
Drawing

▪ Drawing models

▪ SimpleKit

▪ Graphics context

▪ Drawable Object

▪ Painter’s Algorithm

▪ Display List

Drawing 1

Model-View-Controller (MVC)

Drawing 2

Model

View

Controller

notify

change

mental
model

translate

present

perceive

express

system
model

Windowing
System

Graphical Presentation Architecture

Drawing 3

Model

View

Controller

Graphics

Input

Windows

Drawing 4

▪ Windows are a visual and architectural organizing principle

- Each window has a location (or is hidden/off-screen)

- Each window has a size

- Each window has a "depth" (e.g. stacking order)

- Only one window has "focus" to receive user input

- Each window is associated with an application

▪ Applications running in windows can be isolated

- Each has its own memory, resources, and drawing canvas

Windowing System

Drawing 5

▪ The windowing system is an operating system layer to share

screen space and user input among applications

▪ Provides three main services:

1. Manage list of windows: creating, resizing, focusing, etc.

2. Provide each application with an independent drawing area

3. Dispatch low-level input events to the focused window

Hardware Abstraction Layer

GPU

Application 1
Application 2

Windowing System

Window 2

Window 1

Canvas Abstraction

Drawing 6

▪ The windowing system uses a drawing canvas abstraction

- Each application has a defined drawing area within the window

- The drawing area has its own local coordinate system

(due to historical convention [0, 0] is at top-left)

- The drawing area is typically implemented as a graphics buffer

▪ The windowing system renders the buffer at the window position

- uses very fast method called bitblt (bit block transfer)

(0,0)

(0,0)

display

application

(0,0)

application

Window Manager

Drawing 7

▪ The windowing system also has a window manager to

render the window "chrome" and provide a window UI

- buttons for closing, minimizing, maximizing window

- draggable areas for resizing and moving window

- rendering "look & feel"

window
manager

UI

window
manager

UI

window
manager

UI

Browser as Windowing System

Drawing 8

▪ A modern web browser is like a windowing system

- it manages a list of tabs: creating, focusing, etc.

- it provides each tab with an independent drawing area

- it dispatches events to the focused tab

- the browser interface (enter a URL, back button, refresh, etc.) is

like an expanded window manager interface

Drawing and User Interface Toolkits

Drawing 9

▪ A graphical user interface is essentially a drawing of shapes

- rectangles, lines, text, fills, etc.

▪ User interaction is essentially how these shapes change

- responding to user input, animation, or external data

▪ A UI toolkit provides a level of abstraction for programmers

- e.g. translates programmer’s concept of a "button" into shapes

that represent a rendering of a button

OK

OK

button()

shadow

fill

stroke

text

We'll start by only drawing shapes without a UI toolkit

Drawing Primitives

Drawing 10

▪ Three conceptual models for drawing:

Pixel

SetPixel(x, y, colour)

Stroke

DrawLine(x1, y1, x2, y2)

Region

DrawRect(x, y, w, h)

Drawing Style

Drawing 11

Consider DrawLine(…)

- what style options are there?

▪ Observations:

• most choices are the same for multiple

calls to DrawLine()

• lots of different parameters, but may only

want to set one or two

Graphics Context

Drawing 12

▪ A common approach to manage state of drawing style options

▪ A drawing command like DrawLine(x1, y1, x2, y2) is rendered

using the current state of style options

Stroke(RED)

StrokeThickness(5)

DrawLine(…)

Stroke(BLUE)

DrawLine(…)

StrokeThickness(10)

DrawLine(…)

html-canvas

Drawing 13

▪ HTML canvas (HTMLCanvasElement) is a literal "canvas abstraction"

▪ Can create with a <canvas> tag

▪ We’ll always create it in code

- Compare index.html to “Elements” in dev console

- Using createElement and appendChild

- Using getContext

- type narrowing

▪ CanvasRenderingContext2D

- Drawing commands

- Set drawing style

SimpleKit

Drawing 14

▪ We’re using SimpleKit for first part of course (incl. A1 and A2)

- Simulates a windowing system and other UI layers in browser

- Different toolkit modes (e.g. canvas-mode, imperative-mode)

