Model View Controller (MV(C)

Model-View-Controller (MVC)

MVC was the first MV* interactive system architectures

present

perceive

express

translate

View
notify
Model
change
Controller

Model-View-Controller (MVC)

« Developed at Xerox PARC in 1979 by Trygve Reenskaug
- for Smalltalk-80 language, the precursor to Java

« Became a standard design pattern for GUIs

« Used at many levels
- Overall application design
- Individual components

« Many variations of MVC (MV¥):
- Model-View-Adaptor (MVA)
- Model-View-Presenter (MVP)
- Model-View-ViewModel (MVVM)

Trygve Reenskaug

Why use MVC?

1. Separate data, state, and "business logic" from user-interface

« |deally, View and Controller implementations can change without
changing Model implementation, e.g.:

- Add support for a new interface (e.g. different device)
- Add support for a new input device (e.g., touchscreen)

2. Supports multiple views of same data, e.g.
- View numeric data as a table, a line graph, a pie chart, ...
- Present simultaneous “overview” and “detail” views
- Distinct “edit” and “preview” views

3. Separation of concerns in code
- code reuse
- unit testing

o000 <

@ EXPLORER

 OPEN EDITORS

p X TS main.ts mvc/src/no-mve

<> index.html mvc/src/no-...

ip v CS349F24 PUBLIC (WORKSPACE)
v public

_assets

animation

dispatch

B %

drawing
hit-testing
input-events

javascript

a o

layout

L N N N I Y I Ve v

mvc

> nnda mndiilac

v OUTLINE
[e] counter
[@] root
[2] panel
[e] left
[@] right

@&
v TIMELINE main.ts

¢ update to new layo...
¢ add layout and mvc de...

@ O File Saved

O File Saved

{g} O File Saved

e S am

Pmain{} ®1A8010 @o

TS main.ts X

,O ¢s349f24 public (Workspace)

<> index.html

public > mvc > src » no-mvc > TS main.ts > ...
1 import {

2 startSimpleKit,

3 setSKRoot,

4 SKButton,

5 SKContainer,

6 SKLabel,

7 Layout,

8 } from "simplekit/imperative-mode";

9

10 // data

11 let counter = 0;

12

13 // user interface

14

15 // root container

16 const root = new SKContainer();

17 root.id = "root";

18 root.fill = "whitesmoke";
TERMINAL ~ PROBLEMS (19 OQUTPUT

There are no comments in this workspace yet.

Ln 11, Col 1

COMMENTS

Spaces: 2 UTF-8 LF {} TypeScript

Filter (e.g. text, author) Y ~ X

® GolLive (Spell « Prettier (&

How to Architect VS Code with MVC?

Nno-mvc

= Motivating example with no MV
- no formal separation of model, view, controller
- very simple counter

no-mvc

http://www.austintek.com/mvc/

MVC Implementation

Interface architecture decomposed into three parts:

- Model: manages application data and logic
- View: manages interface to present data
- Controller: manages interaction to modify data

View <

View .
ref \n

Model

Model

ref
/ha nge
Controller

Implementation

A\ 4

Controller

Conceptual

Observer Pattern

Subject Observer

observers: Observer[] _S update()

addObserver(ob: Observer) g

removeObserver(ob: Observer) !

notifyObservers() -------"""

MVC as Observer Pattern

Model

observers: Observer[]
addObserver(ob: Observer)
removeObserver(ob: Observer)

> notifyObservers()

state:

get state() < “”’//////

set state(s) { <%——_________~___

~~ notifyObservers();

}

, — X

View
. > update() {

= model.state
widget.prop = X
¥
model: Model
Controller
click —> someEvent(e) {
— model.state = e.y

}
model: Model

mvc1

« Classic MVC with separate View and Controller

LeftView
LeftController

RightView

MVC

10

http://www.austintek.com/mvc/

Observer interface and Subject base class

export interface Observer {

update(): void;
} :| single generic update notification

export class Subject {
private observers: Observer[] = [];

protected nOtifyObservers() { <[caIIthiseverytimestatechanges]
for (const o of this.observers) { o.update(); }

}

addObserver(observer: Observer) {
observer.update();
this.observers.push(observer);

}

ﬁ first view update

View
export class LeftView extends SKContainer implements Observer {

update(): void {
this.button.text = “${this.model.count} ;
}

button: SKButton = new SKButton({ text: "?" });

constructor(private model: Model, controller: LeftController) {
super();

this.addChild(this.button);

// set an event handler for button "action" event
this.button.addEventListener("action", () => {
controller.handleButtonPress();

});

// register with the model when we're ready
this.model.addObserver(this);

Controller

export class LeftController {
constructor(private model: Model) {}

handleButtonPress() {
this.model.increment();

}
}

export class Model extends Subject {

// model data (i.e. model state)
private _count = 0;
get count() f{

return this. _count;

