
Model View Controller (MVC)

▪ Benefits of MVC

▪ Basic Implementation

▪ Todo Example

▪ MVC Variants

MVC 1

Model-View-Controller (MVC)

2

MVC was the first MV* interactive system architectures

Model

View

Controller

notify

change

translate

present

perceive

express

MVC

Model-View-Controller (MVC)

3

▪ Developed at Xerox PARC in 1979 by Trygve Reenskaug

- for Smalltalk-80 language, the precursor to Java

▪ Became a standard design pattern for GUIs

▪ Used at many levels

- Overall application design

- Individual components

▪ Many variations of MVC (MV*):

- Model-View-Adaptor (MVA)

- Model-View-Presenter (MVP)

- Model-View-ViewModel (MVVM)

Trygve Reenskaug

MVC

Why use MVC?

4

1. Separate data, state, and "business logic" from user-interface

▪ Ideally, View and Controller implementations can change without

changing Model implementation, e.g.:

- Add support for a new interface (e.g. different device)

- Add support for a new input device (e.g., touchscreen)

2. Supports multiple views of same data, e.g.

- View numeric data as a table, a line graph, a pie chart, …

- Present simultaneous “overview” and “detail” views

- Distinct “edit” and “preview” views

3. Separation of concerns in code

- code reuse

- unit testing

MVC

How to Architect VS Code with MVC?

MVC 5

no-mvc

6

▪ Motivating example with no MV

- no formal separation of model, view, controller

- very simple counter

inspired by Joseph Mack: http://www.austintek.com/mvc/ MVC

http://www.austintek.com/mvc/

MVC Implementation

7

Interface architecture decomposed into three parts:

- Model: manages application data and logic

- View: manages interface to present data

- Controller: manages interaction to modify data

MVC

Model

View

Controller

notify

change

Model

View

Controller

notify

ref

ref

Conceptual Implementation

Observer Pattern

8

Subject
observers: Observer[]

addObserver(ob: Observer)

removeObserver(ob: Observer)

notifyObservers()

Observer
update()

MVC

View
update() {

 x = model.state

 widget.prop = x

}

model: Model

MVC as Observer Pattern

9

Model
observers: Observer[]

addObserver(ob: Observer)

removeObserver(ob: Observer)

notifyObservers()

state: ...

get state()

set state(s) {

 ...

 notifyObservers();

}

Controller
someEvent(e) {

 model.state = e.y

}

model: Model

MVC

click

mvc1

10

▪ Classic MVC with separate View and Controller

inspired by Joseph Mack: http://www.austintek.com/mvc/

LeftView
LeftController

RightView

MVC

http://www.austintek.com/mvc/

Observer interface and Subject base class

11

export interface Observer {
 update(): void;
}

export class Subject {
 private observers: Observer[] = [];

 protected notifyObservers() {
 for (const o of this.observers) { o.update(); }
 }

 addObserver(observer: Observer) {
 observer.update();
 this.observers.push(observer);
 }

 ...
}

first view update

single generic update notification

call this every time state changes

MVC

View

12

export class LeftView extends SKContainer implements Observer {

 update(): void {
 this.button.text = `${this.model.count}`;
 }

 button: SKButton = new SKButton({ text: "?" });

 constructor(private model: Model, controller: LeftController) {
 super();

 this.addChild(this.button);

 // set an event handler for button "action" event
 this.button.addEventListener("action", () => {
 controller.handleButtonPress();
 });

 // register with the model when we're ready
 this.model.addObserver(this);
 }
}

references to model and controller

connect to controller

when model changes

MVC

Controller

13

export class LeftController {

 constructor(private model: Model) {}

 handleButtonPress() {
 this.model.increment();
 }
}

MVC

Model

14

export class Model extends Subject {

 // model data (i.e. model state)
 private _count = 0;
 get count() {
 return this._count;
 }

 // model "business logic"
 increment() {
 this._count++;
 // need to notify observers anytime the model changes
 this.notifyObservers();
 }
} called whenever state changes

MVC

MVC in Theory and Practice

MVC 15

Model

View

Controller

notify

ref

ref

In theory,:
View and Controller are
loosely coupled.

Model

View

Controller

notify

ref

ref

coordinate

In practice:
View and Controller are
often tightly coupled.

