
CS349 – User Interfaces
Events
Basic Event Handling
Event Dispatch

May 29

Events
What are events? Why are they used?

Event-Driven Programming

In GUI, users expect immediate feedback by the system from their
actions.

3

Event-Driven Programming

Event-driven programming is a programming paradigm that bases
program execution flow on events. Events can represent user actions
or other triggers in the system.
By using multiple threads and prioritizing certain events, we can create
GUIs that retain a responsive feel to users.

4

What are events?
An event is a message to notify an application that something
happened; a message of interest to an interface.

An efficient event-based system allows us to prioritize user-initiated
actions, and carefully prioritize other work while still remaining
responsive to a user.

Foreground Events
• Events initiated by the user.
• Created as a result of the user interacting with the user interface.
• Typically generated within the application.
• e.g. typing text, clicking a mouse button.

Background Events
• Events generated by the system.
• May be received and processed by the user interface.
• e.g. timer ticking, cloud data updating.

5

Types of Events
Events can be initiated by a user, e.g., as mouse input, or by the
system, e.g., through a timer.

Types of events include:
• Property changes (text, checked, selected, value)
• Keyboard actions (key press, key release)
• Pointer actions (button press, button release, mouse move, mouse enter,

mouse leave)
• Input focus changes (focus gained, focus lost)
• Window events (window resized, window minimized, window exited)
• Timer events (tick)

6
Show demos!

Events in JavaFX
Events are messages representing something of interest.
JavaFX has an event class (javafx.event.Event), with several
predefined event subtypes.

All event classes include the following fields:
EventType Type of the event that occurred, e.g., KEY_EVENT
source node from where the event originated
isConsumed Whether this event has been processed

All user interface classes also include:
target node where the event should be delivered

Events may also include fields specific to their subtype; e.g., a mouse
event will contain the mouse cursor coordinates, a key event will
contain keypress information.

7

Event Subclasses
The following Event subclasses are commonly used:
• An ActionEvent occurs, for example, when a button is activated. This is

typically used when there is only a single ”main” event generated by a class.
• A MouseEvent occurs when a mouse is used. This includes actions such as,

clicking, pressing, releasing, moving, entering, and exiting.
• A DragEvent replaces mouse events during drag-and-drop gestures. This

includes actions such as, drag entered, drag over, drag dropped, and drag
exited.

• A KeyEvent indicates the key stroke occurred on a node. This includes
actions such as, key pressed, key released, and key typed.

• A WindowEvent is related to window manipulation. This includes actions like
window hiding and window showing. These can be background or
foreground tasks (e.g. clicking on the X on a window will generate a
WindowClosed event).

8

Event Propagation – System Event Loop
How do events get created? Typically, the Window Manager receives
notification about a low-level system event, packages details into an
event, and passes that to the appropriate UI toolkit. It performs these
steps in order:
1. Collect event information from the underlying OS Kernel.
2. Store relevant information in an event structure, and store events in

an event queue.
3. Dispatch events from the queue to the UI toolkit / Application.†

† This is typically the application window that triggered the event but could also be
another window that is intercepting events. 9

Event Propagation – JVM Event Loop
Kotlin/JVM applications modify this slightly -- they rely on the JVM to
queue, manage, and dispatch events for each running application.

The JVM has an event-handling thread that performs these steps:
1. Manage an Application event queue where the Window Manager

stores events intended for that application.
2. Pull events from this JVM event queue.
3. Format them as Kotlin events.
4. Dispatch them within the Application.

10

Event Propagation – Application Event Loop
An application might have its own event loop and secondary event
queue that accumulate events until it is ready to handle them.

11

Basic Event Handling
What have we seen so far?

Basic Event Handlers
JavaFX defines interfaces for specific event types (or device types),
e.g., MouseEvent, KeyEvent, TouchEvent, etc.

1. Register a listener function (e.g. a lambda) that can process each
specific event type that we care about.

2. When an event is dispatched, the relevant listener function is called
for that event.

This is approach follows the Observer-pattern:

13

Observer Pattern
With the observer pattern, a subject maintains a list of observers, and
notifies them of any state changes, usually by calling one of their
methods.

14

Basic Event Handlers
In JavaFX, observers are implemented as EventHandlers, and
normally associated with the widget that generates the event.

// Pseudo-code: Associate this event handler code with this widget.
// When a mouse-click is generated, call the code (it is the event).

scene.onMouseClicked = // subject / attach
 EventHandler { it -> // observer
 stage.title =
 "Click ${it.sceneX}/${it.sceneY}" } // get state from event

15

Event Dispatch
How do events get delivered?

Event Dispatch in Java FX
The event dispatch process contains the following steps:

1. Target selection Which node should receive the event?
2. Route construction What is the path through the scene graph to a node?
3. Event capturing Traverse path downwards from Root to the node
4. Event bubbling Traverse path upwards from the node back to Root

17

Target Selection & Route Construction
Target Selection is determined by the type of Event:
• For key events, the target is the node that has focus
• For mouse events, the target is the node at the location of the cursor
• For touch screen events, target selection may be more complex, e.g., a

continuous gesture (like pinch-to-zoom) might select the target node at the
center point of all touches at gesture start, whereas a swipe (like swipe
right) might select the target node at the center of the entire path of all
fingers

Route construction is the path to a particular Node through the tree:
• Stored as chain, using the Source and Target fields of the event.

