
Hit Testing

June 12

Implementing GUI Direct Manipulation
We expect our GUIs to be interactive: graphical elements are directly
manipulated using a pointing device
• manipulation includes graphical content, widgets, etc.

Key requirement is to detect what the mouse cursor is pointing at
• all graphical content can be described as some “shape”
• shape could be filled, outlined, or special case like text – each supports a

different type of interaction (border, vs. interior)
• need to consider reasonable tolerances for usability

(consider near misses as hits for small / narrow shapes)

Today we walk through how to do this from the ground up (i.e. case
where we want to draw using GC, or some other system).
• a general model to describe shapes
• hit-tests to detect when a cursor is inside shape or on its edge

2

Shape Model Geometry
Different shapes have different geometric representations:

• Alternate geometric representations are possible
• Many other kinds of shapes: Line, Polyline, Polygon, Ellipse, …
• Shape models can even be combinations of shapes

3

Polygon
list of points

Circle
center, radius

Rectangle
top-left corner,
width,height

Simple Shape Model Class
What does a shape model class require?

Properties
• geometry that defines the Shape (a list of points)
• geometry properties (isFilled, isStroked)
• visual style properties (fill, stroke, strokeWeight)

Methods
• method to draw itself into a provided graphics context (i.e. render)
• method to do hit-testing with an x-y cursor position - new

4

Shape Model Implementation
Define a Shape base class:

abstract class Drawable(var x: Double, var y: Double,
 var col: Color) {

 abstract fun draw(gc: GraphicsContext)
 abstract fun isHit(x: Double, y: Double): Boolean

 override fun toString(): String {
 return col.getName()
 }
}

// Extension function for Double
fun Double.between(low: Double, high: Double): Boolean {
 return this in low .. high
}

5

Demo: HitTesting/ShapeModels

Rectangle Shape Model Implementation
class FillRect(var x: Double, var y: Double,
 var w: Double, var h: Double,
 col: Color): Drawable(x, y, col) {

 override fun draw(gc: GraphicsContext) {
 gc.apply {
 save()
 fill = col
 fillRect(x, y, w, h)
 restore()
 }
 }

 override fun isHit(x: Double, y: Double): Boolean {
 // ...
 }
}

6

Circle Shape Model Implementation
class FillCirc(x: Double, y: Double,
 var d: Double,
 col: Color):
 Drawable(x, y, col) {

 override fun draw(gc: GraphicsContext) {
 gc.apply {
 save()
 fill = col
 fillOval(x, y, d, d)
 restore()
 }
 }

 override fun isHit(x: Double, y: Double): Boolean {
 // ...
 }
}

7

Hit-Test Paradigms

Inside Hit-Test: is mouse cursor inside shape?
• Applies to closed and filled shapes like ovals, rectangles,

and polygons.

Edge Hit-Test: is mouse cursor on shape outline?
• Applies to open and “non-filled” shapes like strokes, lines,

and polylines.

A hit-test is tailored to the shape type and properties
• if no fill, hit-test should be on shape outline only
• hit-test should factor in the thickness of stroke

8

Filled Circle Hit-Test
Given:
• Mouse position (x,y)
• Upper-left bound of circle (x,y)
• Diameter d

Compute:
• Origin (x + d/2, y + d/2)

Hit:
if distance

from (x,y)
to (x + d/2, y + d/2)
<= d/2

override fun isHit(x: Double, y: Double): Boolean {
 return sqrt(sqr(x - this.x - d / 2.0) +
 sqr(y - this.y - d / 2.0)) <= d / 2.0
}

9

Stroke Circle Hit-Test
Given:
• Mouse position (x,y)
• Upper-left bound of circle (x,y)
• Diameter d
• Stroke width w

Hit:
if distance

from (x,y)
to (x + d/2, y + d/2)
between (d/2 + w/2) and (d/2 - w/2)

override fun isHit(x: Double, y: Double): Boolean {
 return sqrt(sqr(x - this.x - d / 2.0) +
 sqr(y - this.y - d / 2.0)).between(d/2.0 + 0.5,
 d/2.0 - 0.5)
}

10

Stroke Circle Hit-Test
Given:
• Mouse position (x,y)
• Upper-left bound of circle (x,y)
• Diameter d
• Delta Δ

Hit:
if distance

from (x,y)
to (x + d/2, y + d/2)
between d/2 - Δ and d/2 + Δ

override fun isHit(x: Double, y: Double): Boolean {
 return sqrt(sqr(x - this.x - d / 2.0) +
 sqr(y - this.y - d / 2.0)).between(d/2.0 - delta,
 d/2.0 + delta)
}

11

Filled Rectangle Hit-Test
Given:
• Mouse position (x,y)
• Upper-left bound of rectangle (x,y)
• Width and height (w,h)

Hit:
if x between x and x + w and

y between y and y + h

override fun isHit(x: Double, y: Double): Boolean {
 return x.between(this.x, this.x + w) and
 y.between(this.y, this.y + h)

}

12

Stroke Rectangle Hit-Test
Given:
• Mouse position (x,y)
• Upper-left bound of rectangle (x,y)
• Width and height (w,h)
• Delta Δ

Hit:
if (x,y) is

inside (x–Δ,y–Δ, x+w+Δ, y+h+Δ) and
not inside (x+Δ,y+Δ, x+w-Δ, y+h-Δ)

override fun isHit(x: Double, y: Double): Boolean {
 return (x.between(this.x - delta, this.x + w + delta) and
 x.between(this.x + delta, this.x + w - delta).not() and
 y.between(this.y - delta, this.y + h + delta)) or
 (y.between(this.y - delta, this.y + h + delta) and
 y.between(this.y + delta, this.y + h - delta).not() and
 x.between(this.x - delta, this.x + w + delta))
}

