Input Performance

KLM Fitts' Law

Jul 24

Input Performance Models

When designing a user interface, designers might have to choose between different designs. Implementing all of them, thought, might require too many resources. There must be a way to estimate the performance of a user interface without testing it.

ell	lo CS34	19!	_		×
М	IM/DD				
		Su	bmit		
					~
Hell	lo CS34	.9!	_		×
021	-	Apr	*	4	-
022		Su	bmit		
)21					
020					
19					
18					

KLM

Input Performance Models

There are models that abstract how people would use input devices and a user interface, which enables designers to predict time, error, fatigue, learning, etc.

Models most often focus on time and error, as they are easiest to measure.

	Hello	CS349	9!	_			×
2022	2-11-3	30					
< N	lovem	ber	>		< 202	22 >	
Sun.	Mon.	Tue.	Wed.	Thu.	Fri.	Sat.	
30	31	1	2	3	4	5	
6	7	8	9	10	11	12	
13	14	15	16	17	18	19	
20	21	22	23	24	25	26	
27	28	29	30	1	2	3	
4	5	6	7	8	9	10	

	Hello	CS34	9!	_			>	×
202	1-04-0)4						
<	Apri	il 🔅	>		< 202	21 >		
Sun.	Mon.	Tue.	Wed.	Thu.	Fri.	Sat.		
28	29	30	31	1	2	3		
4	5	6	7	8	9	10		
11	12	13	14	15	16	17		
18	19	20	21	22	23	24		
25	26	27	28	29	30	1		
2	3	4	5	6	7	8		

Keystroke Level Model (KLM)

When using KLM, describe each task with a sequence of operators:

- **K**: Keystroke: typing a single keyboard key
- **P**: Pointing: moving the mouse cursor from one location to another
- **B**: Button: pressing or releasing a mouse button
- **H**: Home: move hand between mouse and keyboard
- M: Mental Preparation: planning the next routine action, e.g., finding an icon on the screen.

Sum up times for each operator to estimate how long the task takes.

KLM Example

Hello CS349!	—	×
YYYY/MM/DD		
Su	bmit	

• Assumption: one hand on keyboard, one on the mouse

 Moving mouse to the TextField Clicking mouse button to set focus on TextField Switching to Keyboard Pressing 2 0 2 1 / 0 4 / 0 4 Switching to Mouse Moving mouse to the Button 	P BB H KKKKKKKKKK H P
 7. Clicking mouse button to activate Button 5. – 7. could have been replaced with 	BB
 5. – 7. Could have been replaced with 5. Press <tab> to move focus to Button</tab> 6. Press <space> to activate Button</space> 	K K

KLM Operators

Code	Ор	Time [s]	
		Novice typist	1.20
	Key typed	Average typist	0.28
К		Expert typist	0.12
		Random key	0.50
		Key combination	0.75
Р	Point cursor at targe	1.10	
В	Button pressed / rele	0.10	
н	Move hand	0.40	
М	Mental preparation		1.20+

KLM Example

🖪 Hello CS349! —	×	Hello CS349!	_	
YYYY/MM/DD		2021/04/04		
Submit		S	Submit	

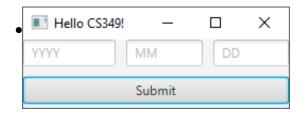
Assumption: one hand on keyboard, one on the mouse

1.	Ρ	1.1 s
2.	BB	0.2 s
3.	н	0.4 s
4.	KKKKKKKKK	2.8 s
5.	н	0.4 s
6.	Ρ	1.1 s
7.	BB	0.2 s = 6.2 s

5. – 7. could have been replaced with

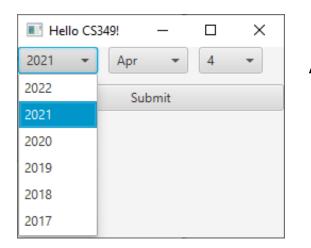
5. **K** 0.28 s

6. **K** 0.28 s = 5.06 s


KLM Examples

Use KLM to compare performance time of date entry widgets. Op Ti Assumption: one hand on keyboard, one on the mouse K

Hello CS349!	_		×		
YYYY/MM/DD					
Submit					


P BB H KKKKKKKKKK K K = 5.06 s
2021/04/04 <tab> <space></space></tab>

5.	Ор	Time [s]
	Κ	0.28
	Ρ	1.10
	В	0.10
	н	0.40
	Μ	1.20+

Assumption: cursor jumps to next field P BB H KKKK KK KK K = 4.22 s

2021 04 04 <SPACE>

Assumption: auto-select P BB H KKKK K K K K K K K = 4.5 s

2021 <TAB> A <TAB> 4 <TAB> <SPACE>

Including Mental Operators (M)

Most actions when interacting with a UI do not require conscientious cognitive processing. Sometimes, however, users need to contemplate or strategize their actions beforehand. This can be modelled by one (or multiple) **M** operations.

