
Layouts
Types of Layouts
Layouts in JavaFX
Designing UI Components using Layouts

May 24

Types of Layouts

Dynamic Layout
Applications need to be able to adjust the presentation of our
interfaces.
We need to dynamically reposition and resize our content in response
to:
• Change in screen resolution (e.g., different computers or devices).
• Resizing the application window (e.g., user adjustments).

3

Strategies for Dynamic Layout
There are two main strategies for handling dynamic layout:
• Responsive: support a universal design that reflows a spatial layout to fit

the dimensions of the current view (i.e. device or window).
• Adaptive: design optimized spatial layouts for each of your devices, and

dynamically switch to fit the device that is in use.

4

Responsive Layout
We are going to focus on responsive layout: adapting to changes
dynamically.

To dynamically adjust content to a window, we want to:
• maximize use of available space for displaying widgets,
• while maintaining consistency with spatial layout, and
• preserving the visual quality of spatial layout

This requires that our application can dynamically adjust elements:
• re-allocate space for widgets
• adjust location and size of widgets
• perhaps change visibility, look, and / or feel of widgets

5

The Role of Container Nodes
Container nodes describe how their children should be placed.

These containers may have different strategies for handling layout. For
example, Group lets the designer position children directly, while
StackPane tries to re-position its children in the centre of the screen.

The designer’s role is to determine which containers (layouts) to
combine to get the desired effect. Often it takes multiple containers,
sometimes nested together, to achieve this.

Nodes have properties that control their position, size and other
characteristics. The container will set the size and location of its
children according to its internal rules, to size and position content
appropriately.

6

Layouts in JavaFX

JavaFX Container Classes

8

Layout Group

Layout Strategies
The approaches that containers use can be grouped into one of these
styles:

• Fixed Layout: non-resizable
• Variable Intrinsic Layout: adjusting widget size and position
• Relative Layout: positioning components relative to one another
• Custom Layout: define your own!

9

Fixed Layouts
The layout does not move or resize nodes by itself. You need to
manually specify location and position of all nodes within the layout.

This is most suitable for cases when you have a fixed-size window.

Containers that support fixed layout:
• Group
• Pane

10

Container – Group
A Group contains children that are rendered in order whenever this
node is rendered. The Group will take on the collective bounds of its
children and is not directly resizable.

Any transform, effect, or state applied to a Group will be applied to all
children of that group.

11

Container – Group
override fun start(stage: Stage) {
 val bt1 = Button("I am a button!").apply {
 minWidth = 300.0
 rotate = 45.0
 }
 val bt2 = Button("I am a button, too!").apply {
 minWidth = 300.0
 translateX = 349.0
 translateY = 42.0
 }
 val root = Group(bt1, bt2).apply { rotate = -10.0 }

 stage.apply {
 title = "Hello, CS349!"
 scene = Scene(root , 800.0, 100.0).apply { fill = Color.PINK }
 }.show()
}

12

Container – Pane
A Pane can be used directly in cases where absolute positioning of
children is required, since it does not perform layout beyond resizing
children to their preferred sizes.

It becomes the application's responsibility to position the children
since the pane leaves the positions alone during layout.

Unlike a Group, a Pane has its own width and height and can be styled
independently of its children.

13

Container – Pane
override fun start(stage: Stage) {
 val bt1 = Button("I am a button!").apply {
 minWidth = 300.0
 rotate = 45.0
 }
 val bt2 = Button("I am a button, too!").apply {
 minWidth = 300.0
 translateX = 349.0
 translateY = 42.0
 }
 val root = Pane(bt1, bt2).apply { rotate = -10.0 }

 stage.apply {
 title = "Hello, CS349!"
 scene = Scene(root , 800.0, 100.0).apply { fill = Color.PINK }
 }.show()
}

14

Variable Intrinsic Layouts
This layout algorithm attempts to use the widget’s preferred sizes. It
recursively queries all widgets and then allocates space to them as a
group.

