
Animation
What is Animation
Basic Animation
Smooth Animation
Keyframe Animation

June 14

What is Animation

Animation
Animation is the simulation of movement using a series of images (or
drawings, models, etc.).

3IMAGE SOURCE: https://www.angryanimator.com/word/2010/11/26/tutorial-2-walk-cycle/

Animation Terminology
Frame: each image (or state) of an animation sequence
Frame rate: number of frames to display per second

Key Frame: defines the beginning and ending points of a transition
• Tweening: interpolation of frames between two key frames
• Easing: a function that controls how tweening is calculated

4

Animation Terminology
In user interface programming, we use animation to draw attention to
UI elements, or to visually indicate change.

To do this, we typically animate numerical parameters that affect how
graphics are drawn over a period of time.

• parameters are often related to transformations
(e.g. translate X and Y position to animate drawing position)

• parameters can be anything numeric: fill, stroke weight, etc.
• animating non-numeric values (e.g. a String or Image) is possible, but

custom tweening methods are needed

5

Frame Rate
Measured in frames-per-second (fps). Can be expressed as Hertz
(Hz): International System of Units (SI) measure defined as one cycle
per second (e.g., 60 FPS = 60 Hz)

Common device and media frame rates:
• Hand-drawn animation: as low as 12 FPS, usually 24 fps
• GIFs: usually 15 to 24 fps
• Film: standard 24 fps, high framerate 60 fps
• Legacy Broadcast Television: NTSC: 30 fps*, PAL 25 fps*
• Computer displays: 60 fps or more
• Computer games: 60 fps or more
• Virtual Reality displays: 90 fps, 120 fps, or more

e.g. Loving Vincent. 12 fps. https://youtu.be/CGzKnyhYDQI

6

mailto:https://youtu.be/CGzKnyhYDQI

Basic Animation

Animation Using java.util.Timer

A timer triggers an event after some time period
1. Set time period to time interval for desired frame rate, e.g., 50 FPS

(i.e., frequency of 𝑓 = ⁄! "# 	𝐻𝑧, new frame every ⁄! "# 𝑠 = 20 𝑚𝑠
2. In the timer event handler

a) update parameters you want to animate
b) redraw an updated image for the frame

3. Restart the timer for the next interval

val animation = Timer().apply {
 scheduleAtFixedRate(object : TimerTask() {
 override fun run() {
 myCanvas.graphicsContext2D.apply {
 clearRect(0.0, 0.0, myCanvas.width, myCanvas.height)
 myDrawable.y += 2.0
 myDrawable.draw(myCanvas.graphicsContext2D)
 }
 }
 }, 0L, 20L)
} 8

Animation Using java.util.Timer

private val animation = Timer()

override fun start(stage: Stage) {
 val myDrawable = FillCirc(0.0, 0.0, 50.0, Color.GREEN, "Green Circle")
 val myCanvas = Canvas(480.0, 320.0)
 animation.apply {
 scheduleAtFixedRate(object : TimerTask() {
 override fun run() {
 myCanvas.graphicsContext2D.apply {
 clearRect(0.0, 0.0, myCanvas.width, myCanvas.height)
 myDrawable.y += 2.0
 myDrawable.draw(myCanvas.graphicsContext2D)
 }
 }
 }, 0L, 20L)
 }
 stage.title = "Hello CS349!"
 stage.scene = Scene(Group(myCanvas), myCanvas.width, myCanvas.height)
 stage.show()
}

override fun stop() {
 super.stop()
 animation.cancel()
}

9

Timers and the UI Thread
Many UI frameworks are single-threaded (including JavaFX)
• the event dispatch queue is one thread to avoid deadlocks and race

conditions due to unpredictable user-generated events

These UI frameworks are typically not thread-safe
• to reduce execution burden, complexity, etc.

Most modifications to the scene graph (and nodes it contains) must be
performed on the UI execution thread
• otherwise, an exception is thrown

This has implications for animation timers.

10

Animation Using java.util.Timer
val animation = Timer().apply {
 scheduleAtFixedRate(object : TimerTask() {
 override fun run() {
 myCanvas.graphicsContext2D.apply {
 clearRect(0.0, 0.0, myCanvas.width, myCanvas.height)
 myDrawable.y += 2.0
 myDrawable.draw(this)
 }
 }
 }, 0L, 20L)
}

java.util.Timer runs on a separate thread from the JavaFX
application thread!
This means that it may cause an exception if modifications to the
scene graph are attempted in the event handler.

11Demo: Animation/Timers

Animation Using java.util.Timer & Platform.runLater
val animation = Timer().apply {
 scheduleAtFixedRate(object : TimerTask() {
 override fun run() {
 Platform.runLater {
 myCanvas.graphicsContext2D.apply {
 clearRect(0.0, 0.0, myCanvas.width, myCanvas.height)
 myDrawable.y += 2.0
 myDrawable.draw(this)
 }
 }
 }
 }, 0L, 50L)
}

How do we update the UI from a different thread? Pass it as a Runnable
to the UI thread.

