
Input Performance
KLM
Fitts’ Law

Jul 24

Input Performance Models
When designing a user interface, designers might have to choose
between different designs. Implementing all of them, thought, might
require too many resources. There must be a way to estimate the
performance of a user interface without testing it.

2

KLM

Input Performance Models
There are models that abstract how people would use input devices
and a user interface, which enables designers to predict time, error,
fatigue, learning, etc.

Models most often focus on time and error, as they are easiest to
measure.

4

Keystroke Level Model (KLM)
When using KLM, describe each task with a sequence of operators:
• K: Keystroke: typing a single keyboard key
• P: Pointing: moving the mouse cursor from one location to another
• B: Button: pressing or releasing a mouse button
• H: Home: move hand between mouse and keyboard
• M: Mental Preparation: planning the next routine action, e.g., finding an

 icon on the screen.

Sum up times for each operator to estimate how long the task takes.

5

KLM Example

• Assumption: one hand on keyboard, one on the mouse
1. Moving mouse to the TextField P
2. Clicking mouse button to set focus on TextField BB
3. Switching to Keyboard H
4. Pressing 2 0 2 1 / 0 4 / 0 4 KKKKKKKKKK
5. Switching to Mouse H
6. Moving mouse to the Button P
7. Clicking mouse button to activate Button BB

5. – 7. could have been replaced with
5. Press <TAB> to move focus to Button K
6. Press <SPACE> to activate Button K

6

KLM Operators

7

Code Operation Time [s]

K Key typed

Novice typist 1.20
Average typist 0.28
Expert typist 0.12
Random key 0.50

Key combination 0.75
P Point cursor at target 1.10
B Button pressed / released 0.10
H Move hand 0.40
M Mental preparation 1.20+

KLM Example

Assumption: one hand on keyboard, one on the mouse
1. P 1.1 s
2. BB 0.2 s
3. H 0.4 s
4. KKKKKKKKKK 2.8 s
5. H 0.4 s
6. P 1.1 s
7. BB 0.2 s = 6.2 s

5. – 7. could have been replaced with
5. K 0.28 s
6. K 0.28 s = 5.06 s

8

KLM Examples
Use KLM to compare performance time of date entry widgets.

Assumption: one hand on keyboard, one on the mouse

P BB H KKKKKKKKKK K K = 5.06 s
• 2021/04/04 <TAB> <SPACE>

• Assumption: cursor jumps to next field
P BB H KKKK KK KK K = 4.22 s

2021 04 04 <SPACE>

Assumption: auto-select
P BB H KKKK K K K K K K = 4.5 s

2021 <TAB> A <TAB> 4 <TAB> <SPACE>

9

Op Time [s]

K 0.28
P 1.10
B 0.10
H 0.40
M 1.20+

Including Mental Operators (M)
Most actions when interacting with a UI do not require conscientious
cognitive processing. Sometimes, however, users need to contemplate
or strategize their actions beforehand. This can be modelled by one (or
multiple) M operations.

Examples include:
• initiating a new task: e.g., typing a text, then changing the text font.
• retrieving information from semantic (long-term) memory
• find something on the display: e.g., finding a currently visible icon
• think of a task parameter: e.g., setting font-size
• verify that a specification / action is correct (i.e., evaluate feedback)

10

Including Mental Operators (M)
Task: Make the text red.
Assumption: text highlighted, mouse over text
• Find “Fill and Stroke”-menu: M 1.2 s
• Move mouse cursor to menu and click: P BB 1.3 s
• Move mouse cursor to “R”-bar: P 1.1 s
• Contemplate value of red (being undecisive): MM 2.4 s
• Move mouse to the right value and click: P BB 1.3 s = 7.3 s

11

KLM Critique
Advantages:
• Easy to model
• Does not require mockup, prototype, or implementation

Disadvantages:
• Some time estimates are generalizing too much
• Some time estimates are inherently variable

12

KLM Critique
KLM does not model pointing well and instead uses constant 1.1 s for
pointing:
• some pointing devices are faster than others
• intuitively, it should take longer to move the mouse a long distance, or point

at a small target

13

Fitts’ Law

Fitts’ Law
Fitts’ Law is a predictive model for pointing time considering pointing
device, travel distance, and target size.
• based on rapid, aimed movements
• works for many kinds of pointing “devices”: finger, pen, mouse, joystick,

foot, ..

