
Input
Input Devices
Text Entry
Positional Input

June 21

Input Devices

General Purpose Input Devices
Most computing platforms use general purpose input devices

Often targeted at two high level tasks:
• text entry
• positional input

3

Specific Purpose Input Devices
Devices can be designed for very specific UI tasks
• e.g., iPod wheel

Some UI tasks are better with specific kinds of input devices
• e.g., drawing with a pen vs mouse

4

Specific Purpose Input Devices

5

Text Entry

Typewriters and QWERTY

Original design intended for typing on paper

QWERTY not designed to slow typing down.
Instead, designed to space “typebars” to
reduce jams and speed typing up

7

1874 QWERTY patent drawing

QWERTY Problems?
Common combinations
• awkward finger motions (e.g., t → r)
• jump over home row (e.g., b → r)
• all typed with one hand. (e.g., w → a → s, w → e → r → e)

On average more left-hand typing than right
About 16% of typing uses lower row, 52% top row, 32% home row

8

Dvorak Optimizations
Make common letters and digraphs easiest to type
• about 70% of keyboard strokes are on home row
• least common letters on bottom row (hardest row to reach)

Right hand does more typing (assumes most people are right-handed)

Has not caught on . Why?

9

Physical Keyboards
Tactile keys with activation by physical movement.

To reduce cost or increase portability, possible adjustments include:
• Rubber domes instead of springs
• Fewer and / or smaller keys
• Reduced key travel distance

Adjustment can interfere with typing efficiency

10

Minimal Numeric Keyboard

Repeated presses as text entry method
• Each number is mapped to multiple letters,

e.g., 2→{a,b,c}, 5→{j,k,l}, 6→{m,n,o}
• Letters are typed by pressing the associated

number multiple times, e.g., 2,2,2→c
• Words are typed by typing multiple letters,

e.g., 2,2→b, 6,6,6→o, [pause], 6,6,6→o,
5,5→k

Issues common to predictive text
• Generally slow due to number of button

presses
• Repeated letters require additional pause

11

Predictive Text for Minimal Numeric Keyboard

T9 as text entry method
• Each number is mapped to multiple letters,

e.g., 2→{a,b,c}, 5→{j,k,l}, 6→{m,n,o}
• Word are typed as a sequence of numbers,

e.g., 2–6–6–5
• The word is {a,b,c}–{m,n,o}–{m,n,o}–{j,k,l}
• Given this (ambiguous) set of characters, the

most likely word from a dictionary is
displayed, e.g., book over anno, cook, cool,
etc.

Issues common to predictive text
• “Collisions” between common ambiguous

words
• Entering words not in dictionary is difficult

12

Touch Keyboards

Problems:
• no tactile feedback makes it hard to

find the home row
• no tactile feedback makes it hard to

tell if key was pressed (solved by
vibration)

• resting of hands difficult
• small keys reduce accuracy

Advantage:
• portable, no extra hardware
• customizable keys (e.g., new

language, symbols, emojis)
• customizable layout and

functionality (e.g., swipe, thumb
layout)

13

Gestural Text Input

14

Chording Keyboards
Englebart’s NLS Keyboard
• Multiple keys together produce letter
• No hand “targeting”, potentially very fast
• Can be small and portable
• One handed

Thad Starner’s Twiddler
• for wearable computing input

15

Twiddler

NLS Keyboard

Text Recognition and Gestures

Gestural strokes for letter (e.g., Graffiti / Unistroke Gestures)
• Map single strokes to characters

Natural Handwriting recognition (e.g., iPad Scribble, Microsoft Ink to
Text)
• dictionary-based classification algorithms

16

Text Input Expert-User Input Rates

17

Device Input Rates

Qwerty Desktop 80+ WPM proficient
150 WPM record (sustained for 50 minutes)

Qwerty Thumb 60 WPM typical with training

Soft Keyboards 45 WPM

T9 45 WPM possible for experts

Gestural ~ ShapeWriter claims 80 WPM (expert)

Handwriting 33 WPM

Graffiti 2 9 WPM

ACII & Unicode
ASCII is a 1-byte encoding of the Latin alphabet.

Unicode is a superset of ASCII, that has replaced it in common use
• Values 0-127 have the same meaning in both (e.g., ‘A’ <=> 65)
• Uses multiple bytes to store character information, which greatly increases

the range of values
• Denoted as UTF-xx where xx is the minimum number of bits.

UTF-8 is the standard method of encoding characters
• Minimum 8 bits
• Capable of encoding all 1,112,064 code points in Unicode (characters,

control codes, other meaningful characters)

18

Text Validation
Interfaces often need to check text input typed by the user
• a required field (e.g., credit card number)
• a certain format (e.g., numeric, postal code, phone number)
• within a certain range (e.g., number between 0 and 100)
• unique (e.g., choose an unused username)

19

Guidelines for Text Validation
1. Prevent invalid input through constant validation.
2. Accept data formatted in different ways
3. Have different levels of text validation:

• Basic, in the View
• Intermediate, in the Model
• Thorough, in the backend

When input is invalid:

• Place error messages close to the source of the error
• Use colour to differentiate valid from invalid input

20

Regular Expressions (regex)
A sequence of characters that specifies a search pattern in text
• developed from language theory and theoretical computer science
• a regex pattern describes a deterministic finite automaton (DFA)

Please refer to
• https://regexone.com (Regex Tutorial)
• https://regex101.com (Regex Testing, Explanation, Reference)

