
Event Dispatch

• Dispatch

• Binding

• Propagation

Dispatch 1

Event Pipeline So Far

2

Event
Translation

click

Low-Level
Input

Window
Dispatch

Toolkit
Handling

Event
Creation

move
UI

Toolkit
OS

Window

Device e.g. Chrome
Browser Tab

e.g. Google
Blink Renderer

Event
Queue

move

up

move

down

Dispatch

review from
Input Events

lecture

App Dispatch and App Binding

3

▪ UI Toolkit events need to trigger specific code in the app

App
Dispatch

Event
Translation

click

e.g. HTML
Button Element

OK

App
Binding

Toolkit
Handling

UI
Toolkit

e.g. Google
Blink Renderer

Dispatch

function(e) {
 // action
}

App Dispatch and Event Binding … so far

4

▪ A simple central dispatch method:

- all events are handled in a single app function, e.g.

function handleEvent(e: SKEvent) { ... }

▪ A simple switch statement binding method:

- app code to handle each event is in event handing function, e.g.

 switch (e.type) {
 case "mousemove":
 // app code here for mousemove
 break;
 case "click":
 // app code here for click
 break;
 ...

Dispatch

View Hierarchy

5

▪ UI toolkits typically organize widgets into a tree

- only one root element

- need container widgets for non-leaf nodes

- child order dictates draw order (e.g. draw left-to-right)

root

widget

widget

container

Dispatch

view-hierarchy

Dispatch 6

▪ Using SimpleKit imperative-mode

- Using SimpleKit widgets

- Console warning since demo uses setSKDrawCallback

- (will show correct way near end of this lecture)

▪ Show how order of adding children changes display

- How should events be “sent” to “overlapping” widgets?

View Hierarchy

Dispatch 7

const blueContainer = new SKContainer(...);
blueContainer.fill = "lightblue";

const buttonB = new SKButton(...);

const greenContainer = new SKContainer(...);
greenContainer.fill = "lightgreen";

const buttonA = new SKButton(...);

// build the UI tree
blueContainer.addChild(buttonB);
blueContainer.addChild(greenContainer);
greenContainer.addChild(buttonA);

root

B

A

container

2. toolkit
dispatch to
button

click

1. Windowing
System dispatch to
window

(Event) Dispatch

8

▪ In general English:

- To send off or away with promptness or speed

▪ In user interface architecture:

- To route an event to the appropriate widget or code

Dispatch

Event Dispatch Steps

9

1. Target selection

- The frontmost widget under the mouse

2. Route construction

- Path from root to target

3. Propagation

- capture DOWN from root to target

- bubble UP from target to root

Route construction and
propagation only apply to
positional dispatch

Dispatch

Target Selection

10

Determined by the type of event:

▪ mouse event: target is the widget at the location of the cursor

(typically, mousedown target used until mouseup)

- called Positional Dispatch

▪ key event: target is the widget that has focus

- focus typically assigned with mouse click

(could also be code or key like TAB)

- called Focus Dispatch

▪ touch events: target selection may be more complex, e.g.:

- A continuous gesture (like pinch-to-zoom) might select the target

at the center point of all touches at gesture start

- A swipe (like swipe right) might select the target at the center of

the entire path of all fingers

Dispatch

Target Selection in Positional Dispatch

11

Target is last widget drawn under mouse

▪ mouse event at position 1:

- buttonA

▪ mouse event at position 2:

- greenContainer

root

B

A

container

1 2

Dispatch

Route Construction in Positional Dispatch

12

▪ Route is from root to target

▪ mouse event at position 1:

- blueContainer , greenContainer, buttonA,

▪ mouse event at position 2:

- blueContainer , greenContainer

root

B

A

container

1
2

Dispatch

target-route

13

// returns list of elements under mouse (from back to front)
function buildTargetRoute(mx, my, SKElement) {
 route = [];
 if (element instanceof SKContainer) {
 element.children.forEach((child) =>
 route.push(
 ...buildTargetRoute(
 mx - element.x,
 my - element.y,
 child
)
)
);
 }

 if (element.hittest(mx, my)) {
 return [element, ...route];
 } else {
 return route;
 }
}