Paul Fitts
• Psychologist at Ohio State University
• Early advocate of user-centred design

(in terms of matching system to human
 capabilities)

15

Distance vs. Size
The travel distance 𝐷 proportional to the movement time 𝑀𝑇, and the
target size 𝑆 is negatively proportional the time 𝑀𝑇:

𝑀𝑇 ∝
𝐷
𝑆

16

𝑀𝑇 = 𝑎 + 𝑏 log!
𝐷
𝑊
+ 1

The actual law is slightly more complex (and precise):

• MT is mean-time
• a & b are device-specific constants
• D is the distance to the target
• W is the target width

Fitts’ Law Tests
How did we derive the formula? Experimentation!

When blue rectangle appears, click on it as fast as possible
http://ergo.human.cornell.edu/FittsLaw/FittsLaw.html

17

http://ergo.human.cornell.edu/FittsLaw/FittsLaw.html

Fitts’ Law Tests
When blue rectangle appears, click on it as fast as possible

http://www.simonwallner.at/ext/fitts/

18

http://www.simonwallner.at/ext/fitts/

Index of Difficulty

𝑀𝑇 = 𝑎 + 𝑏 log!
"
#
+ 1

ID (Index of Difficulty)
IP (Index of Performance): ⁄$ %

19

Fitts’ Law in the Wild

20

• Large scale study logging cursor movements with real applications

Chapuis et al. Fitts' Law in the Wild: A Field Study of Aimed Movements (2007)

2D Targets: 𝑾 as Minimum of Target width and height

𝑀𝑇 = 𝑎 + 𝑏 log!
𝐷
𝑊
+ 1

For simplification, we usually interpret W as the minimum of the targets’
𝑤𝑖𝑑𝑡ℎ and ℎ𝑒𝑖𝑔ℎ𝑡: 𝑊 = min 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡 .

21

2D Targets: 𝑾 as Cross Section of the Pointer Trajectory
𝑊 can be interpreted as the minimum error a user can make along the
moving direction (“overshooting”) and perpendicular to it (“off-target”).

𝑊 can be represented as largest circle that can be inscribed in the
target.

22

Example
1. Checkbox vs
2. Labelled checkbox vs
3. Labeled checkbox w. margins

Assuming: 𝑎 = 150, 𝑏 = 450:
1. 𝑀𝑇 = 𝑎 + 𝑏 log!

&''
$(
+ 1 = 𝑎 + 4.85𝑏 ⇒ 𝑀𝑇 = 2331 ms = 2.33 s

2. 𝑀𝑇 = 𝑎 + 𝑏 log!
))&
$(
+ 1 = 𝑎 + 4.49𝑏 ⇒ 𝑀𝑇 = 2258 ms = 2.26 s

3. 𝑀𝑇 = 𝑎 + 𝑏 log!
)!&
&)
+ 1 = 𝑎 + 3.15𝑏 ⇒ 𝑀𝑇 = 1567 ms = 1.57 s

23

Menu Target Size in MacOS and Windows
Standard menus are great at displaying large number of entries, but
they do not allow for high performance.

Context menus lower 𝐷, but 𝑊 is still a problem, i.e., too small.

24

Context Menus, Pie Menus, Marking Menus
With Pie menus or radial menus, the active area has a better balance of
𝐷 and 𝑊.

25

Bubble Cursor (Grossman and Balakrishnan, 2005) http://youtu.be/JUBXkD_8ZeQ

26

http://youtu.be/JUBXkD_8ZeQ

Motor Space vs. Visual Space

27

Dynamically change CD Gain based on position of cursor:
• Make the cursor move more slowly when over the save button makes it

larger in “motor space” even though it looks the same size in “screen
space”.

var prevCoords = Point2D(0.0, 0.0)
val btnSticky = Button("Sticky").apply {
 addEventFilter(MouseEvent.MOUSE_ENTERED) {
 prevCoords = Point2D(it.screenX, it.screenY)
 }
 addEventHandler(MouseEvent.MOUSE_MOVED) {
 prevCoords = Point2D(prevCoords.x + (it.screenX - prevCoords.x) / 4.0,
 prevCoords.y + (it.screenY - prevCoords.y) / 4.0)
 Robot().mouseMove(prevCoords.x, prevCoords.y)
 }
}

Crossing Selection
Steering the cursor through a target of width 𝑊.
• Fitts’ Law is valid for this task as well.

28

Steering Law
Steering a cursor along a path without exiting the imaginary "tunnel“.
• An adaptation of Fitts’ Law: 𝑀𝑇 = 𝑎 + !

"# $
× %
&
= 𝑎 + '𝑏 %

&

29

Steering Law for Irregular Paths
Steering a cursor through along a path of varying width.
• An extension of Fitts’ Law: 𝑀𝑇 = 𝑎 + '𝑏 ∫'

()
& *

𝑑𝑠

30

Steering Law
Moving through a constrained path takes longer

31

End of the Chapter

32

Any further questions?

