Layouts

Types of Layouts
Layouts in JavaFX
Designing Ul Components using Layouts

May 24

Types of Layouts

Dynamic Layout

Applications need to be able to adjust the presentation of our
interfaces.

We need to dynamically reposition and resize our content in response
to:

« Change in screen resolution (e.g., different computers or devices).
 Resizing the application window (e.g., user adjustments).

#CBC | MENU v Qsearch 2 signin #CBC | Menu -« Qsearch 2 Signin CBC | MENnu~ aQ 2

NEWS local Climate World Canada Politics Indigenous Opinion The National NEWS Local Climate World Canada Politics NEWS

Help arrives in Port aux Basques, and residents displaced by @ reil e Help arrives in Port aux Basques, and residents displaced by Fiona are ‘just trying
Fiona are 'just tl'Ying to keep thjngs togetl—ler' RCl is CBC/Radio-Canada's multilingual to keep things together’

service, forging bonds between
Canadians and citizens of

e world Government, military to assess

Government, military to assess visit Radio Canada International > needs of communities, premier says
needs of communities, premier says

Popular Now 3 Hours Ago
3 Hours Ago
1 uppateD
tours Fiona-hit areas asfeds deploy Denmark says damage to Nord Stream PM tours Fiona-hit areasasfeds
bt = i pipeline in Baltic Sea was 'deliberate’ deploy moretroops

more troops 1041 reading now

2 UPDATED Fhoteands of dovmed toses oo
T slow PEL power restoration . . .
PEL power restoration Canada bans street dogs from more Help arrives in Port aux Basques, and residents
than 100 countries starting 5 . s .
displaced by Fiona are ‘just trying to keep
Wednesday More than 181,000 homes across 5 by) 3
More than 181,000 homes across 885 reading now Maritimes still without power things together
3 New Government, military to assess needs of communities, premier
As masses flee Russia to avoid 22
iption, European neij ite i how Fiona's VIDEO Portaux Basques, NL., woman finds 3 Hours Ago
how grapple with whether to let them in PEL'sshores Th i hopein i i
sucked sand off PEL'sshores 550 reading now eroding PEL's sand dunes lose toFiona
PM tours Fi
4 ‘ltwas pretty impressive, says man
who weathered Fiona on Sable Island
430 reading now As Russia to avoid ipti T PEL
As masses flee Russia to avoid conscription, 5 5 European nei; urs, e with whether to let Kremlin paves way to
. with whether Kremlin paves way to annexing 4 B Ssatellite images show how Fiona's themp':l fghborrs ranol annexing 4 regions of Ukraine i i
et f Ul surge sucked sand off PE.L's shores = asit announces referendum 181,000 without power
referendum results 291 reading now Many Russians escaping their country claim they results
Many Russians escaping their country claim hate the war, but felt powerless to stop it Satellite -how how Fiona's VIDEO
they hate the war, but felt powerless to stop it World | 3 Hours Ago Wi [12 iours Ago World | 3 Hours Ago e el : ical impact of Fiona
World | 2 Hours Ago eroding PEL'ssand dunes
Chiefs try to maintain links with #CBCNEWS Chiefs try to maintain links Port aux Basques, NL., infocusing on what she
Indigenous people moving to NETWORK with Indigenous people didn'tlosetoFiona
urbanareas . moving to urban areas
Get Premium.
Canada - Ottawa | September 27 Stream it LIVE. Canada - Ottawa | September 27

Notsstagnant. Nope. These renters are - 2 A
constantly on the move Not stagnant. Nope. These renters are constantly Asmasses ﬂe_e Russia to avoid O?nscnphom
A w’ NEW v onthe move A o e with whether to

. ol . lat them in

Strategies for Dynamic Layout

There are two main strategies for handling dynamic layout:

* Responsive: support a universal design that reflows a spatial layout to fit
the dimensions of the current view (i.e. device or window).

- Adaptive: design optimized spatial layouts for each of your devices, and
dynamically switch to fit the device that is in use.

Responsive Layout

We are going to focus on responsive layout: adapting to changes
dynamically.

To dynamically adjust content to a window, we want to:
* maximize use of available space for displaying widgets,
« while maintaining consistency with spatial layout, and
* preserving the visual quality of spatial layout

This requires that our application can dynamically adjust elements:
* re-allocate space for widgets

- adjust location and size of widgets
 perhaps change visibility, look, and / or feel of widgets

The Role of Container Nodes

Container nodes describe how their children should be placed.

These containers may have different strategies for handling layout. For
example, Group lets the designer position children directly, while
StackPane tries to re-position its children in the centre of the screen.