- By design, it’s somewhat incomplete and very limited

- We'll examine how it's built to illustrate UI architecture

▪ The demo repo includes SimpleKit as a git submodule

- See README for cloning and updating instructions

- Vite projects for demos use the simplekit in the submodule

You’ll use SimpleKit
as an npm package
in your assignments

simplekit-canvas

Drawing 15

Most basic usage for SimpleKit “canvas mode”:

1. Import what you need

import { startSimpleKit, setSKDrawCallback }
 from "simplekit/canvas-mode";

2. Start it up (creates full page canvas, etc.)

startSimpleKit();

3. Set the drawing callback

setSKDrawCallback((gc) => {
 gc.fillRect(10, 10, 50, 50);
});

simplekit-canvas rectangleDemo()

Drawing 16

▪ Different drawing orders

▪ What happens when gc changes state at end?

simplekit-canvas pathDemo()

Drawing 17

▪ Draw line

- moveTo vs lineTo

▪ Draw polyline or polygon

- closePath

▪ Draw circle

- Using arc

- Using ellipse

▪ Draw rect “path”

- fill then stroke

simplekit-canvas pathHouseDemo()

Drawing 18

▪ Drawing from list of points

▪ How to position the shape?

▪ (TypeScript note) type for array of 2D points

simplekit-canvas textDemo()

Drawing 19

▪ Setting font size (requires font name or type)

▪ Vertical and horizontal alignment also a gc state change

Specifying Colour

Drawing 20

▪ fillStyle and strokeStyle properties use CSS color syntax

▪ Named colour (more than 100)

"red" , "blue" , "cornflowerblue" , "deeppink"

▪ Hexadecimal colour as #RGB, #RRGGBB
"#f00" , "#0000ff" , "#6495ed" , "#ff1493"

▪ RGB: Red, Green, Blue

"rgb(255 0 0)" , "rgb(100, 149, 237)"

▪ HSL: Hue, Saturation, Luminance

"hsl(0deg 100% 100%)" , "hsl(219deg 58% 93%")

▪ (many other formats and variations)

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value

useful colour guide

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value

simplekit-canvas colourDemo()

Drawing 21

▪ Using string literal to set colour

▪ How to prevent flicker?

CanvasRenderingContext2D State

Drawing 22

▪ Convenient to save and restore the state of drawing styles

- strokeStyle, fillStyle, lineWidth, font, textAlign, textBaseline, ...

save() to push current drawing state to stack

restore() to pop last saved drawing state and restore it

▪ Can call save() multiple times without restore(), each call pushes a

state onto the stack that can be popped off later

simplekit-canvas saveState()

Drawing 23

gc.fillStyle = "blue";
gc.strokeStyle = "red";
gc.lineWidth = 5;
circle(50, 50);

gc.save();

gc.fillStyle = "yellow";
gc.strokeStyle = "black";
gc.lineWidth = 2;
circle(110, 50);

gc.restore();

circle(170, 50);

save state: fill = blue, stroke = red, lineWidth = 5

restore state back to: fill = blue,
stroke = red, lineWidth = 5

simplekit-canvas fpsDemo()

Drawing 24

▪ Demonstrates 60 FPS draw loop

- Frame number

- Frame-per-second calculation (with smoothing)

- Importance of gc.clearRect

- gc.canvas.width and gc.canvas.height

Drawable Objects

▪ Drawable class

▪ Display list

▪ Painter's Algorithm

Drawing 25

Drawable Object

Drawing 26

Drawing using the graphics context API can be tedious, instead:

1. Define interface for an object that can be drawn:

export interface Drawable {
 draw: (gc: CanvasRenderingContext2D) => void;
}

2. Define drawable objects like:

export class MyShape implements Drawable {
 ...
 draw(gc: CanvasRenderingContext2D) {
 // drawing commands go here
 }
}

3. Create the object and draw it using current graphics context:

const myShape = new MyShape(...)
myShape.draw(gc);

drawable squareDemo()

Drawing 27

▪ ES module with objects

▪ Drawable interface

▪ Square1 is a basic drawable

▪ Add a fill property to Square1 and update draw code

▪ Square2 is drawable with props constructor

- Convert Square1 calls to Square2

Painter’s Algorithm

Drawing 28

▪ Basic graphics primitives are (really) primitive.