}

// model "business logic"

increment() {
this. _count++;
// need to notify observers anytime the model changes
this.notifyObservers();

}

} ‘ called whenever state changes |

MVC in Theory and Practice

View ~. View K IS <.
\ notify *\ notify Controller \ notify
\ \
ref \ ref . ref)
—> > >
Model coordinate Model Model
—> =
ref ref
Controller Controller
In theory,: In practice: Approach:
View and Controller are View and Controller are View integrates the

loosely coupled. often tightly coupled. Controlier.

mvc2

« MVC with Controller integrated into View
« This is the most typical MVC approach in practice

mvc2

View with Integrated Controller

export class LeftView extends SKContainer implements Observer {

update(): void {
this.button.text = “${this.model.count} ;
}

button: SKButton = new SKButton({ text: "?" });

constructor(private model: Model) {
super();

this.addChild(this.button);

// Controller
this.button.addEventListener("action", () => {
model.increment();

1)

// register with the model when we're ready
this.model.addObserver(this);

X| buy milk (id#4)

exercise (id#5)

X| study (id#6)

todo

(

J

(

J

<) =) =

3 todos (2 done)

MVC

18

todo

- Model
- Private array of todos, each is a Todo type with unique id
- CRUD methods: CUD must notify observers
- information methods: no need to notify observers

= FormView

- Button and Textfield text changes based on whether a todo is
“selected” (selected edits the todo, not selected adds a new todo)

« ListView
- TodoView children; each update clears them and creates new ones

- InfoView displays different messages based on model state

« TodoView displays a single todo with buttons to edit and delete

todo

« Modify code to immediately update form edits in todo list
- Uncomment additional controller code in FormView
- Think about notifications happening each time

« Instrument with debug information to see notifications
- switch model include to “observer-debug”
- Uncomment code in main.ts to notifyObservers with Esc key

Optimizing View Updates

- Each viewUpdate, everything in every view is refreshed from model

» Could add parameters to viewUpdate to indicate what changed
- if view knows it isn't affected by change, can ignore it

- But: simpler is often better

- early optimization only introduces extra complexity that causes
bugs and adds development time

= Advice: don't worry about efficiency until you have to:
just update the entire interface

todo

« Add a simple optimization to only recreate list of TodoViews when a
todo was added or deleted.

MVC Variants
= Model-View-Adaptor

= Model-View-Presenter
= Model-Model-ViewModel

Model-View-Controller (MVC)

Model: manages application data and logic
View: manages interface to present data

Controller. manages interaction to modify data
- common approach is to integrate Controller in the View

notify
e - RN
A < \\
View
» Model
Controller ref

update and
retrieve

Model-View-Adaptor (MVA)

Model: manages application data and logic.
View: manages interface to present and interact with data.

Adaptor: translates or "adapts" the Model into a form that the View

can use.
- An Adaptor can support multiple Views

notify notify
vl ¥ 5,
View » | Adaptor » Model
ref ref
events and update and

updates retrieve

Model-View-Presenter (MVP)

Model: manages application data and its modification.

View: manages interface to present data.

Presenter: middle layer to retrieve data from Model and format it
for the View, handles user input and updates Model

- Presenter and View are tightly coupled

notify
ref JemTT T T RN
updates I S .
A 4 \
‘_
View Presenter —» Model
—
ref
ref update and

events retrieve

Model-View-ViewModel (MVVM)

Model: manages application data and its modification

View: manages interface to present data.

ViewModel: mediator that exposes data from the Model in a way
that's directly usable by the View using data-binding

- Data-binding means changes to View automatically trigger
changes to Model (and vice-versa)

_—————
- -~
- -~

View ~¢————p ViewModel —»| Model

databinding drff J
update an

retrieve

	Slide 1: Model View Controller (MVC)
	Slide 2: Model-View-Controller (MVC)
	Slide 3: Model-View-Controller (MVC)
	Slide 4: Why use MVC?
	Slide 5
	Slide 6: no-mvc
	Slide 7: MVC Implementation
	Slide 8: Observer Pattern
	Slide 9: MVC as Observer Pattern
	Slide 10: mvc1
	Slide 11: Observer interface and Subject base class
	Slide 12: View
	Slide 13: Controller
	Slide 14: Model
	Slide 15: MVC in Theory and Practice
	Slide 16: mvc2
	Slide 17: View with Integrated Controller
	Slide 18
	Slide 19: todo
	Slide 20: todo
	Slide 21: Optimizing View Updates
	Slide 22: todo
	Slide 23: MVC Variants
	Slide 24: Model-View-Controller (MVC)
	Slide 25: Model-View-Adaptor (MVA)
	Slide 26: Model-View-Presenter (MVP)
	Slide 27: Model-View-ViewModel (MVVM)