The designer’s role is to determine which containers (layouts) to
combine to get the desired effect. Often it takes multiple containers,
sometimes nested together, to achieve this.

Nodes have properties that control their position, size and other
characteristics. The container will set the size and location of its
children according to its internal rules, to size and position content
appropriately.

Layouts in JavaFX

JavaFX Container Classes

Object

<<Stylable>>

A

A

Node

1

Parent

A

Group

Layout

Region

<<Skinnable>>

Pane Control
A A
— AnchorPane — Accordion
— BorderPane — ScrollPane
— FlowPane — SplitPane
— GridPane — TabPane
— HBox — ToolBar
— StackPane
— TilePane
— VBox

<<EventTarget>>

Group

Layout Strategies

The approaches that containers use can be grouped into one of these
styles:

- Fixed Layout: non-resizable

- Variable Intrinsic Layout: adjusting widget size and position
 Relative Layout: positioning components relative to one another
- Custom Layout: define your own!

Fixed Layouts

The layout does not move or resize nodes by itself. You need to
manually specify location and position of all nodes within the layout.

This is most suitable for cases when you have a fixed-size window.

Containers that support fixed layout:
* Group

* Pane

10

Container - Group

A Group contains children that are rendered in order whenever this
node is rendered. The Group will take on the collective bounds of its
children and is not directly resizable.

Any transform, effect, or state applied to a Group will be applied to all
children of that group.

B " Hello, CS349!

' 1, 10C
N | am a putton

Container - Group

override fun start(stage: Stage) {

val btl = Button("I am a button!").apply {
minWidth = 300.0
rotate = 45.0

}

val bt2 = Button("I am a button, too!").apply {
minWidth = 300.0
translateX = 349.0
translateY = 42.0

}
val root = Group(btl, bt2).apply { rotate = -10.0 }

stage.apply {
title = "Hello, CS349!"

scene = Scene(root , 800.0, 100.0).apply { fill = Color.PINK }
}.show()

B " Hello, C5349! — O X

\
|ama pution 100!

Container - Pane

A Pane can be used directly in cases where absolute positioning of

children is required, since it does not perform layout beyond resizing
children to their preferred sizes.

It becomes the application's responsibility to position the children
since the pane leaves the positions alone during layout.

Unlike a Group, a Pane has its own width and height and can be styled
independently of its children.

" Hello, CS349! - O X

\
. {00
- bul.‘o‘
|ama

O
o, N

Container - Pane

override fun start(stage: Stage) {

val btl = Button("I am a button!").apply {
minWidth = 300.0
rotate = 45.0

}

val bt2 = Button("I am a button, too!").apply {
minWidth = 300.0
translateX = 349.0
translateY = 42.0

}
val root = Pane(btl, bt2).apply { rotate = -10.0 }

stage.apply {
title = "Hello, CS349!"

scene = Scene(root , 800.0, 100.0).apply { fill = Color.PINK }
}.show()

B " Hello, C5349! — O X

1
|ama pution. 100!

Variable Intrinsic Layouts

This layout algorithm attempts to use the widget’s preferred sizes. It
recursively queries all widgets and then allocates space to them as a
group.

Layout is determined in two-passes (bottom-up, top-down):

1. Get each child widget’s preferred size (includes recursively asking all of its
children for their preferred size...)

2. Decide on a layout that satisfies everyone’s preferences, then iterate
through each child, and set its layout (size / position)

Containers that support variable intrinsic layout:
* VBox

« HBOX
* FlowPane

15

Container - HBox, VBox

{HBox|VBox} lays out its children in a single {row|column}.

They will resize children (if resizable) to their preferred {widths|heights}
and use its {fillHeight|fillWidth} property to determine whether to
resize their {heights|widths} to fill its own.

The alignment of the content is controlled by the alignment property.

If an {HBox|VBox} is resized larger than its preferred {width|height}, it will
by default leave the extra space unused. To have one or more children
be allocated that extra space it may optionally set an {hgrow|vgrow}
constraint on the child. 57 Hell.

= O X

| am a button!

B " Hello, C5349! - O X

| am a button! | am a button, too! | am a button, too!

16

Container - HBox, VBox

override fun start(stage: Stage) {

val btl = Button("I am a button!").apply {
minWidth = 60.0; prefWidth = 100.0;
maxWidth = Double.MAX VALUE; maxHeight = Double.MAX VALUE }

val bt2 = Button("I am a button, too!").apply {
minWidth = 40.0; prefWidth = 150.0 }

val root = HBox(btl, bt2).apply {
background = Background(BackgroundFill(Color.ORANGE, null, null))
alignment = Pos.CENTER
1sFillHeight = true }

HBox.setHgrow(btl, Priority.ALWAYS)
HBox.setHgrow(bt2, Priority.NEVER)

stage.apply {
title = "Hello, CS349!"

scene = Scene(root , 500.0, 100.0)
}.show()

B " Hello, CS349! - O X

| am a button! | am a button, too!