Layout is determined in two-passes (bottom-up, top-down):
1. Get each child widget’s preferred size (includes recursively asking all of its

children for their preferred size…)
2. Decide on a layout that satisfies everyone’s preferences, then iterate

through each child, and set its layout (size / position)

Containers that support variable intrinsic layout:
• VBox
• HBox
• FlowPane

15

Container – HBox, VBox
{HBox|VBox} lays out its children in a single {row|column}.
They will resize children (if resizable) to their preferred {widths|heights}
and use its {fillHeight|fillWidth} property to determine whether to
resize their {heights|widths} to fill its own.
The alignment of the content is controlled by the alignment property.
If an {HBox|VBox} is resized larger than its preferred {width|height}, it will
by default leave the extra space unused. To have one or more children
be allocated that extra space it may optionally set an {hgrow|vgrow}
constraint on the child.

16

Container – HBox, VBox
override fun start(stage: Stage) {
 val bt1 = Button("I am a button!").apply {
 minWidth = 60.0; prefWidth = 100.0;
 maxWidth = Double.MAX_VALUE; maxHeight = Double.MAX_VALUE }
 val bt2 = Button("I am a button, too!").apply {
 minWidth = 40.0; prefWidth = 150.0 }
 val root = HBox(bt1, bt2).apply {
 background = Background(BackgroundFill(Color.ORANGE, null, null))
 alignment = Pos.CENTER
 isFillHeight = true }

 HBox.setHgrow(bt1, Priority.ALWAYS)
 HBox.setHgrow(bt2, Priority.NEVER)

 stage.apply {
 title = "Hello, CS349!"
 scene = Scene(root , 500.0, 100.0)
 }.show()
}

17

Container – HBox, VBox
override fun start(stage: Stage) {
 val bt1 = Button("I am a button!").apply {
 minHeight = 60.0; prefHeight = 100.0; maxHeight = 200.0 }

 val bt2 = Button("I am a button, too!").apply {
 minHeight = 40.0; prefHeight = 100.0; maxHeight = 200.0 }
 val root = VBox(bt1, bt2).apply {
 background = Background(BackgroundFill(Color.ORANGE, null, null))
 alignment = Pos.CENTER }

 VBox.setVgrow(bt1, Priority.ALWAYS)
 VBox.setVgrow(bt2, Priority.SOMETIMES)

 stage.apply {
 title = "Hello, CS349!"
 scene = Scene(root , 200.0, 300.0)
 }.show()
}

18

Widget Dimensions
Widgets need to be flexible in size and position
• Widgets store their own position and width / height, but containers have the

ability to change these properties.
• Other properties may also be changed by containers (e.g., reducing font

size for a caption)

Widgets give the layout algorithm a range of preferred values as
“hints”, and containers considers the size hints of nodes in determining
layout.
• minWidth | minHeight: parent should not resize node’s {width|height}

smaller than this value
• prefWidth | prefHeight: parent should treat this value as the node's ideal

{width|height}
• maxWidth | maxHeight: parent should not resize node’s {width|height}

larger than this value

19

Widget Dimensions
val root = HBox(Button("Never").apply {
 minWidth = 150.0; prefWidth = 200.0; maxWidth = 250.0
 HBox.setHgrow(this, Priority.NEVER)
}, Button("Always").apply {
 minWidth = 150.0; prefWidth = 200.0; maxWidth = 250.0
 HBox.setHgrow(this, Priority.ALWAYS)
}, Button("Sometimes").apply {
 minWidth = 150.0; prefWidth = 200.0; maxWidth = 250.0
 HBox.setHgrow(this, Priority.SOMETIMES)
})

20

Container – FlowPane
FlowPane lays out its children in a flow that wraps at the flowpane's
boundary. A {horizontal|vertical} flowpane will layout nodes in
{rows|columns}, wrapping at the flowpane’s {width|height}.

The prefWrapLength property establishes its preferred {width| height}.

The alignment property controls how the {rows|columns} are aligned
within the bounds of the flowpane.

