
Animation

▪ Frames and Frame Rate

▪ Simulation

▪ Timer

▪ Tweening

▪ Easing

▪ Keyframes

▪ System Timers (and UI Threading)

1Animation

Animation

Animation 2

Animation is the simulation of movement using a series of images

(or drawings, models, etc.)

IMAGE SOURCE: https://www.angryanimator.com/word/2010/11/26/tutorial-2-walk-cycle/

Animation Terminology

Animation 3

Frame: each image (or state) of an animation sequence

Frame rate: number of frames to display per second

Tweening: interpolation of key frames into frames

Easing: a function that controls how tweening is calculated

Key Frame: defines the beginning and ending of a tween

In user interface programming, we typically animate numerical

parameters that change how graphics are drawn over time

- parameters are often related to transformations

(e.g. translate X and Y position to animate drawing position)

- parameters can be anything numeric: fill, stroke weight, etc.

- animating non-numeric values (e.g. a String or Image) is possible,

but custom tweening methods are needed

Frame Rate

Animation 4

▪ Measured in frames-per-second (fps)

- can be expressed as Hertz (Hz): International System of Units (SI)

measure defined as one cycle per second (e.g. 60 FPS = 60 Hz)

▪ Common device and media frame rates:

- hand drawn animation: as low as 12 FPS, usually 24 fps

- GIFs: usually 15 to 24 fps

- Film: standard 24 fps, high def 60 fps

- Legacy Broadcast Television: NTSC: 30 fps*, PAL 25 fps*

- Computer displays: 60 fps or more

- Computer games: 60 fps or more

- Virtual Reality displays: 90 fps, 120 fps, or more

* each frame is sent progressively in two parts: odd “scanlines”, even “scanlines”,
so communication speed is technically 60 Hz for NTSC and 50 Hz for PAL

Critical Flicker Frequency* (CFF)

Animation 5

▪ when perception of intermittent light source changes from

flickering to continuous light

- dependent on brightness of stimulus, wavelength, ...

- varies by individual

IMAGE SOURCE: https://entokey.com/temporal-properties-of-vision/

*also called “flicker fusion threshold”, “temporal contrast sensitivity”

CFF is typically
around 60 – 90 Hz

Zoetrope, mechanical example of CFF

https://youtu.be/8UC8j4pg1iA

6Animation

https://youtu.be/8UC8j4pg1iA

Animation in SimpleKit

7

▪ SimpleKit lets you define a single callback for updating animations

- callback is called with time (in milliseconds) as argument

▪ in simplekit

type AnimationCallback = (time: number) => void;

function setSKAnimationCallback(animate: AnimationCallback) ...

▪ in your program

setSKAnimationCallback((time) => { /* animate in here */ });

Animation

Animation by Simulation

8

▪ Animation can be created through real time simulation

- using functions, conditionals, etc.

▪ Typically, no start and end, it just loops or continues

- conceptually simpler, just need a function and/or some rules

Animation

simulation

9

▪ dot moves in direction with speed, bounces when boundary hit

- set animation callback bounce()

// if it hits the edge of the box, change direction
if (dot.x < dot.r || dot.x > box.width - dot.r) {
 dx *= -1.0;
}
...

// update the dot position
dot.x += dx;
dot.y += dy;

▪ also demo of moving dot in circle

- Call circle() in animation callback

Animation

Timers

10

▪ A timer can be considered a simple kind of animation

- State 1 ... wait ... State 2

▪ A timer needs

- a duration

- a start time

- an update function to check if timer is finished

- a method to check if timer is running

- (usually) a callback function to call when timer is finished

Animation

timer simpleTimerDemo()

Animation 11

▪ Useful to trigger UI changes after some time

▪ Basic timer object

- construct it with duration

- start it with current time (from animation callback or skTime)

- update with current time in animation callback

- use isRunning property to trigger event

export class BasicTimer {
 constructor(public duration: number) {}
 ...

timer callbackTimerDemo()

Animation 12

▪ CallbackTimer to call function when time finishes

- construct it with duration and callback function

- start it with current time

- update with current time in animation callback

- calls callback when finished with time

export class CallbackTimer extends BasicTimer {
constructor(
 public duration: number,
public callback: (t: number) => void) {}

 ...

▪ How to make dot pulse on and off every second?

Tweening

Animation 13

Interpolation between keyframes to create individual frames

- we’ll consider “keyframes” as numeric values

Tweening Parameters

startValue is the starting value for the tween (keyframe 1)

endValue is the end value for the tween (keyframe 2)

duration is the duration for the tween

startTime is when the tween begins

Tweening Calculation

1) Calculate proportion of time completed so far:

t = (time – startTime) / duration

2) Interpolate start and end value to get current tweened value:

value = startValue + (endValue – startValue) * t

lerp function

Animation 14

linear interpolation

▪ smoothly interpolate changes from one value to another

▪ lerp is a fundamental part of animation tweening

// linear interpolation from start to end
// using normalized time t (in [0, 1])
const lerp = (start: number, end: number, t: number) =>
 start + (end - start) * t;

tweening

15

▪ Basic animation object

- construct it with animation parameters and update value callback

(called every frame with new interpolated value)

- start it with current time, update with time in animation callback

export class Animator {
 constructor(
 public startValue: number,
 public endValue: number,
 public duration: number,
 public updateValue: (p: number) => void
) {}
 ...

