
Web Application Technologies

▪ Git and Gitlab

▪ VS Code

▪ Node.js

▪ npm

▪ Chrome/Chromium

▪ Vite

▪ SimpleKit and Preact

Web Apps 1

Web Applications

2

▪ A software interface accessed through a web browser

▪ The browser acts like an operating system

- handles input, provides canvas for drawing, etc.

- provides UI toolkit (HTML, CSS)

- provides "machine code" layer (i.e. JavaScript complier)

▪ Web apps typically delivered to users from a server

- can be designed to run offline (Progressive Web Apps, Electron)

▪ Conceptual split between user interface and “business logic”

- UI is client-side, business logic is server-side

▪ Historical connection to early client-server architectures

Web Apps

MVC

3

Model

View

Controller

notify

change

translate

present

perceive

express

Data

▪ Useful to consider data store as well

Web Apps

MVC View of Early Web Apps

4

▪ Model on server sends webpage to browser to render the View

▪ Controller in browser sends user events to Model on server

- click on hyperlink, submit form, etc.

▪ Model processes changes, then sends new webpage to browser ...

ServerBrowser

Model

View

Controller

notify

change

translate

present

perceive

express

Data

Note a recent trend moving back to this
with, e.g. SSR with hydration, HTMX

Web Apps

MVC View of a Single Page Application (SPA)

5

▪ Browser handles full MVC cycle with data persisted on a server

▪ Model can request server data/processing too (e.g. Web APIs)

▪ In CS349, we focus on SPAs without server data/processing

ServerBrowser

Model

View

Controller

notify

change

translate

present

perceive

express

Data

Web Apps

CS 349 Development Environment

6

You're required to use a specific “stack” of "web dev" software

- to mitigate compatibility issues and enable us to provide support

▪ Development environment:

- Git and Gitlab source code management

- VS Code editor

- Node development server

- npm package manager

- Chrome/Chromium browser

- Vite front-end tooling

- TypeScript language (details next lecture)

- UI Frameworks (SimpleKit, Preact)

A0 is a small assignment to setup your development environment:

(1) you must use the software versions specified in A0;

(2) you must submit A0 before submitting any other assignments.

Web Apps

Git and Gitlab

7Web Apps

Git

▪ A version control system

- tracks and manages changes to source code over time

▪ Benefits

- enables multiple developers to collaborate on same source code

- supports independent streams of changes, i.e. branching and merging

- tracing changes to find bugs, audit code, etc.

- secure and safe storage of source code

▪ Command line based, but integrated into editors (e.g. VS Code)

- here are standalone GUIs, but not necessary for this course

▪ Install:

- https://git-scm.com/downloads

8

https://git-scm.com/downloads

Git commit

9

▪ Core conceptual unit in Git is the commit

- snapshots of "tracked" files as they change over time

- every commit is an explicit action:

git commit –m "fixed bugs"

commits over time

Web Apps

Git Concepts

▪ Git is designed around a distributed model:

- Working Directory: a local copy of source code

- Staging Area: intermediate area where commits are reviewed

before completing the commit

- Repository (Repo): a data structure of commits, usually there's a

"local repo" on your machine and a "remote repo" on a server

working dir

staging area

local repo

remote repo

git add

git commit

git push git pull

Web Apps 10

Git Commands

▪ Common commands move files between working directory,

staging area, and the local and remote repos

▪ Commands to manipulate the staging area and commits:

git init

git add <file>

git commit –m "description"

git status

▪ Commands to synchronize with a remote repository:

git clone username@host:/path/to/repository

git pull

git push

See also: https://education.github.com/git-cheat-sheet-education.pdf

create new empty local repo

add file from working directory to staging area

commit changes from staging area to local repo

Display list of changed files and staged files

make a copy of a repo

merge commits in remote repo with local repo

send commits in local repo to remote repo

Web Apps 11

https://education.github.com/git-cheat-sheet-education.pdf

Typical Git Workflow

1. Get copy of a remote repo on your computer

git clone username@host:/path/to/repository

2. Update your source code in the local repo:

3. Add all source code updates to the staging area

git add -A

4. Check staging status to verify everything is ready to commit

git status

5. Make the commit

git commit –m "desc of commit"

6. Push changes to remote repo

git push

7. Go to step 2

New file

git add <file>

Delete file

git rm <file>

Rename file

git mv <old> <new>

Edit file

just edit it!

you don't have to push every
commit to the server right away,
can build up commits in local
repo then push all at once

Web Apps 12

.gitignore

13

▪ A file to specify untracked files that Git should ignore

- Some frameworks and development tools provide a .gitignore

- Good practice to create a master .gitignore for a repo in the root

▪ Tool to generate a good base gitignore:

- https://www.toptal.com/developers/gitignore

- ignore tags for CS 349: node, react, macos, linux, windows

Web Apps

.DS_Store

https://www.toptal.com/developers/gitignore

Ignoring files that are already tracked

14

▪ What if you track a file, then want to ignore it later?