NOTE: simplified TypeScript

visit children from
back to front

add this
element to
route if hit

o.w. just
return
route

root

B

A

container

Dispatch

Translate to child
coordinate system

Event Dispatch Steps

14

1. Target selection

- The frontmost widget under the mouse

2. Route construction

- Path from root to target node

3. Propagation

- capture DOWN from root to target

- bubble UP from target to root

Route construction and
propagation only apply to
positional dispatch

Event Binding hard to demo propagation
without this last step

Dispatch

Event Binding

15

▪ How to associate events with code?

- (route to code, send to code, handle with code, …)

▪ Design goals of event binding mechanisms:

- Easy to understand (clear connection between event and code)

- Easy to implement (binding paradigm or API)

- Easy to debug (how did this event get here?)

- Good performance

Dispatch

Global Event Callback

16

▪ Used in early Windows

- each app window registers a WindowProc function (Window

Procedure) which is called each time an event is dispatched

- a switch statement binds event to code

- (there were over 100 standard events …)

LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg,
 WPARAM wParam, LPARAM lParam) {
 switch (uMsg) {
 case WM_CLOSE:
 DestroyWindow (hWnd);
 break;
 case WM_SIZE:
 …
 case WM_KEYDOWN:
 …

this is basically what SimpleKit
does with setSKEventHandler

Dispatch

Windows
C++ code

Global Event Callback Binding Problems

17

▪ Difficult to maintain

- Dozens of different types of events that need to be managed

▪ Events are not delegated to an object

- Leads to code where events are handled in callback itself

▪ Better if widgets handle the events themselves

- e.g. "click" event on widget is bound directly to method on that

widget object

Dispatch

Inheritance Binding

18

▪ Event is dispatched to a widget base object

- widget extends from base class with all event handling methods

▪ Base class can choose specificity of event handling method

- general event types, e.g. onMouse, onKeyboard
- specific events, e.g. onMouseMove, onMouseClick

▪ Used in Java 1.0

Dispatch

Inheritance Binding Problems

19

▪ Multiple event types are processed through each event method

- still a switch statement, but in the widget

▪ No filtering of events might introduce performance issues

- consider events like mousemove: all will be delivered

▪ If using specific event methods, it doesn’t scale well

- need to modify the base class to add new event types

e.g. penButtonPress, touchGesture, ….

but is more specific
switch cases

Dispatch

Listener Binding

20

▪ Define interfaces for specific event types (or device types)

- e.g. MouseListener, MouseMotionListener, KeyListener, …

▪ Create object that implements interface to handle

e.g. KeyListener for keyboard events

▪ When event is dispatched, relevant listener method is called

e.g. mousePressed, mouseMoved, …

▪ Used in JavaFX

Dispatch

SimpleKit Binding

21

▪ Uses a form of Inheritance Binding with Listener Objects

▪ Each SKElement binds events to event handlers

- toolkit events, like “mousemove” and “keydown”

- widget events, like “action” when a SKButton is clicked

Dispatch

SimpleKit Binding

22

▪ Defines an event handler function type

type EventHandler = (me: SKEvent) => void;

▪ Defines a binding route object to map event type to handler
type BindingRoute = {
 type: string; // event type
 handler: EventHandler;
};

▪ SkElement maintains a table of binding routes
bindingTable: BindingRoute[] = [];

▪ SkElement method to add event listeners to a binding table
addEventListener(
 type: string,
 handler: EventHandler
) { this.bindingTable.push({ type, handler }); }

showing simplified
version of code

Dispatch

SimpleKit Binding

23

▪ Toolkit calls methods in SKElement with event:

handleMouseEvent
handleKeyboardEvent

▪ SKElement handles all standard UI Toolkit events

handleMouseEvent(me: SKMouseEvent) {
 this.sendEvent(me);
}

▪ SKElement has method to send event to handler

(if one exists in binding table)

protected sendEvent(e: SKEvent) {
 this.bindingTable.forEach((d) => {
 if (d.type == e.type) { d.handler(e); }
 });
}

Dispatch

showing simplified
version of code

SimpleKit Binding

24

▪ A widget can implement methods to handle toolkit events

▪ To update widget state:

handleMouseEvent(me: SKMouseEvent) {
 switch (me.type) {
 case "mousedown":

this.state = "down";
 break;
 ...