Platform.runLater runs the specified Runnable on the JavaFX
application thread (at the next available time, not specified).

12

Animation Using javafx.animation.AnimationTimer
val animation = object : AnimationTimer() {
 override fun handle(now: Long) {
 myCanvas.graphicsContext2D.apply {
 myDrawable.y += 2.0
 clearRect(0.0, 0.0, myCanvas.width, myCanvas.height)
 myDrawable.draw(this)
 }
 }
}.start()

AnimationTimer runs the specified Runnable on the JavaFX
UI thread at 60 fps.

Platform.runLater is not needed in this case, because this particular
timer (javafx package) is designed to safely run on the UI thread.

13Demo: Animation/Timers

Animation Control by the Drawable
Animation can be thought of as moving through a range from 0.0,
which represents the start state, to 1.0, which represents the end
state.

The animation value is mapped to one or more visual or
other property (e.g., location, colour, text), each with a
definition of start and end states.

14

Animation Control by the Drawable
While start and end states are known, intermediate states must be
calculated.
A basic approach for this is linear interpolation:

16

[propstart , propend] is the range for the property
we wish to animate. e.g. x coordinate, or color.

animValue is the value [0,1] that we use to
track progress through the animation

propcur is the derived value at any point in time

Animation Control by the Drawable
The start and end states of the property are associated with values 0.0
and 1.0 respectively, and intermediate values of the property 𝑝𝑟𝑜𝑝$%&
must be interpolated from the current value of the animation
𝑎𝑛𝑖𝑚𝑉𝑎𝑙𝑢𝑒$%& (“’tweening”).

𝑝𝑟𝑜𝑝 𝑎𝑛𝑖𝑚𝑉𝑎𝑙𝑢𝑒 = 𝑎𝑛𝑖𝑚𝑉𝑎𝑙𝑢𝑒 ∗ 𝑝𝑟𝑜𝑝'() − 𝑝𝑟𝑜𝑝*+,&+ + 𝑝𝑟𝑜𝑝*+,&+

17

Animation Control by the Drawable
Animation can be thought of as moving through a range from 0.0,
which represents the start state, to 1.0, which represents the end
state.

private var animValue = 0.0 // [0.0 ... 1.0]

The animation value is mapped to one or more visual or other property
(e.g., location, colour, text), each with a definition of start and end
states.
private var animPropStart = 0.0 // start state
private var animPropEnd = 200.0 // end state

This happens over a fixed time period for the animation (e.g. 1000 ms).

The value may also have a change rate per frame / call to animate.
private var animSpeed = 0.005

18

Animation Control by the Drawable
fun Double.lerp(min: Double, max: Double) : Double {
 return this * (max - min) + min
}

enum class Direction(val value: Double) { UP(-1.0), DOWN(1.0) }

private var animValue = 0.0 // [0.0 ... 1.0]
private var animSpeed = 0.005 // change to animValue per call
private var animDirection = Direction.DOWN
private var animPropertyStart = 50.0 // property start state
private var animPropertyEnd = 250.0 // property end state

override fun animate() {
 animValue += animSpeed * animDirection.value
 y = animValue.lerp(animPropertyStart, animPropertyEnd)
 when {
 animValue + animSpeed > 1.0 -> animDirection = Direction.UP
 animValue - animSpeed < 0.0 -> animDirection = Direction.DOWN
 }
}

19Demo: Animation/Linear

Smooth Animation

Easing
Oftentimes, linear interpolation is not good enough (“feels unnatural”),
and other types of interpolations would be preferred.

21

Easing

This can be achieved by “easing” the current animation value.

𝑝𝑟𝑜𝑝 𝑎𝑛𝑖𝑚𝑉𝑎𝑙𝑢𝑒 = 𝑒𝑎𝑠𝑒 𝑎𝑛𝑖𝑚𝑉𝑎𝑙𝑢𝑒 ∗ 𝑝𝑟𝑜𝑝'() − 𝑝𝑟𝑜𝑝*+,&+ + 𝑝𝑟𝑜𝑝*+,&+

fun Double.lerp(min: Double, max: Double) : Double {
 return this * (max - min) + min
}
fun easeIn(x: Double) : Double {
 return x.pow(2)
}
curProp = easeIn(animValue).lerp(animPropStart, animPropEnd) 22

Easing

Easing the animation value results in altering the x-axis.