Examples include:

- initiating a new task: e.g., typing a text, then changing the text font.
- retrieving information from semantic (long-term) memory
- find something on the display: e.g., finding a currently visible icon
- think of a task parameter: e.g., setting font-size
- verify that a specification / action is correct (i.e., evaluate feedback)

Including Mental Operators (M)

Task: Make the text red.

Assumption: text highlighted, mouse over text

- Find "Fill and Stroke"-menu:
- Move mouse cursor to menu and click:
- Move mouse cursor to "R"-bar:
- Contemplate value of red (being undecisive):
- Move mouse to the right value and click:

PBB 1.3 s P 1.1 s	Μ	1.2 s
P 1.1 s	P BB	1.3 s
	Р	1.1 s
MM 2.4 s	MM	2.4 s
P BB 1.3 s = 7.3 s	P BB	1.3 s = 7.3 s

υ, , , , , , , , , , , , , , , , , , ,	الــــا 🗄 Align and Distribute (Shift+Ctrl+A) 🛛 🗷	v, , , , , , , , , , , , , , , , , , ,	⊥ ² J ² Fill and Stroke (Shift+Ctrl+F) ④ ℝ
	Align		Eill □ Stroke paint
	Relative to: Last selected 🗸		
	<u>T</u> reat selection as group:		× • • • •
	d t t t t t t t t t t t t t t t t t t t		Flat color RGB HSL CMYK Wheel CMS
	ng the true as		
	Distribute		<u>G</u> :
	669 669 669 669 669 669 669 669 669 669		<u>B</u> :
(S349)		(5349)	<u>A</u> :
	Rearrange		-
	~ 단 칼 장 강 ~		RGBA: ca0000ff
	Remove overlaps		Blur (%) 0.0 📮
	<u>H</u> : 0.0 ♥ ⊻: 0.0 ♥		Opacity (%) 100.0
	Hign and Distribute (Shift+Ctrl+A)		Hign and Distribute (Shift+Ctrl+A)
	Export PNG Image (Shift+Ctrl+E)		Export PNG Image (Shift+ Ctrl+E)
	Fill and Stroke (Shift+Ctrl+F)		Fill and Stroke (Shift+Ctrl+F)

KLM Critique

Advantages:

- Easy to model
- Does not require mockup, prototype, or implementation

Disadvantages:

- Some time estimates are generalizing too much
- Some time estimates are inherently variable

KLM Critique

KLM does not model pointing well and instead uses constant 1.1 s for pointing:

- some pointing devices are faster than others
- intuitively, it should take longer to move the mouse a long distance, or point at a small target

Fitts' Law

Fitts' Law

Fitts' Law is a predictive model for pointing time considering pointing device, travel distance, and target size.

- based on rapid, aimed movements
- works for many kinds of pointing "devices": finger, pen, mouse, joystick, foot, ..

Paul Fitts

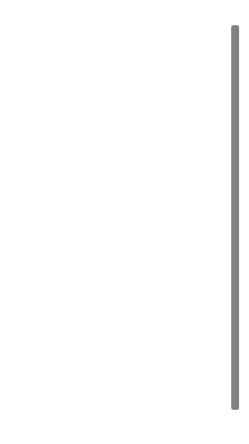
- Psychologist at Ohio State University
- Early advocate of user-centred design (in terms of matching system to human capabilities)

Distance vs. Size

The travel distance D proportional to the movement time MT, and the target size S is negatively proportional the **time** MT:

$$MT \propto \frac{D}{S}$$

The actual law is slightly more complex (and precise):


$$MT = a + b \log_2\left(\frac{D}{W} + 1\right)$$

- MT is mean-time
- a & b are device-specific constants
- D is the distance to the target
- W is the target width

Fitts' Law Tests

How did we derive the formula? Experimentation!