13

Stroke Line Hit-Test
Given:
• Mouse position (x,y)
• Start vertex (x,y)
• End vertex (x,y)
• Delta Δ

Hit:
if distance

from (x,y)
closest point on (x,y, x,y)
<= Δ

14

Demo: HitTesting/ClosestPoint

Stroke Line Hit-Test
Hit:
if distance

from m(x,y)
closest point on line (x,y, x,y)
<= Δ

Closest point on (x,y, x,y) from (x,y):
𝑢 = 𝑚 − 𝑠
𝑣⃗ = 𝑒 − 𝑠

𝑡 =
𝑢 * 𝑣⃗
𝑣⃗ * 𝑣⃗

15

s

e
m

s

e
e

s

LEGEND
s = start point
e = end point
m = mouse point

u = vector start-mouse
v = vector start-end

Stroke Line Hit-Test
Hit:
if distance

from (x,y)
closest point on (x,y, x,y)
<= Δ

Closest point on (x,y, x,y) from (x,y):

= +
𝑠, 𝑡 ≤ 0

𝑠 + 𝑡𝑣⃗, 0 < 𝑡 < 1
𝑒, 𝑡 ≥ 1

16

Stroke Line Hit-Test

override fun isHit(xs: Double, ys: Double, xe: Double, ye: Double,
 mx: Double, my: Double,
 hitDelta: Double): Boolean {
 val ux = mx - xs
 val uy = my - ys
 val vx = xe - xs
 val vy = ye - ys
 val t = (ux * vx + uy * vy) / (vx * vx + vy * vy)
 val dst =
 if (t < 0.0) sqrt(sqr(mx - xs) + sqr(my - ys))
 else if (t > 1.0) sqrt(sqr(mx - xe) + sqr(my - ye))
 else sqrt(sqr(mx - (xs + vx * t)) + sqr(my - (ys + vy * t)))
 return dst <= hitDelta
}

17

xs, ys

xe, ye

mx, my

Polyline / Stroke Polygon Hit-Test
Given:
• Mouse position (x,y)
• Vertices (x,y, ..., x,y)
• Delta Δ

Hit:
if any line segment is hit…
We can check each segment

18

Demo: HitTesting/ShapeModels

Filled Polygon Hit-Test
Given:
• Mouse position (x,y)
• Vertices (x,y, ..., x,y)

19

Filled Polygon Hit-Test
Given:
• Mouse position (x,y)
• Vertices (x,y, ..., x,y)

Hit:
if ray cast to (Double.MIN_VALUE, y)
intersects 2k+1 edges (*)

20

Filled Polygon Hit-Test (Line Test)
Given:
• Mouse position (x,y)
• Vertices (x,y, ..., x,y)

Intersection:
two line segments (m,c), (p,q)
intersect if the orientations
(m,c,p), (m,c,q) and
(p,q,m), (p,q,c) have different signs:

21

c m
p

q

Filled Polygon Hit-Test (Edge Case)
Given:
• Mouse position (x,y)
• Vertices (x,y, ..., x,y)

Intersection:
if (m,c,p), (m,c,q),
(p,q,m), and (p,q,c) are
co-linear, check if m is on (p,q)

22

Filled Polygon Hit-Test (Edge Case)
Given:
• Mouse position (x,y)
• Vertices (x,y, ..., x,y)

Hit:
if (m,c,p) or (m,c,q)
are co-linear, they are counted as:

23

Filled Polygon Hit-Test (Edge Case)
Given:
• Mouse position (x,y)
• Vertices (x,y, ..., x,y)

Hit:

+ 1 if edges are on opposite sides
+ 0 if edges are on the same side

24

Optimizations
Hit-testing could become computationally intensive
• There could be hundred of shapes in a scene
• Polygon or Polyline shapes could have hundreds of edges

Approaches to reduce hit-testing computation:
• Avoid sqrt in distance calculations

(for circles, check if sqr(dist) is less than sqr(diameter / 2.0))
• Use simpler less precise hit-test first for an “early” reject

(e.g., start with a bounding-rectangle, or bounding circle hit-test)
• Split scene into cells, and track which ones each shape is in (e.g., octree or

binary space partition)

28

JavaFX Shape Hit-Testing
All JavaFX Shapes implement a contains to hit-test against a point:

val poly = Polygon().apply {
 fill = Color.PINK
 points.addAll(50.0, 50.0, 250.0, 80.0, 150.0, 120.0,
 200.0, 180.0, 80.0, 150.0)
 strokeWidth = 10.0
 stroke = Color.BLACK
}
val scene = Scene(Group(poly), 320.0, 240.0).apply {
 scene.addEventFilter(MouseEvent.MOUSE_MOVED) {
 println(poly.contains(it.sceneX, it.sceneY))
}}

It handles stroke thickness (hit if point is on
visible stroke) and unfilled shapes (true if
point is on visible stroke area).

29Demo: HitTesting/Shape

JavaFX Shape Hit-Testing
All JavaFX Shapes implement a contains to hit-test against a point:

val poly = Polygon().apply {
 fill = Color.PINK
 points.addAll(50.0, 50.0, 250.0, 80.0, 150.0, 120.0,
 200.0, 180.0, 80.0, 150.0)
 strokeWidth = 10.0
 stroke = Color.BLACK
 rotate = 90.0
}
val scene = Scene(Group(poly), 320.0, 240.0).apply {
 scene.addEventFilter(MouseEvent.MOUSE_MOVED) {
 println(poly.contains(it.sceneX, it.sceneY))
}}

It does not handle transformations! (Instead,
use event handling in Polygon directly.)

30

End of Chapter

31

Any further questions?