Container - HBox, VBox

override fun start(stage: Stage) {
val btl = Button("I am a button!").apply {

minHeight = 60.0; prefHeight = 100.0; maxHeight = 200.0 }
val bt2 = Button("I am a button, too!").apply {
minHeight = 40.0; prefHeight = 100.0; maxHeight = 200.0 }

val root = VBox(btl, bt2).apply {
background = Background(BackgroundFill(Color.ORANGE, null, null))
alignment = Pos.CENTER }

VBox.setVgrow(btl, Priority.ALWAYS) B Hell..
VBox.setVgrow(bt2, Priority.SOMETIMES)

stage.apply {
title = "Hello, CS349!"

scene = Scene(root , 200.0, 300.0) | am a button!
}.show()

| am a button, too!

Widget Dimensions

Widgets need to be flexible in size and position

- Widgets store their own position and width / height, but containers have the
ability to change these properties.

- Other properties may also be changed by containers (e.g., reducing font
size for a caption)

Widgets give the layout algorithm a range of preferred values as
“hints”, and containers considers the size hints of nodes in determining
layout.

- minWidth | minHeight: parent should not resize node’s {width|height}
smaller than this value

- prefWidth | prefHeight: parent should treat this value as the node's ideal
{width|height}

- maxWidth | maxHeight: parent should not resize node’s {width|height}
larger than this value

19

Widget Dimensions

val root = HBox(Button("Never").apply {

minWidth = 150.0; prefWidth = 200.0; maxWidth = 250.0
HBox.setHgrow(this, Priority.NEVER)
}, Button("Always").apply {
minWidth = 150.0; prefWidth = 200.0; maxWidth = 250.0
HBox.setHgrow(this, Priority.ALWAYS)
}, Button("Sometimes").apply {
minWidth = 150.0; prefWidth = 200.0; maxWidth = 250.0
HBox.setHgrow(this, Priority.SOMETIMES)
})
¥ " Hello, CS349! -—
Never Always : Sometimes
B " Hello, C5349! - O
Aaver Abwaye S : Sometimes
B ' Hello, C5349! . - (] X
deaer Adways { } : Some(-hnes—‘
B ' Hello, C5349! - O X
Never II—A'IWP i i Sometimes :
' Hello, CS349! ; -— (] X
Never l Always " Sometim :

Container - FlowPane

FlowPane lays out its children in a flow that wraps at the flowpane's
boundary. A {horizontal|vertical} flowpane will layout nodes in
{rows|columns}, wrapping at the flowpane’s {width|nheight}.

The prefWraplLength property establishes its preferred {width| height}.

The alignment property controls how the {rows|columns} are aligned
within the bounds of the flowpane.

B " Hello, CS349! — O X
Button # 5 B Hello, C5349! - o X
Button# 1 | Button#6
Button# 2 | Button#4 | Button#6 | Button#8
Button# 2 | Button#7
Button# 1 | Button#3 | Button#5 | Button#7 | Button#9
Button#3 | Button#8

Button#4 | Button#9

21

Container - FlowPane

override fun start(stage: Stage) {
val root = FlowPane(Orientation.VERTICAL) .apply {
(9..9).forEach() { children.add(Button("Button # $it")) }
alignment = Pos.CENTER

}

stage.apply {
title = "Hello, CS349!"

scene = Scene(root , 400.0, 200.0)
}.show()

B " Hello, C5349! — O X

Button# 1 | Button#6
Button# 2 | Button#7
Button#3 | Button#8

Button#4 | Button#9

Relative Layouts

The layout constrains child positions into a specific layout.

Containers that support relative layout:
* AnchorPane
* BorderPane
* GridPane
 TilePane

23

Container - AnchorPane

AnchorPane allows the edges of child nodes to be anchored to an
offset from the anchor pane's edges.