- i.e. you forgot to ignore it when setting up your repo

▪ Files already tracked are not affected by changes to .gitignore

▪ If you want to ignore a file that was tracked by accident

git rm --cached [filename]

git add --all

git commit -m "removed files tracked by mistake"

▪ If you want to ignore all files that were tracked by accident:

git rm --cached -r [directory]

git add --all

git commit -m "cleaning files that should have been ignored"

cached flag means remove from
git not filesystem

BE CAREFUL -r is recursive delete

Web Apps

Gitlab

15

▪ Store and manage Git repos, a "remote repo"

- similar to GitHub

▪ UWaterloo hosts its own GitLab installation:

https://git.uwaterloo.ca/

- uses standard UWaterloo SSO authentication

▪ We use this for demo code and assignments in CS349

... but you can create personal repos too!

I think we host it?

Web Apps

https://git.uwaterloo.ca/

Clone CS349 Demo Code Repo

16Web Apps

local dir to
put repo

You should have lecture demo files in a local repo on your machine, and

you should keep them up to date throughout the term.

1. Get a local copy of the cs349 demo code repo on your machine:

 git clone https://git.uwaterloo.ca/cs349/public/1251 demos

2. Follow the “Setup” instructions in the README

- especially to initialize SimpleKit git submodule

3. Follow “Keeping Up to Date” instructions in README

- some special setup and methods due to SimpleKit git submodule

Web Apps

Clone Your CS349 Assignment Repo

17

Get a copy of your assignment repo on your machine:

git clone https://git.uwaterloo.ca/cs349-winter2025/mbrehmer assignments

Check the remote repo links with git remote –v

You'll use this directory to work on your assignments

▪ Update your source code and commit locally often

▪ Push commits to your remote repo often

local dir to
put repo

your uwid

VS Code

18Web Apps

VS Code ("Visual Studio Code")

19

▪ Powerful source code editor for Windows, macOS, and Linux

▪ Built-in support for JavaScript, TypeScript, and Node.js.

- huge ecosystem of extensions for other languages and runtimes

(e.g. C++, C#, Java, Python, PHP, Go, .NET)

▪ From Microsoft, it's free, it's "built on open source"

- it's not the same as Microsoft Visual Studio IDE

▪ VS Code is built using web technologies

- JavaScript, Node.js, etc.

- Packaged as a desktop app using the Electron Framework

▪ Download and install:

- https://code.visualstudio.com/

Web Apps

https://www.electronjs.org/
https://code.visualstudio.com/

Workspaces

20

▪ VS Code uses the concept of a "workspace"

- In most cases, this is just a root directory to your source code

- "create" a workspace by dragging folder onto VS Code window,

then "Save as Workspace"

Web Apps

Some Notable Features

21

▪ Command Pallet

- CMD SHIFT P

▪ Built-in terminal

- CMD J to hide/show terminal

▪ Fix problem

- CMD .

▪ Region Folding

//#region This can be hidden

...

//#endregion

Web Apps

Git Integration

22

▪ You can clone, add, commit, push, pull, and more in VS Code

▪ Setup and usage instructions:

- https://code.visualstudio.com/docs/sourcecontrol/intro-to-git

- (instructions apply to GitLab too, just use CS349 repo URLs)

Web Apps

https://code.visualstudio.com/docs/sourcecontrol/intro-to-git

VS Code Git Demo

23

▪ Clone repo

▪ drag folder into VS Code

▪ edit README.md

▪ Stage (+), then enter msg and commit

▪ Push (i.e. “Sync Changes”)

▪ Save workspace

▪ Check status

▪ Add .gitignore file with *.code-workspace

▪ Check status to see it's gone

▪ Create file.txt

▪ Enter msg and commit

Web Apps

VS Code Extensions

24

Many VS Code extensions available and they're easy to install

- always check if functionality already in VS Code, a lot is

Required for CS 349: Prettier

- opinionated code formatting

- set it as formatter by calling format (e.g. SHIFT-OPTION-F)

