
Input Events

▪ Event-driven programming

▪ OS event loop

▪ Toolkit run loop

▪ Event translation

Model-View-Controller (MVC)

2

Model

View

Controller

notify

change

mental
model

translate

present

perceive

express

system
model

Input Events

Event Driven Programming

3

Event-driven programming is a programming paradigm that

bases program execution flow on events. These can

represent user actions or other system actions.

User Interactive System

express

presentperceive

translate

seconds milliseconds
or faster

Input Events

Event

4

▪ In general English usage:

- An observable occurrence, often extraordinary occurrence

▪ In user interface architecture:

- A message to notify an application that something happened

Input Events

Event Types

5

▪ Device Input Events

- Keyboard (e.g. key press, key release)

- Pointing (e.g. move move, button press, button release)

▪ Window Input Events

- Changes (e.g. resize, closing)

▪ Window or Widget Events

- Pointing (e.g. mouse enter, mouse leave)

- Focus (e.g. focus gained, focus lost)

▪ System Events

- Timer (e.g. tick, completed)

▪ Application Events

- Thread (e.g. progress, completed, …)

Input Events

Input Event Architecture

6

The OS polls the input device state and communicates changes in

the form of events to the "active" application window

The process can be modelled as a pipeline:

Low-Level
Input

Window
Dispatch

Toolkit
Handling

Event
Creation

move
UI

Toolkit
OS

Window

Device e.g. Chrome
Browser Tab

e.g. Google
Blink Renderer

Event
Queue

move

up

move

down

Input Events

Example: OSX Event Architecture

7
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/EventOverview/EventArchitecture/EventArchitecture.html

Low-Level Input

Event Queue

Window Dispatch

Toolkit Handling

Event Creation

Input Events

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/EventOverview/EventArchitecture/EventArchitecture.html

Low-Level Input

8

▪ Most mice and keyboards conform to the Human Interface

Devices (HID) standard

- each device reports to OS what data will be sent

(called a "boot report format")

- Example data for a mouse:

2 bytes for X and Y relative movement, each [-127, 127] "counts"

1 byte button with state (button 1, 2, 3 with down/up)

▪ The OS polls the device to get current state

- typically, every 8ms (125 Hz)

▪ The OS filters and transforms input data

e.g. for mouse input:

- convert relative X, Y "counts" into a velocity

- apply a "pointer acceleration function" to adjust velocity

- use velocity to move mouse cursor in display coordinates

Input Events

Event Creation

9

▪ The transformed low-level input is a state (not an event)

- each keyboard key is either "up" or "down"

- each mouse button is either "up" or "down"

- the current mouse (X, Y) position somewhere in the display

▪ The windowing system generates events when the state changes:

- keydown when a key state changes from "up" to "down"

- keyup when a key state changes from "down" to "up"

- mousedown when button state changes from "up" to "down"

- mouseup when button state changes from "down" to "up"

- mousemove when X, Y values change

▪ Each event is associated with a timestamp

▪ These are fundamental low-level input events

- Basic mouse and keyboard input is described by these 5 events

Input Events

or "raw events"

Window Dispatch

10

▪ The windowing system maintains a list of all windows ordered

from back to front, the front most window has focus

- events* are sent to focused window (e.g. to the UI Toolkit)

*some exceptions: global hooks, overlays, ...

Apple

Pear

Orange

Apple

Pear

Orange

window
list

focus

Input Events

like a display list

Event Queue

11

▪ The event queue is a buffer between the user and each window

▪ User input events tend to be "bursty"

- several seconds pass with none, then many in quick succession

▪ Queuing lets UI toolkit running in window handle events efficiently

- can be some delay before handling an event

... but not too much, or input "lag" is introduced

▪ Toolkit should refer to event timestamp, not time when the event

was pulled off the queue or handled by the application code

Input Events

Windowing System Event Loop

12

The OS windowing system continually runs an event loop

loop:
 poll input devices
 create fundamental events
 dispatch fundamental event to focused window
 add fundamental event to window event queue

Low-Level
Input

Window
Dispatch

Toolkit
Handling

Event
Creation

move
UI

Toolkit
OS

Window

Device e.g. Chrome
Browser Tab

e.g. Google
Blink Renderer

Event
Queue

move

up

move

down

Input Events

UI Toolkit Run Loop

13

▪ The window is running an application which uses a UI Toolkit

- e.g. DOM Rendering Engine, JavaFX, Cocoa, etc.

▪ The UI Toolkit handles OS events in its own run loop

- constantly checks for fundamental events in event queue

- also calls animation timers, re-renders UI, etc.