B " Hello, CS349! - O X

Top-left

Top-width

Bottom-right

Container - AnchorPane

override fun start(stage: Stage) {
val root = AnchorPane().apply {

children.add(@, Button("Top-left").apply {
AnchorPane.setTopAnchor(this, 10.0)
AnchorPane.setlLeftAnchor(this, 30.0)

})

children.add(1, Button("Bottom-right").apply {
AnchorPane.setBottomAnchor(this, 10.0)
AnchorPane.setRightAnchor(this, 30.0)

})

children.add(@, Button("Top-width").apply {
AnchorPane.setTopAnchor(this, 50.0)
AnchorPane.setLeftAnchor(this, 50.0)
AnchorPane.setRightAnchor(this, 100.0)

})

B " Hello, CS349! - O X
stage.« Top-left
tit
SCé

. 1
Top-width
‘ . Bottom-right)

Container - BorderPane

BorderPane lays out children in top, left, right, bottom, and center.

The top and bottom children will be resized to their preferred heights
and extend the width of the border pane.

The left and right children will be resized to their preferred widths
and extend the length between the top and bottom nodes.

The center node will be resized to fill the available space in the middle.
Any of the positions may be null.

B " Hello, CS349! — O X

Top

Left Centre Right

26

Container - BorderPane

override fun start(stage: Stage) {
val 1lc = Label("Centre").apply { maxHeight = Double.MAX VALUE;
maxWidth = Double.MAX VALUE }
val 1t Label("Top").apply { maxWidth = Double.MAX VALUE }
val 1b = Label("Bottom").apply { maxWidth = Double.MAX VALUE }
val 11 = Label("Left").apply { maxHeight = Double.MAX VALUE }
val 1lr = Label("Right").apply { maxHeight = Double.MAX VALUE }

val root = BorderPane(lc, 1t, 1lr, 1lb, 11)

root.children.forEach {
(it as Label)
BorderPane.setAlignment(it, Pos.CENTER)
BorderPane.setMargin(it, Insets(5.0))
it.alignment = Pos.CENTER;
it.border= Border(BorderStroke(Color.BLACK,
BorderStrokeStyle.DOTTED, null, BorderStroke.THIN))

}

stage.apply {
title = "Hello, CS349!"

scene = Scene(root , 400.0, 200.0).apply { fill = Color.PINK }
}.show()

Container - GridPane

GridPane lays out its children within a flexible grid of rows and
columns. A child may be placed anywhere within the grid and may
span multiple rows / columns.

Children may freely overlap within rows / columns and their stacking
order will be defined by the order of the gridpane's children list.

B " Hello, C5349! - O X

Button #4

Butt... Button ... Button 3 Butto...

Button #7 Button # 1 Button # 2

Button #9

28

Container - GridPane

override fun start(stage: Stage) {
val root = GridPane().apply {
(9..9).forEach() { add(Button("Button # $it").apply {
prefWidth = Random.nextDouble() * 100 + 50
prefHeight = Random.nextDouble() * 100 + 25
}, Random.nextInt(©, 6), Random.nextInt(©, 3)) }
alignment = Pos.CENTER

B " Hello, CS349! — O X
sta =
Button #4
}.s
Butt... Button ... Button # 3 Butto... Button £ 9
Button #7 Button # 1 Button # 2

29

Container - TilePane

TilePane lays out its children in a grid of uniformly sized "tiles". A
{horizontal|vertical} tilepane will tile nodes in {rows|columns}, wrapping
at the tilepane’s {width|nheight}.

B " Hello, C5349! - O X

Button # 4 Button # 8
B " Hello, CS349! = O X
Button # 0 Butto... Button # 2 Button # 3
Button # 1 Button # 5 Button # 9

Button #4 Button #5 Button # 6 Button #7

Button # 8 Button #9

Container - TilePane

override fun start(stage: Stage) {
val root = TilePane(Orientation.HORIZONTAL) .apply {

(9..9).forEach() { children.add(Button("Button # $it").apply {
prefWidth = Random.nextDouble() * 100 + 50
prefHeight = Random.nextDouble() * 100 + 25

1}

alignment = Pos.TOP_LEFT

prefRows = 3

7 Hello, C5349!

stage.apply {
title = "Hello, CS349!"

scene = Scene(root , 400.
}.show()

Container - ScrollPane

ScrollPane provides a scrolled, clipped viewport of its contents. It
allows the user to scroll the content around either directly (panning) or
by using scroll bars.

It also allows specification of the scroll bar policy, which determines
when scroll bars are displayed: always, never, or only when they are
needed.

32

Container - ScrollPane

override fun start(stage: Stage) {
val root = VBox().apply {
(9..9).forEach() { children.add(Button("Button # $i
prefWidth = 150.0 + it * 10 % 40
prefHeight = 40.0
maxHeight = Double.MAX VALUE
VBox.setVgrow(this, Priority.ALWAYS)

1}
}

val scroll = ScrollPane(root).apply {
hbarPolicy = ScrollPane.ScrollBarPolicy.ALWAYS

1sFitToWidth = true
}

stage.apply {
title = "Hello, CS349!"

scene = Scene(scroll , 250.0, 500.0)
}.show()

B " Hello, CS349!