Model

View

Controller notify

ref

Approach:
View integrates the
Controller.

mvc2

16

▪ MVC with Controller integrated into View

▪ This is the most typical MVC approach in practice

MVC

View with Integrated Controller

17

export class LeftView extends SKContainer implements Observer {

 update(): void {
 this.button.text = `${this.model.count}`;
 }

 button: SKButton = new SKButton({ text: "?" });

 constructor(private model: Model) {
 super();

 this.addChild(this.button);

 // Controller
 this.button.addEventListener("action", () => {
 model.increment();
 });

 // register with the model when we're ready
 this.model.addObserver(this);
 }
}

this is the controller

MVC

MVC 18

todo

MVC 19

▪ Model

- Private array of todos, each is a Todo type with unique id

- CRUD methods: CUD must notify observers

- information methods: no need to notify observers

▪ FormView

- Button and Textfield text changes based on whether a todo is

“selected” (selected edits the todo, not selected adds a new todo)

▪ ListView

- TodoView children; each update clears them and creates new ones

▪ InfoView displays different messages based on model state

▪ TodoView displays a single todo with buttons to edit and delete

todo

MVC 20

▪ Modify code to immediately update form edits in todo list

- Uncomment additional controller code in FormView

- Think about notifications happening each time

▪ Instrument with debug information to see notifications

- switch model include to “observer-debug”

- Uncomment code in main.ts to notifyObservers with Esc key

Optimizing View Updates

21

▪ Each viewUpdate, everything in every view is refreshed from model

▪ Could add parameters to viewUpdate to indicate what changed

- if view knows it isn’t affected by change, can ignore it

▪ But: simpler is often better

- early optimization only introduces extra complexity that causes

bugs and adds development time

▪ Advice: don’t worry about efficiency until you have to:

just update the entire interface

MVC

todo

MVC 22

▪ Add a simple optimization to only recreate list of TodoViews when a

todo was added or deleted.

MVC Variants

▪ Model-View-Adaptor

▪ Model-View-Presenter

▪ Model-Model-ViewModel

23MVC

View

Model-View-Controller (MVC)

24

Model: manages application data and logic

View: manages interface to present data

Controller: manages interaction to modify data

- common approach is to integrate Controller in the View

MVC

ref
update and

retrieve

Model
Controller

notify
notify

Model-View-Adaptor (MVA)

25

Model: manages application data and logic.

View: manages interface to present and interact with data.

Adaptor: translates or "adapts" the Model into a form that the View

can use.

- An Adaptor can support multiple Views

MVC

ModelView Adaptor

ref
update and

retrieve

notify

ref
events and

updates

notify

Model-View-Presenter (MVP)

26

Model: manages application data and its modification.

View: manages interface to present data.

Presenter: middle layer to retrieve data from Model and format it

for the View, handles user input and updates Model

- Presenter and View are tightly coupled

MVC

ModelView Presenter

notify

ref
update and

retrieve

ref
events

ref
updates

Model-View-ViewModel (MVVM)

27

Model: manages application data and its modification

View: manages interface to present data.

ViewModel: mediator that exposes data from the Model in a way

that's directly usable by the View using data-binding

- Data-binding means changes to View automatically trigger

changes to Model (and vice-versa)

MVC

ModelView ViewModel

notify

ref
update and

retrieve

databinding

	Slide 1: Model View Controller (MVC)
	Slide 2: Model-View-Controller (MVC)
	Slide 3: Model-View-Controller (MVC)
	Slide 4: Why use MVC?
	Slide 5
	Slide 6: no-mvc
	Slide 7: MVC Implementation
	Slide 8: Observer Pattern
	Slide 9: MVC as Observer Pattern
	Slide 10: mvc1
	Slide 11: Observer interface and Subject base class
	Slide 12: View
	Slide 13: Controller
	Slide 14: Model
	Slide 15: MVC in Theory and Practice
	Slide 16: mvc2
	Slide 17: View with Integrated Controller
	Slide 18
	Slide 19: todo
	Slide 20: todo
	Slide 21: Optimizing View Updates
	Slide 22: todo
	Slide 23: MVC Variants
	Slide 24: Model-View-Controller (MVC)
	Slide 25: Model-View-Adaptor (MVA)
	Slide 26: Model-View-Presenter (MVP)
	Slide 27: Model-View-ViewModel (MVVM)