- configure VS Code to “format on save”

Optional: GitHub CoPilot

- AI code completion and code generation

- good for learning about how to use an API

- fine for generating small functions that aren’t focus of course

- often makes mistakes, you must understand what it generates

- you must document where you used it in assignments

Web Apps

Font Ligatures

25

▪ Ligature: a unique character created by joining multiple characters

 <= === => becomes

▪ Easy to add to VS Code

- install a font with ligatures, like Fira Code

- configure a VS Code setting

Web Apps

Node.js

26Web Apps

Node.js

27

▪ An open-source, cross-platform JavaScript runtime environment

- event driven and asynchronous

- can be used to develop server-side applications

- also useful for webdev toolchains, transpiling, dev server, etc.

▪ We won't use Node.js directly in this course

▪ Install options

- download installer from https://nodejs.org/en

- use package manager (e.g. HomeBrew on MacOS)

- use nvm (Node Version Manager)

Web Apps

https://nodejs.org/en

npm

28Web Apps

npm

29

▪ Installed with Node.js

▪ A library/registry of JavaScript software packages

- name means "Node Package Manager", but does more now

▪ Command-line tools to:

- install packages

- manage dependencies

- manage development environment by running scripts

Web Apps

npm denies this

Common npm usage

30

▪ Initialize Node project

npm init or npm create # alias for init

▪ Install a package from the npm library/registry

npm install <package> or npm i <package>

- install options

--save-dev # package is for development only

-g # install package globally (i.e. in your system)

▪ Run script

npm run <script-name>

▪ List installed packages

npm list or npm list –g # to list global packages

▪ List outdated packages

npm outdated

▪ Update a package

npm update <package> or npm up <package>

we'll see this form with Vite

Web Apps

Returns nothing if not outdated

Node project files

31

package.json
- list of all packages installed in project

- every npm install adds to this file, often with many

dependent packages as well

- has information to re-create installed packages

node init # if package.json exists, installs all packages

- add to your repo

package-lock.json
- information to more precisely reproduce /node_modules

- add to your repo

node_modules/
- quickly becomes very large, 1000s of small files

- important to ignore node_modules/ (must be in .gitignore)

- avoid synching with Dropbox, GDrive, etc.

- can just delete it, then run npm install to re-install all packages
Web Apps

npx (Node Package Execute)

32

▪ execute an arbitrary command from an npm package (either one

installed locally, or fetched remotely), in a similar context as

running it via npm exec

▪ Example:

npx some-package

- If some-package is in your path (i.e. it was installed using npm),

then it runs the local version of the package

- If some-package is not in your path (i.e. not installed),

then it downloads the latest version of the package and runs it

Web Apps

Chrome and Chromium

33Web Apps

Google Chrome or Chromium Browser

34

▪ You're required to use a standard browser in this course

- Latest stable release of Chrome:

https://www.google.com/intl/en_ca/chrome/

- Chromium if you'd prefer to stay out of the Google ecosystem

https://www.chromium.org/Home/

- Other Chromium-based browsers should work

▪ TAs will only mark using a Chrome or Chromium browser

https://gs.statcounter.com/browser-market-share Web Apps

https://www.google.com/intl/en_ca/chrome/
https://www.chromium.org/Home/
https://gs.statcounter.com/browser-market-share

Web Browsers Typically Have Two Main Parts

35

▪ JavaScript Engine

- execute JavaScript

▪ Rendering Engine

- transform HTML documents and other resources of a web

page into an interactive user interface

Web Apps

Chrome uses the V8 JavaScript Engine

36

Open-source, written in C++

Two main parts:

▪ Interpreter

- reads JavaScript code and

executes it directly

▪ Just-in-time (JIT) compiler

- compile frequently executed

code to machine code

(for faster execution)

Web Apps

Can execute
JavaScript with
surprising efficiency

Chrome uses the Blink Rendering Engine

▪ implements Document Object Model (DOM)

- layout of elements

- rendering elements (styles, etc.)

▪ security between documents

▪ navigation using hyperlinks and forms

▪ Blink is a fork of the Webkit browser engine

Blink
WebkitMosaic

Trident

Navigator
Gecko

Browser Developer Tools

38

▪ Modern web browsers include developer tools:

- inspect currently-loaded HTML, CSS, and JavaScript

- report page asset requests, how long they took to load

- simulate different devices, pages sizes, network speeds

▪ In CS349, most important ones are:

- JavaScript Console

- Sources (for debugging)

▪ OPTION + CMD + j to open developer tools and show console

memorize this shortcut!