18

Event Capturing and Bubbling
JavaFX supports both top-down and bottom-up processing. Events
propagate from the Root to the Target (“Capture phase”), then back up
to the Root (“Bubble phase”). Any Node in the path can intercept
(“consume”) the Event, on either pass.

19

The Capture
phase walks
down the tree
from the
Stage (root)
through each
Node until it
reaches the
Triangle.

The Bubble
phase walks
up the tree
from the
Triangle,
through each
Node until it
reaches the
Stage (Root)

Positional Dispatch
Sending events to the Node under the cursor is called positional
dispatch.

20

Top-down Positional Dispatch (using Capture phase)
Event is dispatched to the root
node of the scene graph first, and
than travels through the scene
graph to the target node. This
means that the target node
receives the event first.

Any intermediate node can decide
to consume the event, in which
case it will not further propagate.

21

Bottom-up Positional Dispatch (using Bubble phase)
Event is dispatched to the target
node first, and than travels
through the scene graph towards
the root node.
Event is dispatched to leaf node
widget in the UI tree that contains
the mouse cursor (using a
Handler, registered at the Node
for that event)

22

the Undo Group
consumes the event

Positional Dispatch Limitations
Positional dispatch can lead to odd behaviour:

• Mouse drag starts in a scrollbar, but then moves outside the scrollbar: send the
events to the adjacent widget?

• Mouse press event in one button widget but release is in another: each button gets
one of the events?

Sometimes position is not enough, also need to consider which widget
is “in focus”

23

Focus Dispatch
Events dispatched to widget regardless of mouse cursor position

Needed for all keyboard and some mouse events:
• Keyboard focus: Click on text field, move cursor off, start typing
• Mouse focus: Mouse down on button, move off, mouse up … also called

“mouse capture”

24

Focus Dispatch
Maximum one keyboard focus and one mouse focus (why?)

Need to gain and lose focus at appropriate times
• Transfer focus on mouse down (“capture”)
• Transfer focus when TAB key is pressed
• Ignore non-visible or non-enabled components
• Cycle through widgets based on order in scene graph

25

Setting up Dispatch Handlers
1. Define an event handler to capture a specific type of device, e.g.,

Mouse, Keyboard, or Touch.
2. Register the handler with a node

• as a filter to process an event during the capture phase
• as a handler to process during the bubble phase.

All “interested” nodes that could potentially process an event (i.e., that
are in the route for dispatch) can register for an event and will have an
opportunity to process it. They can also choose to “consume” an event,
in which case it stops being propagated further along the route.

26

Setting up Dispatch Handlers
Add to a specific Node either using EventFilter (Capture phase) or
EventHandler (Bubble phase):

scene.addEventFilter(MouseEvent.MOUSE_CLICKED) {
 println("Click:Filter ${it.sceneX}/${it.sceneY}") }

scene.addEventHandler(MouseEvent.MOUSE_CLICKED {
 println("Click:Handler ${it.sceneX}/${it.sceneY}") }

// Output:
// Click:Filter 349.0/32.0
// Click:Handler 349.0/32.0

27
Show demos!

Setting up Dispatch Handlers
override fun start(stage: Stage) {
 val filter = {it: MouseEvent ->
 println("Filter source: ${it.source.javaClass}")
 println("Filter target: ${it.target.javaClass}")
 }
 val handler = {it: MouseEvent ->
 println("Handler source: ${it.source.javaClass}")
 println("Handler target: ${it.target.javaClass}")
 }
 val rect = Rectangle(120.0, 120.0, Color.RED).apply {
 addEventFilter(MouseEvent.MOUSE_CLICKED, filter)
 addEventHandler(MouseEvent.MOUSE_CLICKED, handler)
 }
 val root = Pane().apply {
 addEventFilter(MouseEvent.MOUSE_CLICKED, filter)
 addEventHandler(MouseEvent.MOUSE_CLICKED, handler)
 translateX = 60.0
 background = Background(BackgroundFill(…))
 children.add(rect)
 }
 stage.apply {
 scene = Scene(root, 320.0, 240.0).apply {
 addEventFilter(MouseEvent.MOUSE_CLICKED, filter)
 addEventHandler(MouseEvent.MOUSE_CLICKED, handler)
 }
 title = "Hello CS349!"
 }.show()
}

28

Filter source: Scene
Filter target: Rectangle
Filter source: Pane
Filter target: Rectangle
Filter source: Rectangle
Filter target: Rectangle
Handler source: Rectangle
Handler target: Rectangle
Handler source: Pane
Handler target: Rectangle
Handler source: Scene
Handler target: Rectangle

End of Chapter

29

Any further questions?