21

Container – FlowPane
override fun start(stage: Stage) {
 val root = FlowPane(Orientation.VERTICAL).apply {
 (0..9).forEach() { children.add(Button("Button # $it")) }
 alignment = Pos.CENTER
 }

 stage.apply {
 title = "Hello, CS349!"
 scene = Scene(root , 400.0, 200.0)
 }.show()
}

22

Relative Layouts
The layout constrains child positions into a specific layout.

Containers that support relative layout:
• AnchorPane
• BorderPane
• GridPane
• TilePane

23

Container – AnchorPane
AnchorPane allows the edges of child nodes to be anchored to an
offset from the anchor pane's edges.

24

Container – AnchorPane
override fun start(stage: Stage) {
 val root = AnchorPane().apply {
 children.add(0, Button("Top-left").apply {
 AnchorPane.setTopAnchor(this, 10.0)
 AnchorPane.setLeftAnchor(this, 30.0)
 })
 children.add(1, Button("Bottom-right").apply {
 AnchorPane.setBottomAnchor(this, 10.0)
 AnchorPane.setRightAnchor(this, 30.0)
 })
 children.add(0, Button("Top-width").apply {
 AnchorPane.setTopAnchor(this, 50.0)
 AnchorPane.setLeftAnchor(this, 50.0)
 AnchorPane.setRightAnchor(this, 100.0)
 })
 }

 stage.apply {
 title = "Hello, CS349!"
 scene = Scene(root , 400.0, 200.0) }.show()
}

25

Container – BorderPane
BorderPane lays out children in top, left, right, bottom, and center.
The top and bottom children will be resized to their preferred heights
and extend the width of the border pane.
The left and right children will be resized to their preferred widths
and extend the length between the top and bottom nodes.
The center node will be resized to fill the available space in the middle.
Any of the positions may be null.

26

Container – BorderPane
override fun start(stage: Stage) {
 val lc = Label("Centre").apply { maxHeight = Double.MAX_VALUE;
 maxWidth = Double.MAX_VALUE }
 val lt = Label("Top").apply { maxWidth = Double.MAX_VALUE }
 val lb = Label("Bottom").apply { maxWidth = Double.MAX_VALUE }
 val ll = Label("Left").apply { maxHeight = Double.MAX_VALUE }
 val lr = Label("Right").apply { maxHeight = Double.MAX_VALUE }

 val root = BorderPane(lc, lt, lr, lb, ll)

 root.children.forEach {
 (it as Label)
 BorderPane.setAlignment(it, Pos.CENTER)
 BorderPane.setMargin(it, Insets(5.0))
 it.alignment = Pos.CENTER;
 it.border= Border(BorderStroke(Color.BLACK,
 BorderStrokeStyle.DOTTED, null, BorderStroke.THIN))
 }

 stage.apply {
 title = "Hello, CS349!"
 scene = Scene(root , 400.0, 200.0).apply { fill = Color.PINK }
 }.show()

27

Container – GridPane
GridPane lays out its children within a flexible grid of rows and
columns. A child may be placed anywhere within the grid and may
span multiple rows / columns.
Children may freely overlap within rows / columns and their stacking
order will be defined by the order of the gridpane's children list.

28

Container – GridPane
override fun start(stage: Stage) {
 val root = GridPane().apply {
 (0..9).forEach() { add(Button("Button # $it").apply {
 prefWidth = Random.nextDouble() * 100 + 50
 prefHeight = Random.nextDouble() * 100 + 25
 }, Random.nextInt(0, 6), Random.nextInt(0, 3)) }
 alignment = Pos.CENTER
 }

 stage.apply {
 title = "Hello, CS349!"
 scene = Scene(root , 400.0, 200.0)
 }.show()
}

29

Container – TilePane
TilePane lays out its children in a grid of uniformly sized "tiles". A
{horizontal|vertical} tilepane will tile nodes in {rows|columns}, wrapping
at the tilepane’s {width|height}.