Web Apps

Vite

39Web Apps

Vite

40

(pronounced "veet")

"Next Generation Frontend Tooling"

Vite has two main parts:

1. A dev server to run code in a non-production environment

- runs local webserver

- watches TypeScript source files and re-transpiles as needed

- uses optimizations like Hot Module Replacement (HMR).

2. A build command to bundle code for deployment to production

- uses rollup to optimize code and assets

In CS349, we only use the dev server part

Web Apps

Create a Vite Project

41

▪ Vite has templates to setup a project for different frameworks

▪ Setup Vite project by choosing name and templates interactively:

npm create vite@latest

▪ (can also provide project name and template in command args)

we'll use this for first
part of course

later, we'll use this

Web Apps

npm create vite@latest

42

npm create initializes a project directory using a "create" package

vite in this context means the create-vite package

@latest just means "use latest version" of create-vite package

Web Apps

Vite Project Setup Demo

43

Create project with Vanilla TypeScript template

npm create vite@latest

Run Vite dev server

npm run dev

Examine Vite project structure

- index.html, especially <script type = "module" ...

- src/ directory

Show how to create “clean” project:

- simplify index.html

- Remove demo files from src/ folder:

counter.ts, style.css, typescript.svg, vite-env.d.ts

- Clear contents of main.ts

Web Apps

UI Frameworks

SimpleKit

Preact

44Web Apps

SimpleKit

Web Apps 45

▪ A very simple user interface toolkit for teaching UI architecture

- Built for CS 349

- You’ll learn how it works and how to use it in lectures

- We’ll use it for A1 and A2

▪ https://www.npmjs.com/package/simplekit

https://www.npmjs.com/package/simplekit

Preact

Web Apps 46

▪ A fast 3kB alternative to React with the same modern API

- We’ll use it for A4

▪ https://preactjs.com/

https://preactjs.com/

EXERCISE
Exercise

Web Apps 47

1. Sign on to cs349 Piazza

- All course announcements will be in there

2. Clone the cs349 Demo Code Repo

- Then keep it up to date throughout the term

3. Clone your cs349 Assignment Repo

- Student assignment repos are auto generated

- You’ll get an email with the URL

4. Do A0

- You have everything you need to complete it now

- It should take less than 30 minutes

(unless you run into issues)

	Slide 1: Web Application Technologies
	Slide 2: Web Applications
	Slide 3: MVC
	Slide 4: MVC View of Early Web Apps
	Slide 5: MVC View of a Single Page Application (SPA)
	Slide 6: CS 349 Development Environment
	Slide 7: Git and Gitlab
	Slide 8: Git
	Slide 9: Git commit
	Slide 10: Git Concepts
	Slide 11: Git Commands
	Slide 12: Typical Git Workflow
	Slide 13: .gitignore
	Slide 14: Ignoring files that are already tracked
	Slide 15: Gitlab
	Slide 16: Clone CS349 Demo Code Repo
	Slide 17: Clone Your CS349 Assignment Repo
	Slide 18: VS Code
	Slide 19: VS Code ("Visual Studio Code")
	Slide 20: Workspaces
	Slide 21: Some Notable Features
	Slide 22: Git Integration
	Slide 23: VS Code Git Demo
	Slide 24: VS Code Extensions
	Slide 25: Font Ligatures
	Slide 26: Node.js
	Slide 27: Node.js
	Slide 28: npm
	Slide 29: npm
	Slide 30: Common npm usage
	Slide 31: Node project files
	Slide 32: npx (Node Package Execute)
	Slide 33: Chrome and Chromium
	Slide 34: Google Chrome or Chromium Browser
	Slide 35: Web Browsers Typically Have Two Main Parts
	Slide 36: Chrome uses the V8 JavaScript Engine
	Slide 37: Chrome uses the Blink Rendering Engine
	Slide 38: Browser Developer Tools
	Slide 39: Vite
	Slide 40: Vite
	Slide 41: Create a Vite Project
	Slide 42: npm create vite@latest
	Slide 43: Vite Project Setup Demo
	Slide 44: UI Frameworks
	Slide 45: SimpleKit
	Slide 46: Preact
	Slide 47: Exercise