Button #0

Button # 1

Button # 2

Button # 3

Button # 4

Button #5

Button #6

Button #7

Button # 8

Button # 9

O

X

B " Hello, CS349!

Button #0

Button # 1

Button # 2

Button # 3

Button #4

Button #5

Button #6

O

X

Container - ScrollPane

VBox only VBox only VBox only
enough vertical space enough vertical space not enough vertical space
Vgrow NEVER Vgrow ALWAYS
B " Hello, C5349! - O X B " Hello, CS349! - O X B " Hello, C5349! — O X
Button #0 Button £ 0 Button
Button # 1
Button # 1 Button # 2
Button # 1
Button # 3
Button # 2
Button #4
Button # 2
Button # 3 Button # 35
v Button #6
Button #4 B Button #7
Button #5 Button £ 4 Buton £8
Button #9
Button #6
Button #5
Button #7
Button # 6
Button # 8
Button # 9 Button #7
Button # 8
Button #9

Container - ScrollPane

VBox in ScrollPane VBox in ScrollPane VBox in ScrollPane
enough vertical space enough vertical space not enough vertical space
Vgrow NEVER Vgrow ALWAYS
' Hello, C5349! ' Hello, C5349! ' Hello, C5349!
Button #0 Button #0 Button #0
Button # 1 Button # 1 Button # 1
Button # 2 Button # 2 Button # 2
Button # 3 Button #3 Button #3
Button #4 Button # 4 Button #4
Button #5 Button #5 Button # 5
Button #6 Button # 6
Button #7 Button #7
Button # 8 Button # 8
Button # 9 Button #9

35

Container - TabPane

TabPane allows switching between a group of tabs, with only one tab
visible at a time. Its tabs can be positioned at any of its four sides. Its
default {height|width} will be determined by the largest content
{height|width}.

36

Container - TabPane

override fun start(stage: Stage) {
val vboxTab = VBox().apply {
(0..9).forEach() { children.add(Button("Button # $it").apply {
prefWidth = Random.nextDouble() * 75 + 100
prefHeight = Random.nextDouble() * 50 + 25

1}
}

val flowTab = FlowPane().apply {
('A'.."3").forEach() { children.add(Button("Button # $it").apply
prefWidth = Random.nextDouble() * 50 + 75
prefHeight = Random.nextDouble() * 50 + 25

1}
}

val tab = TabPane().apply {
tabs.add(Tab("Vertical"”, vboxTab))
tabs.add(Tab("Flow", flowTab))
tabsClosingPolicy = TabPane.TabClosingPolicy.ALL TABS

}
stage.apply {

title = "Hello, CS349!"

scene = Scene(tab , 400.0, 400.0).apply { fill = Color.PINK }
}.show()

B Hello, CS349! -

‘Vertical X ’ Flow

Button #0

Button # 1

Button # 2

Button # 3

Button #4

Button # 5

Button #6

Button # 7

Button # 8

Button # 9

¥ " Hello, CS349! —

Vertical l Flow X]

Button # A Button # B
Button # C Button # D
Button #F Button # G

Button # H Button # |

Button #)

Button # E

Container - MenuBar

MenuBar is traditionally placed at the very top of the user interface and
embedded within it are Menus. By default, for each menu added to the
menu bar, it will be represented as a button with the Menu text value
displayed.

®° OptionA — O X

- 3

v Option A

Vv Check 1

38

"' OptionA — O X
. Fil
Container — MenuBar Ll Avout
v Option A
val menuBar = MenuBar()
menuBar.menus .addAll(/ Check 1
Menu("File").apply {

i1tems.add(MenuItem("Quit").apply {
onAction = EventHandler { Platform.exit() }
P}
Menu("About").apply {
val rml = RadioMenuItem("Option A")
val rm2 = RadioMenuItem("Option B")
val cm = CheckMenultem("Check 1").apply {
selectedProperty().addListener { , , new ->
stage.title = "$text ${if (new) "on" else "off"}"}
}
items.addAll(rml, rm2, SeparatorMenultem(), cm)
ToggleGroup().apply {
rml.toggleGroup = this; rm2.toggleGroup = this
selectToggle(rml)
selectedToggleProperty().addListener { , , new ->
stage.title = (new as RadioMenultem).text }}

}) 39

End of the Chapter

Please make sure to
« Remember which layouts are available

Any further questions?

40