23

Easing Functions

val flip = { x: Double -> 1.0 - x }
val easeIn = { x: Double -> x.pow(2) }
val easeOut = { x: Double -> flip(easeIn(flip(x))) }
val easeInOut = { x: Double -> x.lerp(easeIn(x), easeOut(x)) }

// interpolate value with no easing (i.e., linear)
curProp = animValue.lerp(animPropStart, animPropEnd)

24Demo: Animation/Tweening

Easing Functions

// interpolate value with easeIn (i.e., quadratic)
curProp = easeIn(animValue).lerp(animPropStart, animPropEnd)

// interpolate value with easeOut (i.e., flipped quadratic)
curProp = easeOut(animValue).lerp(animPropStart, animPropEnd)

//interpolate value with easeInOut
curProp = easeInOut(animValue).lerp(animPropStart, animPropEnd)

25

Easing Function Resources

26

• http://robertpenner.com/easing/
• https://greensock.com/docs/v3/Eases
• https://www.febucci.com/2018/08/easing-functions/

[VIDEO SOURCE] https://www.alanzucconi.com/2021/01/24/piecewise-interpolation/easing-curves//

http://robertpenner.com/easing/
https://greensock.com/docs/v3/Eases
https://www.febucci.com/2018/08/easing-functions/

Animation Using javafx.animation.Transition
Basic ‘tweening animations include:
• TranslateTransition, RotateTransition, ScaleTransition
• FillTransition, StrokeTransition
• FadeTransiton: dissolve node visibility in or out
• SequentialTransition: run multiple transitions in a sequence
• ParallelTransition: run multiple transitions at the same time

Available interpolations include:
• Interpolator.LINEAR
• Interpolator.DISCRETE
• Interpolator.EASE_IN
• Interpolator.EASE_OUT
• Interpolator.EASE_BOTH
• custom splines

27Demo: Animation/Transitions

Animation Using javafx.animation.Transition
override fun start(stage: Stage) {
 val drawable = Circle(20.0, 20.0, 20.0, Color.BLUE)
 val animation = TranslateTransition(Duration.millis(4000.0),
 drawable).apply {
 byY = 200.0
 interpolator = Interpolator.EASE_BOTH
 isAutoReverse = true
 cycleCount = Transition.INDEFINITE
 }
 animation.play()
 stage.title = "Hello CS349!"
 stage.scene = Scene(Group(drawable), 320.0, 240.0)
 stage.show()
}

28Demo: Animation/Transitions

Keyframe Animation

Key Frames and Timeline

A Timeline is a sequence of two (or more) Key
Frames.

A Key Frame defines an end point of a transition
of one or more Key Values.

A Key Value represents an object’s Property, its
desired value, and the method of interpolation.

30

Animation Using javafx.animation.Timeline

override fun start(stage: Stage) {
 val drawable = Circle(20.0, 20.0, 20.0, Color.BLUE)
 val animation = Timeline(KeyFrame(Duration.millis(4000.0),
 KeyValue(drawable.translateYProperty(),
 200.0,
 Interpolator.EASE_BOTH))).apply {
 cycleCount = Animation.INDEFINITE
 isAutoReverse = true
 }
 animation.play()

 stage.title = "Hello CS349!"
 stage.scene = Scene(Group(drawable), 320.0, 240.0)
 stage.show()
}

31Demo: Animation/Timeline

Key Frames and Timeline

A Timeline can have many keyframes to create
more complex transitions:
• Each key frame serves as a “snap shot” of one (or

more) properties at a certain time.
• Timeline calculates ‘tweens, i.e., the values of each

affected property for every frame.

• Key #0: 0.0s start state (auto-generated)
• Key #1: 1.8s fillProperty is #FFFF7F
• Key #2: 2.4s translateY-property is 0.0
• Key #3: 4.0s translateX-property is 200.0

translateY-property is 50.0

32

Animation Using javafx.animation.Timeline

override fun start(stage: Stage) {
 val drawable = Circle(20.0, 20.0, 20.0, Color.BLUE)
 val animation = Timeline(// Key #0 is auto-generated
 KeyFrame(Duration.millis(1800.0), // Key #1
 KeyValue(drawable.fillProperty(), Color.GREEN, ...)),
 KeyFrame(Duration.millis(2400.0), // Key #2
 KeyValue(drawable.translateXProperty(), 0.0, ...)),
 KeyFrame(Duration.millis(4000.0), // Key #3
 KeyValue(drawables[0].translateYProperty(), 200.0, ...),
 KeyValue(drawables[0].translateXProperty(), 50.0, ...))

).apply {
 cycleCount = Animation.INDEFINITE
 isAutoReverse = true
 }
 animation.play()

 stage.title = "Hello CS349!"
 stage.scene = Scene(Group(drawable), 320.0, 240.0)
 stage.show()
}

33Demo: Animation/Timeline

End of Chapter

34

Any further questions?