▪ To draw more complex shapes:

- Combine primitives

- Draw back-to-front, layering the image

- Called “Painter’s Algorithm”

draw
back first

draw
front last

result

The 1 Minute Painting

- https://www.youtube.com/watch?v=0CFPg1m_Umg

Drawing 29

https://www.youtube.com/watch?v=0CFPg1m_Umg

drawable paintersDemo()

Drawing 30

▪ Draw order of square and cat

▪ Cat drawable example

- not using props

- drawing strategy (see next slide)

- translate and scale in graphics context

- need to save and restore state when transforming

Strategy to Draw Complex Shapes

Drawing 31

▪ Draw with coordinates in convenient coordinate frame

▪ Transform shapes to desired location, e.g. gc.translate(..)

(0,0)

Display List

Drawing 32

▪ Keep an ordered display list of Drawable objects

- Add objects to array from back to front

- (Could also add “z-depth” field and sort when object added)

▪ To draw all objects:

- iterate through list and draw each one

drawable: displayListDemo()

Drawing 33

▪ Create Cat and two Square2 objects, add to same displaylist

▪ The order added matters

▪ Adding many random Square2 shapes

- moving object to front of displaylist

Efficiency

Drawing 34

▪ Our common approach so far is to re-draw everything every frame

▪ Executing many graphics commands each frame is often fine

- As a rule, don’t optimize until you have to

- When animating, you may have to re-draw everything

▪ With a very large number of drawables, each with a very large

number of graphics context drawing commands, the frame rate

may start to drop

- In many cases, the drawable doesn’t change each frame

Resources

Drawing 36

MDN Canvas Tutorial

- https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial

EXERCISE
Exercise

Web Apps 37

1. Create your own SimpleKit project

- Create a new minimal Vite project, install simplekit from npm

- Import “canvas-mode” from simplekit, call startSimpleKit()

- check console for the start up message

2. Draw a button in SimpleKit canvas-mode

- Set your drawing callback function with SimpleKit

- Use the painter’s algorithm to draw in layers

- Add a conditional to optionally draw a yellow ”hover” highlight

3. Make a Button drawable object

- Move your drawing code into a Drawable Button object

- Parameterize the button’s position, size, and text (props in constructor)

- Add a boolean property called “hover” to change how the button is drawn

	Slide 1: Drawing
	Slide 2: Model-View-Controller (MVC)
	Slide 3: Graphical Presentation Architecture
	Slide 4: Windows
	Slide 5: Windowing System
	Slide 6: Canvas Abstraction
	Slide 7: Window Manager
	Slide 8: Browser as Windowing System
	Slide 9: Drawing and User Interface Toolkits
	Slide 10: Drawing Primitives
	Slide 11: Drawing Style
	Slide 12: Graphics Context
	Slide 13: html-canvas
	Slide 14: SimpleKit
	Slide 15: simplekit-canvas
	Slide 16: simplekit-canvas rectangleDemo()
	Slide 17: simplekit-canvas pathDemo()
	Slide 18: simplekit-canvas pathHouseDemo()
	Slide 19: simplekit-canvas textDemo()
	Slide 20: Specifying Colour
	Slide 21: simplekit-canvas colourDemo()
	Slide 22: CanvasRenderingContext2D State
	Slide 23: simplekit-canvas saveState()
	Slide 24: simplekit-canvas fpsDemo()
	Slide 25: Drawable Objects
	Slide 26: Drawable Object
	Slide 27: drawable squareDemo()
	Slide 28: Painter’s Algorithm
	Slide 29
	Slide 30: drawable paintersDemo()
	Slide 31: Strategy to Draw Complex Shapes
	Slide 32: Display List
	Slide 33: drawable: displayListDemo()
	Slide 34: Efficiency
	Slide 36: Resources
	Slide 37: Exercise

