProperty("java.vendor"))
val version = Label(System.getProperty("java.version"))
val javaInfo = HBox(vendor, version).apply {

alignment = Pos.CENTER
}

val root = VBox(greeting, javaInfo).apply {
alignment = Pos.CENTER

}

stage.apply {
scene = Scene(root, 300.0, 200.0)
title = "Hello CS349!"

}.show()
} 28

Nodes – javafx.scene.Node
Root Node
• If a Group is used as the root, the contents of the scene graph will be

clipped by the scene's width and height.
• If a resizable node (layout Region or Control is set as the root, then the

root's size will track the scene's size, causing the contents to be resized as
necessary.

Internal Nodes
• Layouts, such as: Group; (Region); Pane: GridPane , StackPane, VBox, etc.

Leaf Nodes
• Controls (“Widgets”), such as: Button, Choicebox, Label, Slider,
Spinner, etc.

• Shapes, such as: Circle, Line, Polygon, Rectangle, Text, etc.

29

What can we draw on a Scene?
In this course, we will focus on the following:

Layouts (javafx.scene.layout subclasses)
• HBox, VBox, Pane, FlowPane, GridPane, StackPane, TilePane, etc.

Controls (“Widgets”) (javafx.scene.control subclasses)
• Accordion, ButtonBar, ChoiceBox, ComboBoxBase, HTMLEditor, Labeled,

ListView, MenuBar, Pagination, ProgressIndicator, ScrollBar, ScrollPane,
Separator, Slider, Spinner, SplitPane, TableView, TabPane,
TextInputControl, ToolBar, TreeTableView, TreeView

Graphics Primitives (javafx.scene.shape subclasses)
• Arc, Circle, CubicCurve, Ellipse, Line, Path, Polygon, Polyline, QuadCurve,

Rectangle, SVGPath, and Text

In upcoming lectures, we will talk about each of these in greater detail.
30

End of the Chapter

• The elements of the UI stack.
• Scene Graph, Scene Graph, Scene Graph!

31

Any further questions?