Low-Level
Input

Window
Dispatch

Toolkit
Handling

Event
Creation

move
UI

Toolkit
OS

Window

Device e.g. Chrome
Browser Tab

e.g. Google
Blink Renderer

Event
Queue

move

up

move

down

Input Events

SimpleKit Windowing System

14

▪ SimpleKit simulates how a Windowing System works

- Uses some HTML DOM events to create fundamental events

▪ createWindowingSystem
- (in simplekit windowing-system/ windowing-system.ts)

- creates a shared fundamental event queue

const eventQueue: FundamentalEvent[] = [];

- listens to 6 DOM events to use as simulated fundamental events

window.addEventListener("mousedown", saveEvent);
...

- calls a toolkit run loop function at approximately 60 Hz

export type RunLoopHandler = (
 eventQueue: FundamentalEvent[],
 time: DOMHighResTimeStamp
) => void;

Input Events

run-loop

15

▪ Defines very simple UI run loop

- the RunLoopHandler function

- log events in queue

▪ calls createWindowingSystem

▪ What else does a runloop do in a UI toolkit?

Input Events

Event Translation in UI Toolkit

16

The fundamental OS input events are translated by the UI Toolkit

into UI toolkit events (e.g. “click”)

The toolkit events are dispatched to the application

Our event pipeline model is extended as follows:

App
Dispatch

Event
Translation

click

e.g. HTML
Button Element

OK

Window
Dispatch

Toolkit
Handling

Event
Creation

move
UI

Toolkit
OS

Window

e.g. Chrome
Browser Tab

e.g. Google
Blink Renderer

Event
Queue

move

up

move

down

Input Events

Event Translation: Higher-level Events

17

▪ Common examples of higher-level events:

- click: a mouse button was pressed and released within a certain

time window without significant movement

- dblclick: two click events occurred within a small time-window

- drag: the mouse moved while a mouse button is held down

▪ These can each be modelled as a state machine

▪ The UI Kit also creates events for the fundamental events, like:

- keydown, keyup, mousedown, mouseup, mousemove, ...

▪ Why is it useful to translate to higher-level events?

Input Events

SimpleKit Event Classes (in simplekit/events/events.ts)

Input Events 18

export class SKEvent {
 constructor(
 public type: string,
 public timeStamp: number,
 ...
) {} }

export class SKMouseEvent extends SKEvent {
 constructor(
 ...
 public x: number,
 public y: number,
 ...
) {} }

export class SKKeyboardEvent extends SKEvent {
 constructor(
 ...
 public key: string | null = null,
 ...
) {} }

showing simplified
forms of real classes

translation / run-loop.ts

19

// list of toolkit events to dispatch
 let events: SKEvent[] = [];

 // translate fundamental events to toolkit events
 while (eventQueue.length > 0) {
 const fundamentalEvent = eventQueue.shift();
 if (!fundamentalEvent) continue;

 translators.forEach((t) => {
 const translatedEvent = t.update(fundamentalEvent);
 if (translatedEvent) {
 events.push(translatedEvent);
 }
 });
 }

Input Events

run-loop
processes a list
of translators

translation / translators.ts

20

export type EventTranslator = {
 update: (fe: FundamentalEvent) => SKEvent | undefined;
};

export const myTranslator = {
 someStateProperty,
 ...
 update(fe: FundamentalEvent): SKEvent | undefined {
 ...
 },
};

Input Events

can return specific events
inherited from SKEvent, like

SKMouseEvent

most translators need to track state over time

translators
frequently return

undefined

translation / translators.ts

Input Events 21

▪ We need to translate fundamental events to UI toolkit events

export const fundamentalTranslator = {
 update(fe: FundamentalEvent): SKEvent {
 switch (fe.type) {
 case "mousedown":
 case "mouseup":
 case "mousemove":
 return new SKMouseEvent(fe.type, fe.timeStamp,
 fe.x || 0, fe.y || 0);
 break;
 case "keydown":
 case "keyup":
 return new SKKeyboardEvent(fe.type, fe.timeStamp,
 fe.key);
 break;
 ...

mouse click State Machine

22

▪ a mousedown followed by a mouseup within a short time and with

little movement is a mouse button click

IDLE DOWN
send
click

mousedown mouseup

timeout

mousemove > threshold

see code in translators.ts

Input Events

double click State Machine

23

▪ a click followed by another click with a short time is a dblclick

▪ what will happen with single click events?