When blue rectangle appears, click on it as fast as possible <u>http://ergo.human.cornell.edu/FittsLaw/FittsLaw.html</u>

Fitts' Law Tests

When blue rectangle appears, click on it as fast as possible

http://www.simonwallner.at/ext/fitts/

Randomize! randomize after round
Width: 80
Data Sets: (click to make active) Data Set 1 delete! Data Set 2 delete! Add Data Set delete!

fig. 1a: Test Area: Try to click the red circle as fast as possible but at the same time try to avoid errors.

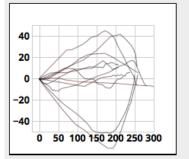


fig. 1b: Deviation form straigh path over path distance in px.

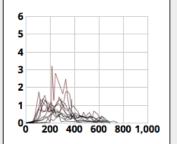


fig. 1c: Movement speed in px/ms over time in ms.

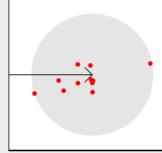


fig. 1d: Click position relative to approach direction.

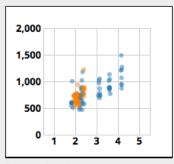


fig. 1e: Time in ms over ID.

Index of Difficulty

$$MT = a + b \log_2 \left(\frac{D}{W} + 1\right)$$

ID (Index of Difficulty)
IP (Index of Performance): 1/b

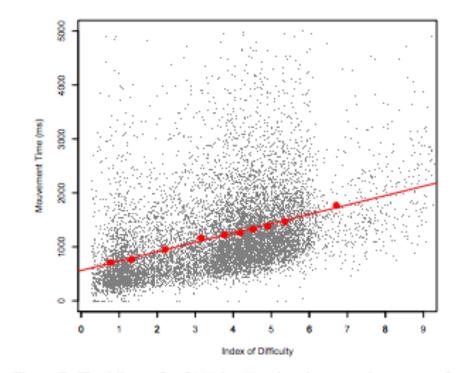


Figure 7. Fitts' linear fit of *MT* by *ID* using the averaging process for one user (# 4). Small (black) points represent all the points. Large (red) points are the means of each quantile.

Fitts' Law in the Wild

• Large scale study logging cursor movements with real applications

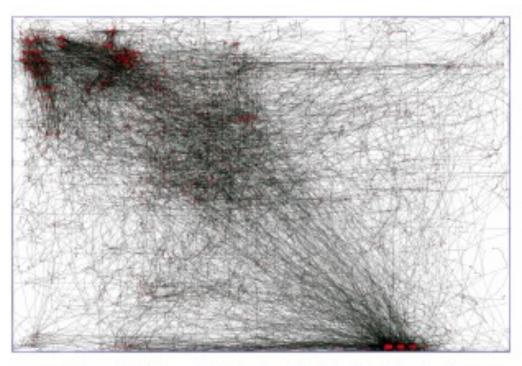


Figure 1. Mouse trajectories (black) and clicks (red).

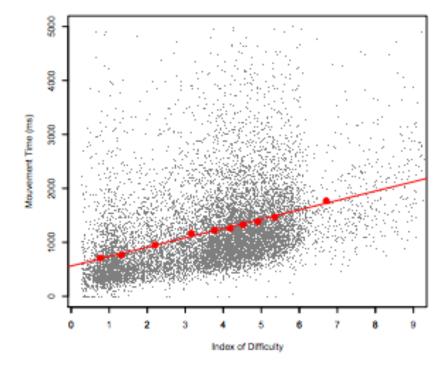
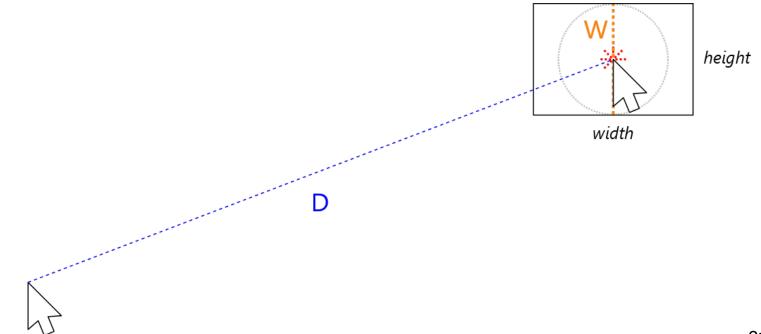
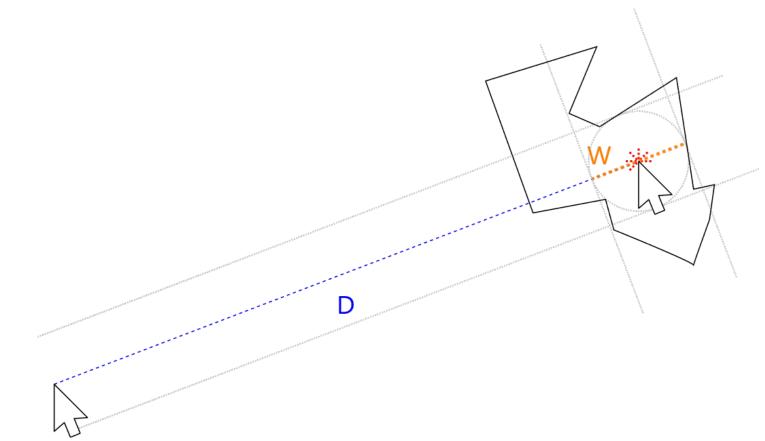