▪ Why does Animator force t to be 1 when

time is elapsed? → remove that code and

animate for 200ms to see what happens

Animation

Easing Functions

Animation 16

Controls how tweening is calculated

Lerp generates a linear change in value over time t

value = lerp(startValue, endValue, t)

An easing function changes how value is interpolated over time t

value = lerp(startValue, endValue, easing(t))

[VIDEO SOURCE] https://www.alanzucconi.com/2021/01/24/piecewise-interpolation/easing-curves//

Easing Functions

Animation 17

▪ Type

type EasingFunction = (t: number) => number;

▪ Common functions

const flip = (t) => 1 - t;

const easeOut = (t) => Math.pow(t, 2);

const easeIn = (t) => flip(easeOut(flip(t)));

const easeInOut = (t) => lerp(easeOut(t), easeIn(t), t);

exponent changes the
"amount" of easeOut

easing

18

▪ Animation object with optional easing function

export class Animator {
 constructor(
 public startValue: number,
 public endValue: number,
 public duration: number,
 public updateValue: (p: number) => void,

public easing: EasingFunction = (t) => t
) {}

...

}

Animation

Easing Function Resources

Animation 19

▪ http://robertpenner.com/easing/

▪ https://greensock.com/docs/v3/Eases

▪ https://www.febucci.com/2018/08/easing-functions/

[VIDEO SOURCE] https://www.alanzucconi.com/2021/01/24/piecewise-interpolation/easing-curves//

http://robertpenner.com/easing/
https://greensock.com/docs/v3/Eases
https://www.febucci.com/2018/08/easing-functions/

UI Toolkit Animation Architecture

Animation 20

▪ Some toolkits provide an animation manager

- keep a list of active animations

- update each animation every frame

- remove animations when they finish

▪ Programmer sets animation, lets toolkit manage everything

manager

Animation 21

▪ AnimationManager singleton with list of active Animator objects

class AnimationManager {
 protected animations: Animater[] = [];

 add(animation: Animator) {
 this.animations.push(animation);
 ...
 }

 update(time: number) {
 // update every animation currently running
 this.animations.forEach(
 (a) => a.update(time));

 // remove animations that finished
 this.animations =
 this.animations.filter(
 (a) => a.isRunning);
 }

Keyframing

Animation 22

▪ A tween is essentially two keyframes:

- keyframe 1: start time, starting value

- keyframe 2: end time, ending value

▪ We can generalize this to a list of keyframes:

- keyframe 1: time1, value1

- keyframe 2: time2, value2

- keyframe 3: time3, value3

...

- keyframe N: timeN, valueN

▪ A sequence of keyframes enables animations over time:

- find keyframe i and keyframe i + 1 for current time

(time >= keyframe[i].time) && (time <= keyframe[i+1].time)

- tween value as keyframe i and value as keyframe i + 1

Keyframing Example

Animation 23

0 1000:

1000 3001:

2500 4002:

5000 503:

Example 1
when time is 800,

tween keyframe 0 and keyframe 1:

t = (800 – 0) / (1000 – 0)
value = 100 + t * (300 - 100)

time targetValue

k
e
y
fr
a
m
e
s

Example 2
when time is 3000,

tween keyframe 2 and keyframe 3:

t = (3000 – 2500) / (5000 – 2500)
value = 400 + t * (50 - 400)

6000 504:

6500 1005:

Practice:
when time is 5250

when time is 7000

keyframes

24

▪ Array of KeyFrame objects

const keyframes: KeyFrame[] = [
 { time: 0, targetValue: 50 },
 { time: 1000, targetValue: 450 },
 ...

▪ Keyframer object

- find interval in keyframe array using time

- tween to get current value

- call callback

▪ Comments

- how to insert pauses as keyframes?

Animation

Animation Using Built-in Timers

Animation 25

A timer triggers an event after some time period

1. Set time period to time interval for desired frame rate

e.g. 30 FPS has an interval of 1/30 seconds (~33 milliseconds)

2. In the timer “finished” event handler, do:

- update parameters you want to animate

- (optional) redraw an updated image for the frame

3. restart the timer for the next interval

- some timers can repeat automatically at a set interval

timer = Timer(() => {
 x += 1 // animate parameter
 draw() // redraw scene
}

pseudo code

dom-timers demoIntervalTimer()

26

▪ The DOM / HTML engine has a general-purpose interval timer

- try different frame rates by changing interval, what happens?

 const duration = 2000;
 let timer = setInterval(() => {
 const timePassed = performance.now() - start;
 dot.x = lerp(50, 250, timePassed / duration);
 gc.clearRect(0, 0, canvas.width, canvas.height);
 dot.draw(gc);
 // stop after certain time
 if (timePassed > duration) {
 clearInterval(timer);
 }
 }, 1000 / 60);