30

Container – TilePane
override fun start(stage: Stage) {
 val root = TilePane(Orientation.HORIZONTAL).apply {
 (0..9).forEach() { children.add(Button("Button # $it").apply {
 prefWidth = Random.nextDouble() * 100 + 50
 prefHeight = Random.nextDouble() * 100 + 25
 })}
 alignment = Pos.TOP_LEFT
 prefRows = 3
 }

 stage.apply {
 title = "Hello, CS349!"
 scene = Scene(root , 400.0, 200.0)
 }.show()
}

31

Container – ScrollPane
ScrollPane provides a scrolled, clipped viewport of its contents. It
allows the user to scroll the content around either directly (panning) or
by using scroll bars.

It also allows specification of the scroll bar policy, which determines
when scroll bars are displayed: always, never, or only when they are
needed.

32

Container – ScrollPane
override fun start(stage: Stage) {
 val root = VBox().apply {
 (0..9).forEach() { children.add(Button("Button # $it").apply {
 prefWidth = 150.0 + it * 10 % 40
 prefHeight = 40.0
 maxHeight = Double.MAX_VALUE
 VBox.setVgrow(this, Priority.ALWAYS)
 })}
 }

 val scroll = ScrollPane(root).apply {
 hbarPolicy = ScrollPane.ScrollBarPolicy.ALWAYS
 isFitToWidth = true
 }

 stage.apply {
 title = "Hello, CS349!"
 scene = Scene(scroll , 250.0, 500.0)
 }.show()
}

33

Container – ScrollPane
VBox only VBox only VBox only
enough vertical space enough vertical space not enough vertical space
Vgrow NEVER Vgrow ALWAYS

34

Container – ScrollPane
VBox in ScrollPane VBox in ScrollPane VBox in ScrollPane
enough vertical space enough vertical space not enough vertical space
Vgrow NEVER Vgrow ALWAYS

35

Container – TabPane
TabPane allows switching between a group of tabs, with only one tab
visible at a time. Its tabs can be positioned at any of its four sides. Its
default {height|width} will be determined by the largest content
{height|width}.

36

Container – TabPane
override fun start(stage: Stage) {
 val vboxTab = VBox().apply {
 (0..9).forEach() { children.add(Button("Button # $it").apply {
 prefWidth = Random.nextDouble() * 75 + 100
 prefHeight = Random.nextDouble() * 50 + 25
 })}
 }
 val flowTab = FlowPane().apply {
 ('A'..'J').forEach() { children.add(Button("Button # $it").apply {
 prefWidth = Random.nextDouble() * 50 + 75
 prefHeight = Random.nextDouble() * 50 + 25
 })}
 }

 val tab = TabPane().apply {
 tabs.add(Tab("Vertical", vboxTab))
 tabs.add(Tab("Flow", flowTab))
 tabsClosingPolicy = TabPane.TabClosingPolicy.ALL_TABS
 }

 stage.apply {
 title = "Hello, CS349!"
 scene = Scene(tab , 400.0, 400.0).apply { fill = Color.PINK }
 }.show()
}

37

Container – MenuBar
MenuBar is traditionally placed at the very top of the user interface and
embedded within it are Menus. By default, for each menu added to the
menu bar, it will be represented as a button with the Menu text value
displayed.

38

Container – MenuBar

val menuBar = MenuBar()
menuBar.menus.addAll(
 Menu("File").apply {
 items.add(MenuItem("Quit").apply {
 onAction = EventHandler { Platform.exit() }
 })},
 Menu("About").apply {
 val rm1 = RadioMenuItem("Option A")
 val rm2 = RadioMenuItem("Option B")
 val cm = CheckMenuItem("Check 1").apply {
 selectedProperty().addListener { _, _, new ->
 stage.title = "$text ${if (new) "on" else "off"}"}
 }
 items.addAll(rm1, rm2, SeparatorMenuItem(), cm)
 ToggleGroup().apply {
 rm1.toggleGroup = this; rm2.toggleGroup = this
 selectToggle(rm1)
 selectedToggleProperty().addListener { _, _, new ->
 stage.title = (new as RadioMenuItem).text }}
 }) 39

End of the Chapter

Please make sure to
• Remember which layouts are available

40

Any further questions?