21

https://regexone.com/
https://regex101.com/

Regular Expressions (regex)
Used in form validation to “test” if string can is correct format:
• Postal Code (upper case only, with space in between the two 3-tuples):
[A-Z][0-9][A-Z] [0-9][A-Z][0-9]

• Number (North American decimal separators required):
^-?[0-9]{1,3}(,[0-9]{3})*(\.[0-9]{1,2})?$

• Phone Number (10 digit North American, with some formatting options):
\(?[0-9]{3}\)?[.-]?[0-9]{3}[.-]?[0-9]{4}

22

Text Validation
Input validation that blocks illegal inputs (via pcType) and performs a final
check, including colour highlighting (via pcFinal):

val textInput = TextField().apply {
 promptText = "e.g., A1A 1A1"
 textFormatter = TextFormatter<String> {
 it.text = it.text.uppercase()
 val pcType = Regex("[A-Z]?[0-9]?[A-Z]? ?[0-9]?[A-Z]?[0-9]?")
 val pcFinal = Regex("[A-Z][0-9][A-Z] [0-9][A-Z][0-9]")
 if (pcType.matches(it.controlNewText)) {
 background = Background(BackgroundFill(
 if (pCodeFinal.matches(it.controlNewText))
 Color.GREEN else Color.YELLOW, null, null))
 it
 } else {
 null
 }
 }
}

23

Positional Input

Properties of Positional Input Devices
Displacement vs. Force Control
• Mouse = displacement
• (Analog) joystick = force

25

Properties of Positional Input Devices
Absolute vs. Relative Positioning
• Mouse = relative
• Touchscreen = absolute

Direct vs. Indirect Contact
• Mouse: indirect
• Touchscreen = direct

Degrees of Freedom (DOF): Number of
(continuous) dimensions sensed:
• Mouse: 2 (x,y), 3 (x,y,scroll)
• Touchscreen: 2 (x,y), 3 (x,y,force)
• Joysticks: 2+ (x,y,z,w, ...)

26

Displacement vs. Force Sensing
Isotonic devices measure displacement, e.g.,
• Mouse: optical sensor (x,y)
• Mouse: scroll wheel (scroll)

Isometric devices measure force, e.g.,
• Mouse: scroll “bar”, scroll “point” (scroll)
• Gamepad: left, right sticks

27

Direct vs. Indirect Input
Indirect: input position is controlled by a cursor which is controlled by
a device away from the display

Direct: input position is controlled by direct contact with the
corresponding display position

29

Absolute vs. Relative Position
Absolute position is a direct mapping of input device position to a
display input position

Relative position maps changes in input device position to changes in
cursor position

30

Direct vs. Indirect vs. Absolute vs. Relative Position

31

Indirect Direct

Absolute As Touchscreen

Relative
Mouse

???

Relative Positional Devices: Clutching
Clutching is a method to temporarily disconnect an input device from
controlling cursor position, for example, by lifting a mouse and moving
it to another location.

Relative positional movements will cause the device to drift and either
run out of space or become out of reach.

Clutching is necessary for any kind of relative position control device.

32

Relative Positional Devices: Control-Display Gain
Control-Display Gain (or CD Gain) is the ratio of display cursor
movement to device control movement
• The ratio is a scale factor (i.e., “gain”)
• Works for relative devices only

𝐶𝐷𝑔𝑎𝑖𝑛 =
𝑣!"#$%#
𝑣&'()!'

33

0 5 10

5

10

0 5 10

5

10

0 5 10

5

10

CDgain = 1 CDgain =
1
2

CDgain = 2

V
cu

rs
or

VdeviceVdevice Vdevice

V
cu

rs
or

V
cu

rs
or

Relative Positional Devices: Control-Display Gain

Dynamically change CD Gain based on device velocity
• can reduce the amount of clutching

34

Widget States for Positional Input
• default
• over (hovering)
• down (dragging)
• disabled

35

Implementing Dragging

data class DragInfo(var target : Shape? = null,
 var anchorX: Double = 0.0,
 var anchorY: Double = 0.0,
 var initialX: Double = 0.0,
 var initialY: Double = 0.0)
var dragInfo = DragInfo()

36

Implementing Dragging

val makeCircle = { x: Double, y: Double, r: Double, col: Color ->
 Circle(x, y, r, col).apply {
 addEventFilter(MouseEvent.MOUSE_PRESSED) {
 dragInfo = DragInfo(this, it.sceneX, it.sceneY,
 translateX, translateY)
 viewOrder -= 1000.0
 }
 addEventFilter(MouseEvent.MOUSE_DRAGGED) {
 }
 addEventFilter(MouseEvent.MOUSE_RELEASED) {
 dragInfo = DragInfo()
 viewOrder += 1000.0
 }
 }
}

37

Implementing Dragging

Here is an example on how to use the bubble phase of the parent to
modify its child after it has processed an event:

val circ1 = makeCircle(100.0, 100.0, 40.0, Color.RED)
val circ2 = makeCircle(200.0, 100.0, 40.0, Color.GREEN)

val pane = Pane(circ1, circ2).apply {
 addEventHandler(MouseEvent.MOUSE_DRAGGED) {
 dragInfo.target?.translateX = dragInfo.target!!.translateX -
 (dragInfo.target!!.translateX % 10)
 dragInfo.target?.translateY = dragInfo.target!!.translateY -
 (dragInfo.target!!.translateY % 10)
 }
}

38

End of the Chapter

• Remember the levels of text validation

39

Any further questions?