1000 ms / 60 frames = 16.666 ms/frame = 60 FPS

Animation

Check assignment specification,
using this timer may not be allowed.

dom-timers demoRequestAnimationFrame()

27

▪ The DOM / HTML engine provides a special animation callback

- this is what SimpleKit uses to create the run-loop

 const duration = 2000;
 requestAnimationFrame(function animate(timePassed) {
 dot.x = lerp(50, 250, timePassed / duration);
 gc.clearRect(0, 0, canvas.width, canvas.height);
 dot.draw(gc);
 // continue unless done animation
 if (timePassed < duration) {
 requestAnimationFrame(animate);
 }
 });

Animation

Check assignment specification,
using this timer may not be allowed.

Timers and the UI Thread

Animation 28

▪ Most (all?) UI frameworks are single-threaded (e.g. JavaFX)

- partly because its simpler and multiple threads isn't needed

- a single threaded dispatch queue avoids deadlocks and race

conditions due to unpredictable user-generated events

▪ Most (all?) UI frameworks are typically not thread-safe

- to reduce execution burden, reduce complexity, etc.

▪ Most modifications to the UI must be on the UI execution thread

- otherwise, behaviour may be unexpected

- or in some cases, an exception is thrown

This has implications for animation timers in those frameworks

- HTML DOM interval and animation timers run on the UI thread

- Other platforms may have timers running on a non-UI thread

Animation using Java Util Timer

Animation 29

import java.util.*

// create timer
val timer = Timer()

// schedule a task to repeat
timer.scheduleAtFixedRate(
 // WARNING! This task is NOT executed on the JavaFX thread!
 object : TimerTask() {
 override fun run() {
 aniScene.x += 1.0 // animate parameter
 aniScene.draw() // redraw updated scene
 }
 },
 0, 1000/60
)

This type of timer does not run on the JavaFX UI
thread: it may cause an exception if modifications to the
scene graph are attempted in the event handler.

This code is Kotlin with JavaFX

Animation using Java Util Timer with JavaFX Runnable

Animation 30

import java.util.*
import javafx.application.Platform

// create timer
val timer = Timer()

// schedule a task to repeat
timer.scheduleAtFixedRate(

 object : TimerTask() {
 override fun run() {
 // runs the code on the JavaFX thread

Platform.runLater {
 aniScene.x += 1.0 // animate parameter
 aniScene.draw() // redraw updated scene

}
 }
 },
 0, 1000/60
)

This code is Kotlin with JavaFX

Standard Animation API and Libraries

Animation 31

▪ CSS Transitions and Animation

- https://developer.mozilla.org/en-

US/docs/Web/CSS/CSS_animations/Using_CSS_animations

- can control with TypeScript by creating and manipulating styles

▪ Many 3rd party animation libraries

- GreenSock https://greensock.com/

- can animate any JavaScript object field

- many easing functions

- keyframing system

Check assignment specification, using CSS animations
or external animation libraries may not be allowed.

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_animations/Using_CSS_animations
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_animations/Using_CSS_animations
https://greensock.com/

EXERCISE
Exercise

Animation 32

▪ Draw green 64px square

▪ If mouse click on square:

- turn square to blue for 2s

▪ If mouse click not on square:

- animate square centre to click

position over 1s

▪ Use SimpleKit

- draw callback

- event handler

- animation update

Hint: create a Square shape class

that holds all of its state (position,

fill, timer, animations, ...).

Video demo:
https://vault.cs.uwaterloo.ca/s/trNbEgP24p4mbas

https://vault.cs.uwaterloo.ca/s/trNbEgP24p4mbas

	Slide 1: Animation
	Slide 2: Animation
	Slide 3: Animation Terminology
	Slide 4: Frame Rate
	Slide 5: Critical Flicker Frequency* (CFF)
	Slide 6
	Slide 7: Animation in SimpleKit
	Slide 8: Animation by Simulation
	Slide 9: simulation
	Slide 10: Timers
	Slide 11: timer simpleTimerDemo()
	Slide 12: timer callbackTimerDemo()
	Slide 13: Tweening
	Slide 14: lerp function
	Slide 15: tweening
	Slide 16: Easing Functions
	Slide 17: Easing Functions
	Slide 18: easing
	Slide 19: Easing Function Resources
	Slide 20: UI Toolkit Animation Architecture
	Slide 21: manager
	Slide 22: Keyframing
	Slide 23: Keyframing Example
	Slide 24: keyframes
	Slide 25: Animation Using Built-in Timers
	Slide 26: dom-timers demoIntervalTimer()
	Slide 27: dom-timers demoRequestAnimationFrame()
	Slide 28: Timers and the UI Thread
	Slide 29: Animation using Java Util Timer
	Slide 30: Animation using Java Util Timer with JavaFX Runnable
	Slide 31: Standard Animation API and Libraries
	Slide 32: Exercise