Figure 7. Fitts' linear fit of *MT* by *ID* using the averaging process for one user (# 4). Small (black) points represent all the points. Large (red) points are the means of each quantile.

2D Targets: *W* as Minimum of Target width and height

$$MT = a + b \log_2\left(\frac{D}{W} + 1\right)$$


For simplification, we usually interpret W as the minimum of the targets' width and height: $W = \min(width, height)$.

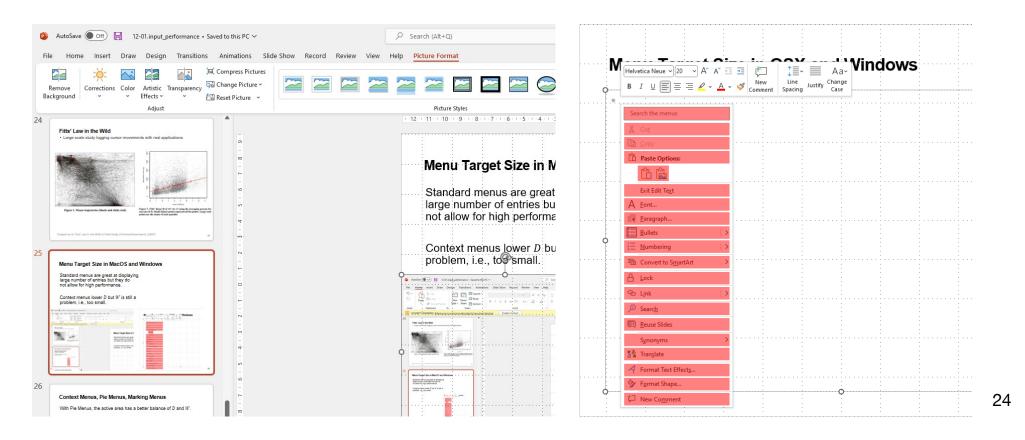
2D Targets: W as Cross Section of the Pointer Trajectory


W can be interpreted as the minimum error a user can make along the moving direction ("overshooting") and perpendicular to it ("off-target").

W can be represented as largest circle that can be inscribed in the target.

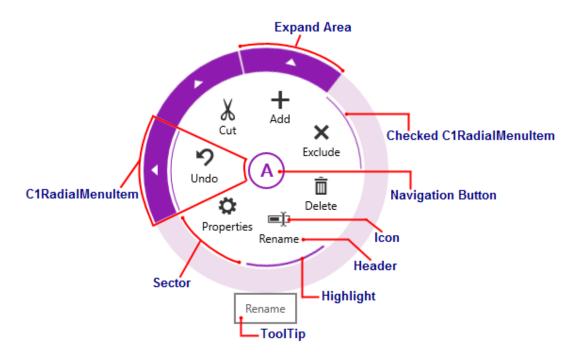
Example

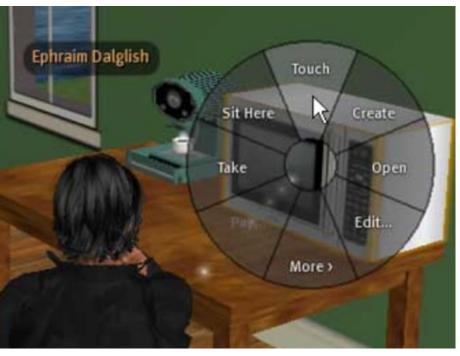
- 1. Checkbox vs
- 2. Labelled checkbox vs
- 3. Labeled checkbox w. margins

