
Hit-Testing

▪ Shape Models

▪ Inside and Edge Hit-Testing with Various Shapes

▪ Find Closest Point using Vector Projection

Hit-Testing 1

Shape Model vs. Image of Shape

Hit-Testing 2

Shape Model: the internal, oftentimes mathematical,

representation of a shape

- geometry (points, bounds, key dimensions, …)

- visual style (fill, stroke thickness, …)

- transformations (translations, rotations, …)

Rendering: process to translate model into an image

Shape Image: the rendered “picture” of the shape

Model

(x0,y0)

(x1,y1)

(x2,y2)(x3,y3)

(x4,y4)

Image

fill =

Rendering

Shape Model Geometry

Hit-Testing 3

Different shapes have different geometric representations

(x0,y0)

(x1,y1)

(x2,y2)(x3,y3)

(x4,y4)(x,y) r

(x,y)

w

h

Polygon
list of points

Circle
centre point
radius

Rectangle
top-left corner point
width and height

▪ Many alternate geometric representations possible

▪ Many other kinds of shapes: Line, Polyline, Ellipse, …

▪ Shape models can even be combinations of (different) shapes

Hit-Test Paradigms

Hit-Testing 4

▪ Inside Hit-Test

- is mouse cursor inside shape?

- closed shapes like Circle, Rectangle, and Polygon

- usually when rendered with fill

▪ Edge Hit-Test

- is mouse cursor on shape stroke?

- open shapes like Line, Polyline

- unfilled shapes when rendered with stroke

Edge
Hit-Test

Inside
Hit-Test

Hit-Test Implementation

Hit-Testing 5

A hit-test is tailored to the shape type and properties

- if edge hit-test, need to factor in thickness of stroke

function hitTest(
 mx: number,
 my: number,

 strokeWidth: number
): boolean {
 ...
}

shape properties go here

mouse position

visual style properties
needed for some hit-tests

Rectangle Inside Hit-Test

Hit-Testing 6

▪ Given:

- mouse position (mx, my)

- rectangle top-left corner (x, y)

- rectangle width w and height h

▪ Inside hit is true when these are true:

- mx is in range [x, x + w]

- my is in range [y, y + h]

(x,y)

w

h

Rectangle:
top-left corner point,
width and height

(mx,my)

Rectangle Inside Hit-Test

Hit-Testing 7

function insideHitTestRectangle(
 mx: number,
 my: number,
x: number, y: number,
w: number, h: number

) {
 return mx >= x &&
 mx <= x + w &&
 my >= y &&
 my <= y + h
}

rectangle shape properties

Rectangle Edge Hit-Test

Hit-Testing 8

▪ Given:

- mouse position (mx, my)

- rectangle top-left corner (x, y)

- rectangle width w and height h

- stroke width s

▪ Edge hit is true when

these are true:

- mx is in range [x – s/2, x + w + s/2]

- my is in range [y – s/2, y + h + s/2]

 but these are false:

- mx is in range (x + s/2, x + w - s/2)

- my is in range (y + s/2, y + h - s/2)

(x,y)

w

h

Rectangle
top-left corner point
width and height

(mx,my)

s

“inner”
rectangle

“outer”
rectangle

Rectangle Edge Hit-Test

Hit-Testing 9

function edgeHitTestRectangle(
 mx: number,
 my: number,

x: number, y: number,
w: number, h: number,

 strokeWidth: number
) {
 // width of stroke on either side of edges
 const s = strokeWidth / 2;

 // outside rect after adding stroke
 const outer = mx >= x - s && mx <= x + w + s &&
 my >= y - s && my <= y + h + s;

 // but NOT inside rect after subtracting stroke
 const inner = mx > x + s && mx < x + w - s &&
 my > y + s && my < y + h - s;

 return outer && !inner;

}

Circle Inside Hit-Test

Hit-Testing 10

(x,y)
r

Circle
centre point
radius

(mx,my)
▪ Given:

- mouse position (mx, my)

- circle centre (x, y)

- circle radius r

▪ Calculate:

- distance from (mx, my) to (x, y)

(Euclidean distance between the points)

▪ Inside hit is true when:

- distance is less than or equal to r

Circle Edge Hit-Test

Hit-Testing 11

(x,y)
r

Circle
centre point
radius

(mx,my)
▪ Given:

- mouse position (mx, my)

- circle centre (x, y)

- circle radius r

- stroke weight s

▪ Calculate:

- distance from (mx, my) to (x, y)

▪ Edge hit is true when these are true:

- distance is in range [r – s/2, r + s/2]

s

we need this first

Polyline Hit-Test

Hit-Testing 12

Polyline
list of points

▪ Given:

- mouse position (mx, my)

- list of points

- stroke weight s

▪ Calculate:

▪ Edge hit is true when:

- edge hit test true for any line segment

s

(x0,y0)

(x1,y1)

(x2,y2)(x3,y3)

(x4,y4)

(mx,my)

calculated
using
vector
projection

Line Edge Hit-Test

Hit-Testing 13

▪ Given:

- mouse position (mx, my)

- line start (x1, y1)

- line end (x2, y2)

- stroke weight s

▪ Calculate:

- closest point on line segment: (qx, qy)

- distance from (mx, my) to (qx, qy)

▪ Edge hit is true when:

- distance is less than or equal to s/2

(x1,y1)

(x2,y2)

s
(mx,my)

(qx,qy)

(mx,my) = (qx,qy)

Find Closest Point Q on Line with Vector Projection (1)

Hit-Testing 14

Find Closest Point Q on Line with Vector Projection (2)

Hit-Testing 15

closestpoint

Hit-Testing 16

closetPoint.ts

▪ Direct implementation of math

▪ Uses Point, Vector, point, vector from SimpleKit utilities

- Useful classes for applied linear algebra

▪ Note early return for edge case

▪ segmentOnly flag for debugging

main.ts

▪ Another typical SimpleKit canvas-mode app

▪ width and height variables set in resize event

hittest / hittest-line.ts

Hit-Testing 17

▪ Find closest point on the line to the mouse position

▪ Find distance from mouse to that closest point

▪ If within half stroke width, it’s a hit

Polyline Hit-Test

Hit-Testing 18

Polyline
list of points

▪ Given:

- mouse position (mx, my)

- list of points

- stroke weight s

▪ Calculate:

▪ Inside hit is true when:

- edge hit test true for any line segment

- note early return if hit

s

(x0,y0)

(x1,y1)

(x2,y2)(x3,y3)

(x4,y4)

(mx,my)

hittest / hittest-polyline.ts

Hit-Testing 19

▪ Iterate through line segments

▪ If there’s a hit, return true immediately

▪ destructuring and spread to set first point on first segment

s

Polygon Edge Hit-Test

Hit-Testing 20

(x0,y0)

(x1,y1)

(x2,y2)(x3,y3)

(x4,y4)

Polygon
list of points

▪ Given:

- mouse position (mx, my)

- list of points

- stroke weight s

▪ Edge hit is true when:

- edge hit test true for any line segment

(mx,my)

hittest / hittest-polygon.ts

Hit-Testing 21

▪ edgeHitTestPolygon uses edgeHitTestPolyline

▪ Need to repeat the first point to close the polygon

Polygon Inside Hit-Test

Hit-Testing 22

(x0,y0)

(x1,y1)

(x2,y2)(x3,y3)

(x4,y4)

Polygon
list of points

▪ Given:

- mouse position (mx, my)

- list of points

▪ Inside hit is true when:

(it gets complicated, see next slides …)

Intuition for Inside Polygon Hit-Test

Hit-Testing 23

Cast y=0 ray from mouse position, count how many times it

intersects line segments of Polygon

Rule: If odd number of intersections, inside hit-test is TRUE
(almost …)

Intuition for Inside Polygon Hit-Test (Problem)

Hit-Testing 24

Cast y=0 ray from mouse position, count how many times it

intersects line segments of Polygon

Problem: if ray intersects with a point, it intersects two segments,

and this can happen when the mouse is inside or outside.

(treat as special case …)

Intuition for Inside Polygon Hit-Test (Special Case)

Hit-Testing 25

If ray intersects with a point defining a line segment, add 1 only if

other point on segment is “above” ray

Shape Class

Hit-Testing 26

▪ geometry that defines the shape

▪ geometry properties (isFilled, isStroked)

▪ visual style properties (fill, stroke, strokeWeight)

▪ method to draw into a provided graphics context (like Drawable)

▪ method to do hit-testing with an x-y cursor position

Shape Base Class Implementation

Hit-Testing 27

abstract class Shape {
 fill: string = "grey";
 stroke: string = "black";
 strokeWidth = 1;

 get isFilled() {
 return this.fill != "";
 }

 get isStroked() {
 return this.stroke != "" && this.strokeWidth > 0;
 }

 abstract draw(gc: CanvasRenderingContext2D): void;

 abstract hitTest(mx: number, my: number): boolean;
}

shapes

Hit-Testing 28

▪ Shape abstract base class

▪ Shape models (esp. hitTest method):