▪ To send special “widget events”:
handleMouseEvent(me: SKMouseEvent) {
 switch (me.type) {
 ...
 case "mouseup":

this.sendEvent({
source: this,
timeStamp: me.timeStamp,
type: "action",

} as SKEvent);
 break;
 ...

Dispatch

showing simplified
version of code

binding

25

▪ Simple demo without toolkit dispatch

▪ In SimpleKit widget code, look at:

- SKElement.addEventListener

- button.handleMouseEvent

- SKElement.dispatch

Dispatch

Event Propagation

27

▪ Most UI toolkits support top-down and bottom-up propagation

- top-down is called capture

- button-up is called bubbling

▪ Any widget in the path can use the event during either pass

▪ A handler can stop all following propagation

(i.e. a capture handler can stop rest of capture and bubble phase)

https://javascript.info/bubbling-and-capturing

https://docs.oracle.com/javafx/2/events/processing.htm

Capture phase
walks down the tree
from the root
through each widget
until it reaches the
target widget

Bubble phase walks
up the tree starting
from the target
widget, through each
ancestor widget until
it reaches the root

root

B

A

container

target widget

Dispatch

https://javascript.info/bubbling-and-capturing
https://docs.oracle.com/javafx/2/events/processing.htm

propagation

28

function dispatch(me: SKMouseEvent, root: SKElement) {
 const route = buildTargetRoute(me.x, me.y, root);

 // capture
 const stopPropagation = route.some((element) => {
 return element.handleMouseEventCapture(me);
 });

 if (stopPropagation) return;

 // bubble
 route.reverse().some((element) => {
 return element.handleMouseEvent(me);
 });
}

capture binding

bubble binding

▪ Demo

- capture flag for listeners

- return true in handler to stop propagation
Dispatch

returns true to
stop propagation

Why stop propagation?

Dispatch 29

▪ Prevent some events from bubbling up to “default events”

- e.g. click on icon selects it, click on background deselects all icons

background

icon icon

background.addEventListener("click", (e) => {
 // de-select all icons ...
});

icons.foreach((icon) => {
 icon.addEventListener("click", (e) => {
 // select this icon ...
 });
});

What will
happen with
this code?

How to fix it?

Why Capture Phase?

30

▪ Events higher up in the widget tree can "filter" events

- use "handled" flag to stop propagation

Dispatch

Example: a parent wishes to disable all its children.

Positional Dispatch Limitations

31

▪ Pure positional dispatch can lead to odd behaviour:

- Mouse drag starts in a scrollbar, but then moves outside the

scrollbar: send the events to the adjacent widget?

- Mouse press event in one button widget but release is in

another: each button gets one of the events?

▪ Must also consider which widget is “in focus”

Dispatch

Focus Dispatch

32

▪ Events dispatched to widget regardless of mouse cursor position

▪ Needed for all keyboard and some mouse events:

- Keyboard focus: click on text field, move cursor off, start typing

- Mouse focus: mousedown on button, move off, mouseup

(also called “mouse capture”)

▪ Maximum one keyboard focus and one mouse focus

- why?