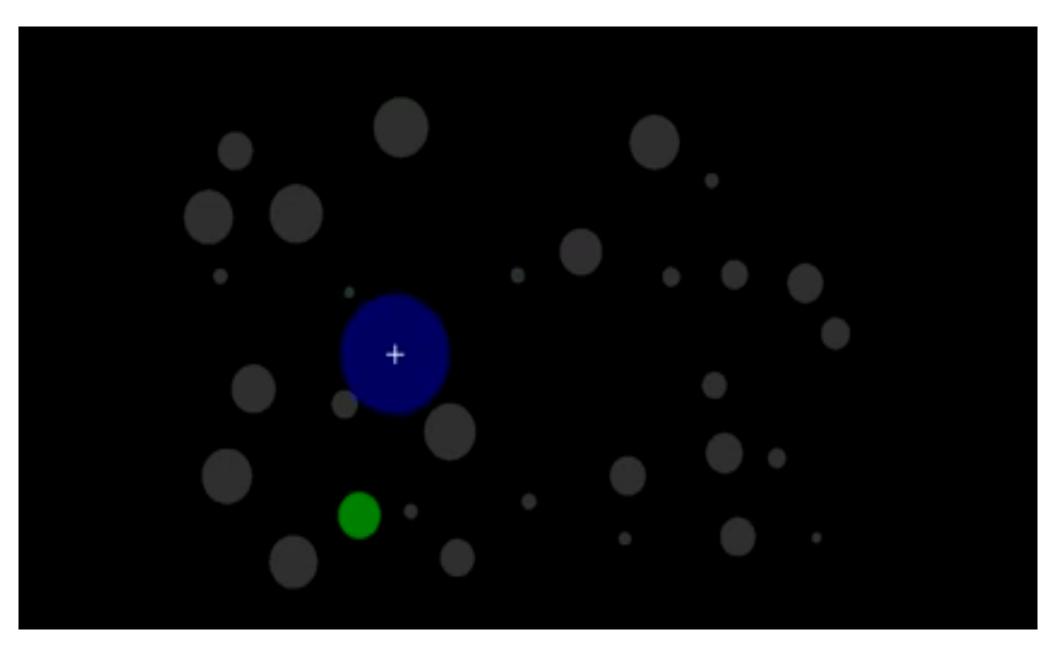


Assuming:
$$a = 150, b = 450$$
:
1. $MT = a + b \log_2 \left(\frac{500}{18} + 1\right) = a + 4.85b \Rightarrow MT = 2331 \text{ ms} = 2.33 \text{ s}$
2. $MT = a + b \log_2 \left(\frac{445}{18} + 1\right) = a + 4.49b \Rightarrow MT = 2258 \text{ ms} = 2.26 \text{ s}$
3. $MT = a + b \log_2 \left(\frac{425}{54} + 1\right) = a + 3.15b \Rightarrow MT = 1567 \text{ ms} = 1.57 \text{ s}$

Menu Target Size in MacOS and Windows


Standard menus are great at displaying large number of entries, but they do not allow for high performance.


Context menus lower *D*, but *W* is still a problem, i.e., too small.



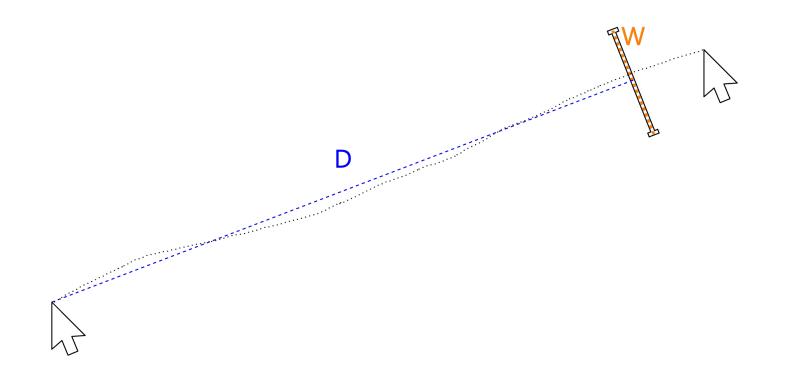
Context Menus, Pie Menus, Marking Menus

With Pie menus or radial menus, the active area has a better balance of *D* and *W*.