IDLE READY
send

dblclick

click click

timeout

see code in translators.ts

Input Events

dragging State Machine

24

▪ the dragstart event is sent when the mouse button is held down

and the mouse moves more than a small amount

▪ Once in the dragging state, each mousemove triggers a drag event

▪ mouseup from dragging state also sends a dragend event

see code in translators.ts

IDLE DOWN DRAG

mousedown

mouseup

mousemove > threshold

mouseup

mousemove

send
drag

send
dragend

send
dragstart

Input Events

UI Toolkit Event Ordering

25

▪ Translated events will have same timestamp as fundamental event

that triggered it

- e.g. click will have same timestamp as the mouseup

▪ All translated events must be dispatched in deterministic order

- application can assume sequence if listening to multiple events

e.g. a click will come after a mouseup

Input Events

translation / main.ts

Input Events 26

longpress State Machine

27

▪ a mousedown followed by little movement and no mouseup for a

long time is a longpress

Input Events

IDLE DOWN
send

longpress

mousedown time reached

mousemove > threshold

mouseup

note trigger is
based only on time

simplekit runLoop(…) in canvas-mode.ts

Input Events 28

▪ Some translators need time even when no fundamental events

- solution is to send a "null" event when no other events

- if there are events, the translators can use time of those instead

 if (eventQueue.length == 0) {
 eventQueue.push({
 type: "null",
 timeStamp: time,
 } as FundamentalEvent);
 }

 // translate fundamental events to toolkit events
 while (eventQueue.length > 0) {
 const fundamentalEvent = eventQueue.shift();
 ...

Event Translation: Coalesce Frequent Events

29

▪ Events like mousedown and mouseup are discrete state changes

- they are not very high frequency (less than 5Hz)

- each state transition is important

▪ Events like mousemove describe a continuing state

- they are generated at high frequency (more than 60Hz)

- the toolkit may not be able to consume them as quickly as

they're generated

- each state transition is typically less important

▪ Multiple events describing a continuous state can be coalesced

- remove or combine intermediate events since last update

- avoid coalescing if you want precise movement trajectory

without interactive feedback (e.g. saving signature)

https://clickspeedtest.com/
Input Events

You can see how coalescing
works in SimpleKit
canvas-mode.ts runLoop(…)

see how fast you can click!

https://clickspeedtest.com/

Other UI Events

30

▪ A UI Toolkit also dispatches many other events

- widget receives or loses focus

- text selection

- remote data fetching

- animation starts or ends

- media events like play, pause, finish

- clipboard cut, copy or paste

- socket events

- worker threads

... and many more, see link below

https://developer.mozilla.org/en-US/docs/Web/Events Input Events

https://developer.mozilla.org/en-US/docs/Web/Events

App Dispatch and Event Binding

31

▪ UI Toolkit events need to trigger specific code in the app

▪ For now, we'll use a simple dispatch method:

- all events are handled in a single app function, e.g.

function handleEvent(e: SKEvent) { ... }

▪ For now, we'll also use a simple binding method:

- app code to handle each event is in event handing function, e.g.
 switch (e.type) {
 case "mousemove":
 // app code here for mousemove
 break;
 case "click":
 // app code here for click
 break;
 ... we examine more

advanced dispatch
and binding in later

lectures

Input Events

demo

32

▪ Example of a more complete SimpleKit canvas-mode app

- uses Square Drawable with DisplayList from drawing lecture

- handles different events to update state of the square

- draws squares using a DisplayList

▪ Event dispatch with "switch statement binding"

setSKEventListener
handleEvent

▪ Draw with

setSKDrawCallback

▪ Note UI state and UI drawing code

are separated

Input Events

EXERCISE
Exercise

Input Events 33

1. Create an app that does the following:

- click draws a red 50px square

- doubleclick draws a 40px blue square

- drag draws a green 30px square at the end of the drag

- keydown SPACE draws a black 20px square at the mouse position

2. CHALLENGE 1

- keydown “x” clears the screen

3. CHALLENGE 2:

- only the last 10 squares are drawn

HINT: use a DisplayList

	Slide 1: Input Events
	Slide 2: Model-View-Controller (MVC)
	Slide 3: Event Driven Programming
	Slide 4: Event
	Slide 5: Event Types
	Slide 6: Input Event Architecture
	Slide 7: Example: OSX Event Architecture
	Slide 8: Low-Level Input
	Slide 9: Event Creation
	Slide 10: Window Dispatch
	Slide 11: Event Queue
	Slide 12: Windowing System Event Loop
	Slide 13: UI Toolkit Run Loop
	Slide 14: SimpleKit Windowing System
	Slide 15: run-loop
	Slide 16: Event Translation in UI Toolkit
	Slide 17: Event Translation: Higher-level Events
	Slide 18: SimpleKit Event Classes (in simplekit/events/events.ts)
	Slide 19: translation / run-loop.ts
	Slide 20: translation / translators.ts
	Slide 21: translation / translators.ts
	Slide 22: mouse click State Machine
	Slide 23: double click State Machine
	Slide 24: dragging State Machine
	Slide 25: UI Toolkit Event Ordering
	Slide 26: translation / main.ts
	Slide 27: longpress State Machine
	Slide 28: simplekit runLoop(…) in canvas-mode.ts
	Slide 29: Event Translation: Coalesce Frequent Events
	Slide 30: Other UI Events
	Slide 31: App Dispatch and Event Binding
	Slide 32: demo
	Slide 33: Exercise