▪ Need to gain and lose focus at appropriate times

Dispatch

Focus Dispatch Needs Positional Dispatch

33

▪ A mousedown event sets mouse and keyboard focus to a widget

- Only text entry widgets should request keyboard focus

- Any widget could request mouse focus

▪ UI Toolkits have a dedicated focus managers

- As part of the dispatch method

▪ There are other ways to request focus

- TAB key to navigate a UI without a mouse

(assumes the UI toolkit defines a “tab order” for widgets)

- An app can typically request focus itself

(i.e. pressing ENTER moves keyboard focus to “next” textfield)

Dispatch

focus (in “dispatch-keyboard.ts”)

Dispatch 34

▪ Keyboard dispatch needs a focusedElement
- See keyboardDispatch

▪ requestKeyboardFocus for elements to request keyboard focus

- Used in SKTextfield in handleMouseEvent

- "focusout" and "focusout" event creation and immediate dispatch

to the widget’s handleKeyboardEvent

▪ DEMO:

- debug = true

focus (in “dispatch-mouse.ts”)

Dispatch 35

▪ Mouse focus handling in mouseDispatch function

- focusedElement module variable

▪ requestMouseFocus for elements to request mouse focus

- Used by SKButton in handleMouseEvent

▪ DEMO:

- with debug = true to see console log

Mouse Enter and Exit Events

Dispatch 36

▪ UI Toolkits generate events when mouse enters and exits a widget

- These events are used by widgets for “hover” effects

▪ Approach:

1. Get the element at very end of the target route

(i.e. the front-most widget)

2. If that element wasn't the “last element entered”

- Send “mouseexit” event to the last element entered

- Send “mouseenter” event to the element at end of the route

▪ In practice, a widget can refuse an enter event, then the toolkit will

check the penultimate element in the route (and so on)

- (But SimpleKit always sends enter/exit event to end element)

focus (in “dispatch-mouse.ts”)

Dispatch 37

▪ Mouse enter/exit handling in updateEnterExit function

- lastElementEntered module variable

- ”mouseenter" and ”mouseexit" event creation and immediate

dispatch to the widget’s handleMouseEvent

▪ DEMO:

- with debug = true to see console log

counter

38

▪ Building widget tree

▪ Using skSetRoot

- no need for skEventHandler or skDrawCallback

▪ Using eventListeners

- SKButton increment counter

- SKButton clear counter

- SKTextfield to display and edit counter value

▪ SKTextfield eventListener

- uses e.source to get reference to widget

- simple numeric validation

- parseInt or 0

Dispatch

EXERCISE
Exercise

Dispatch 39

Make a SimpleKit app to add two numbers

Pressing the “+” SKButton adds the two

numbers in two SKTextfields and sets the

answer in a result SKLabel

Use x and y properties to “layout” the widgets

to look like the picture inside a SKContainer

If you change a number after a result was

displayed, the result returns to “= ?”.

Don’t worry about numeric validation, if the

textfields aren’t numeric the result is “= NaN”

	Slide 1: Event Dispatch
	Slide 2: Event Pipeline So Far
	Slide 3: App Dispatch and App Binding
	Slide 4: App Dispatch and Event Binding … so far
	Slide 5: View Hierarchy
	Slide 6: view-hierarchy
	Slide 7: View Hierarchy
	Slide 8: (Event) Dispatch
	Slide 9: Event Dispatch Steps
	Slide 10: Target Selection
	Slide 11: Target Selection in Positional Dispatch
	Slide 12: Route Construction in Positional Dispatch
	Slide 13: target-route
	Slide 14: Event Dispatch Steps
	Slide 15: Event Binding
	Slide 16: Global Event Callback
	Slide 17: Global Event Callback Binding Problems
	Slide 18: Inheritance Binding
	Slide 19: Inheritance Binding Problems
	Slide 20: Listener Binding
	Slide 21: SimpleKit Binding
	Slide 22: SimpleKit Binding
	Slide 23: SimpleKit Binding
	Slide 24: SimpleKit Binding
	Slide 25: binding
	Slide 27: Event Propagation
	Slide 28: propagation
	Slide 29: Why stop propagation?
	Slide 30: Why Capture Phase?
	Slide 31: Positional Dispatch Limitations
	Slide 32: Focus Dispatch
	Slide 33: Focus Dispatch Needs Positional Dispatch
	Slide 34: focus (in “dispatch-keyboard.ts”)
	Slide 35: focus (in “dispatch-mouse.ts”)
	Slide 36: Mouse Enter and Exit Events
	Slide 37: focus (in “dispatch-mouse.ts”)
	Slide 38: counter
	Slide 39: Exercise