Bubble Cursor (Grossman and Balakrishnan, 2005) http://youtu.be/JUBXkD_8ZeQ

Motor Space vs. Visual Space

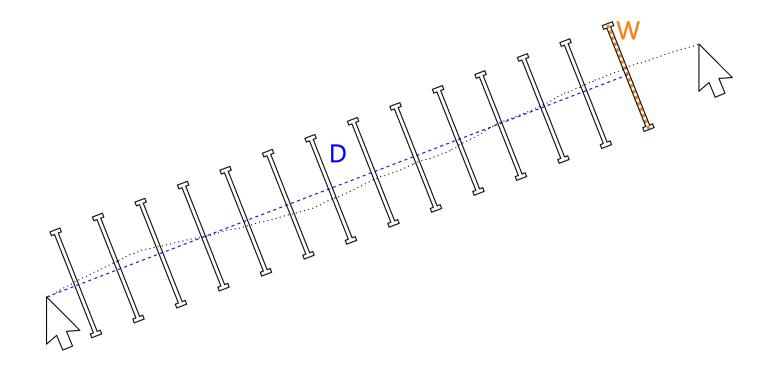
Dynamically change CD Gain based on position of cursor:


 Make the cursor move more slowly when over the save button makes it larger in "motor space" even though it looks the same size in "screen space".

Hello CS349!	_		×
Normal	Sticky		

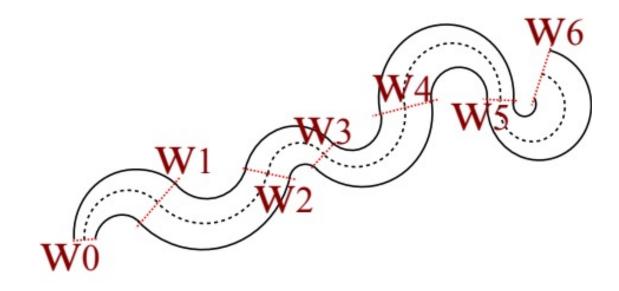
Crossing Selection

Steering the cursor through a target of width W.

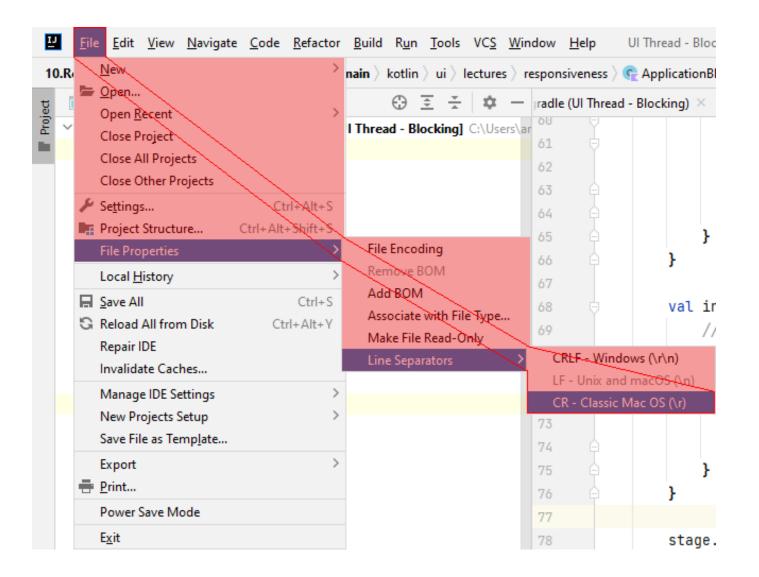

• Fitts' Law is valid for this task as well.

Steering Law

Steering a cursor along a path without exiting the imaginary "tunnel".


• An adaptation of Fitts' Law: $MT = a + \frac{b}{\ln 2} \times \frac{D}{W} = a + \tilde{b} \frac{D}{W}$

Steering Law for Irregular Paths


Steering a cursor through along a path of varying width.

• An extension of Fitts' Law: $MT = a + \tilde{b} \int_0^A \frac{1}{W(s)} ds$

Steering Law

Moving through a constrained path takes longer

End of the Chapter