- Rectangle

- Polygon

▪ Uses DisplayList approach for rendering

Hit-test Optimizations

Hit-Testing 30

▪ Hit-testing could become computationally intensive

- There could be hundreds of shapes in a scene

- Polygon or Polyline shapes could have hundreds of edges

▪ Approaches to reduce hit-testing computation:

- avoid square root in distance calculations

(for circle, see if squared distance is less than r2)

- use simpler less precise hit-test first for an “early” reject

(e.g. start with a bounding-box, or bounding circle hit-test)

- split scene into cells, and track which ones each shape is in

(called octree or binary space partition approaches)

Alternative Methods: Raster Hit Testing in a Buffer

Hit-Testing 31

▪ Use offscreen buffer to draw shape

- often at lower resolution, using standard transformation

▪ Transform mouse coordinates to match buffer

▪ Examine pixel at mouse position in buffer

- return true if pixel is not #000000

▪ Can also use pixel alpha (transparency)

▪ Can also use different colours to hit-test different regions

DOM Canvas API Hit-Testing

Hit-Testing 32

Test if point is inside area contained by shape path:

// built-in Canvas API hit test
const hitFill = gc.isPointInPath(mx, my);
const hitStroke = gc.isPointInStroke(mx, my);

▪ It handles stroke thickness (lineWeight to graphics context)

- true if point is anywhere on visible stroke

▪ It handles unfilled shapes

- true only if point is on visible stroke area, false if inside

https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/isPointInStroke

https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/isPointInStroke

Other Hit-Test Selection Paradigms

Hit-Testing 33

▪ Text selection

- insertion point, drag to select

▪ Crossing intersection

- select by drawing stroke through shapes

▪ Shape Intersection

- Marquee selection (select shapes in oriented bounding box)

- Lasso selection (select shapes enclosed in freeform path)

text

Lasso
Selection

Marque
Selection

Crossing
Selection

Text
Selection

EXERCISE
Exercise

Hit-Testing 34

▪ Create a simple line drawing app

▪ On mousedown, add a point to a poly line:

- create a PolyLine shape class with the

points array as a public property

- Use thick 10px strokeWidth to draw line

- Use lineCap and lineJoin canvas drawing

methods to make line look nicer

- draw a dot when only one point

▪ On mousemove, do hit testing:

- draw the PolyLine in red if hit

- Otherwise draw it in black

▪ Pressing SPACE key clears the line

- Just set the PolyLine points array to []

Demo of interactions:
https://vault.cs.uwaterloo.ca/s/fKiJJTCW9r6sxqX

https://vault.cs.uwaterloo.ca/s/fKiJJTCW9r6sxqX

	Slide 1: Hit-Testing
	Slide 2: Shape Model vs. Image of Shape
	Slide 3: Shape Model Geometry
	Slide 4: Hit-Test Paradigms
	Slide 5: Hit-Test Implementation
	Slide 6: Rectangle Inside Hit-Test
	Slide 7: Rectangle Inside Hit-Test
	Slide 8: Rectangle Edge Hit-Test
	Slide 9: Rectangle Edge Hit-Test
	Slide 10: Circle Inside Hit-Test
	Slide 11: Circle Edge Hit-Test
	Slide 12: Polyline Hit-Test
	Slide 13: Line Edge Hit-Test
	Slide 14: Find Closest Point Q on Line with Vector Projection (1)
	Slide 15: Find Closest Point Q on Line with Vector Projection (2)
	Slide 16: closestpoint
	Slide 17: hittest / hittest-line.ts
	Slide 18: Polyline Hit-Test
	Slide 19: hittest / hittest-polyline.ts
	Slide 20: Polygon Edge Hit-Test
	Slide 21: hittest / hittest-polygon.ts
	Slide 22: Polygon Inside Hit-Test
	Slide 23: Intuition for Inside Polygon Hit-Test
	Slide 24: Intuition for Inside Polygon Hit-Test (Problem)
	Slide 25: Intuition for Inside Polygon Hit-Test (Special Case)
	Slide 26: Shape Class
	Slide 27: Shape Base Class Implementation
	Slide 28: shapes
	Slide 30: Hit-test Optimizations
	Slide 31: Alternative Methods: Raster Hit Testing in a Buffer
	Slide 32: DOM Canvas API Hit-Testing
	Slide 33: Other Hit-Test Selection Paradigms
	Slide 34: Exercise

