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Model-View-Controller (MVC)
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MVC was the first MV* interactive system architectures
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Model-View-Controller (MVC)
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▪ Developed at Xerox PARC in 1979 by Trygve Reenskaug

- for Smalltalk-80 language, the precursor to Java

▪ Became a standard design pattern for GUIs

▪ Used at many levels

- Overall application design

- Individual components

▪ Many variations of MVC (MV*):

- Model-View-Adaptor (MVA)

- Model-View-Presenter (MVP)

- Model-View-ViewModel (MVVM)

Trygve Reenskaug

MVC



Why use MVC?
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1. Separate data, state, and "business logic" from user-interface

▪ Ideally, View and Controller implementations can change without 

changing Model implementation, e.g.:

- Add support for a new interface (e.g. different device)

- Add support for a new input device (e.g., touchscreen)

2. Supports multiple views of same data, e.g.

- View numeric data as a table, a line graph, a pie chart, …

- Present simultaneous “overview” and “detail” views

- Distinct “edit” and “preview” views 

3. Separation of concerns in code

- code reuse

- unit testing

MVC



How to Architect VS Code with MVC?
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no-mvc
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▪ Motivating example with no MV

- no formal separation of model, view, controller

- very simple counter

inspired by Joseph Mack: http://www.austintek.com/mvc/ MVC

http://www.austintek.com/mvc/


MVC Implementation
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Interface architecture decomposed into three parts:

- Model:  manages application data and logic

- View:  manages interface to present data

- Controller:  manages interaction to modify data

MVC
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Observer Pattern
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Subject
observers: Observer[]

addObserver(ob: Observer)

removeObserver(ob: Observer)

notifyObservers()

Observer
update()

MVC



View
update() {

  x = model.state

  widget.prop = x

}

model: Model

MVC as Observer Pattern
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Model
observers: Observer[]

addObserver(ob: Observer)

removeObserver(ob: Observer)

notifyObservers()

state: ...

get state()

set state(s) {

  ...

  notifyObservers();

}

Controller
someEvent(e) {

  model.state = e.y

}

model: Model

MVC

click



mvc1
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▪ Classic MVC with separate View and Controller

inspired by Joseph Mack: http://www.austintek.com/mvc/

LeftView
LeftController

RightView

MVC

http://www.austintek.com/mvc/


Observer interface and Subject base class
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export interface Observer {
  update(): void;
}

export class Subject {
  private observers: Observer[] = [];

  protected notifyObservers() {
    for (const o of this.observers) { o.update(); }
  }

  addObserver(observer: Observer) {
    observer.update();
    this.observers.push(observer);
  }

  ...
}

first view update

single generic  update notification

call this every time state changes

MVC



View
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export class LeftView extends SKContainer implements Observer {

  update(): void {
    this.button.text = `${this.model.count}`;
  }

  button: SKButton = new SKButton({ text: "?" });

  constructor(private model: Model, controller: LeftController) {
    super();

    this.addChild(this.button);

    // set an event handler for button "action" event
    this.button.addEventListener("action", () => {
      controller.handleButtonPress();
    });

    // register with the model when we're ready
    this.model.addObserver(this);
  }
}

references to model and controller

connect to controller 

when model changes

MVC



Controller
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export class LeftController {

  constructor(private model: Model) {}

  handleButtonPress() {
    this.model.increment();
  }
}

MVC



Model
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export class Model extends Subject {

  // model data (i.e. model state)
  private _count = 0;
  get count() {
    return this._count;
  }

  // model "business logic"
  increment() {
    this._count++;
    // need to notify observers anytime the model changes
    this.notifyObservers();
  }
} called whenever state changes

MVC



MVC in Theory and Practice
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mvc2
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▪ MVC with Controller integrated into View

▪ This is the most typical MVC approach in practice

MVC



View with Integrated Controller
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export class LeftView extends SKContainer implements Observer {

  update(): void {
    this.button.text = `${this.model.count}`;
  }

  button: SKButton = new SKButton({ text: "?" });

  constructor(private model: Model) {
    super();

    this.addChild(this.button);

    //  Controller
    this.button.addEventListener("action", () => {
       model.increment();
    });

    // register with the model when we're ready
    this.model.addObserver(this);
  }
}

this is the controller

MVC



MVC 18



todo
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▪ Model

- Private array of todos, each is a Todo type with unique id

- CRUD methods: CUD must notify observers

- information methods: no need to notify observers

▪ FormView 

- Button and Textfield text changes based on whether a todo is  

“selected” (selected edits the todo, not selected adds a new todo)

▪ ListView

- TodoView children; each update clears them and creates new ones

▪ InfoView displays different messages based on model state

▪ TodoView displays a single todo with buttons to edit and delete



todo
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▪ Modify code to immediately update form edits in todo list

- Uncomment additional controller code in FormView 

- Think about notifications happening each time

▪ Instrument with debug information to see notifications

- switch model include to “observer-debug”

- Uncomment code in main.ts to notifyObservers with Esc key



Optimizing View Updates
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▪ Each viewUpdate, everything in every view is refreshed from model

▪ Could add parameters to viewUpdate to indicate what changed

- if view knows it isn’t affected by change, can ignore it

▪ But: simpler is often better 

- early optimization only introduces extra complexity that causes 

bugs and adds development time

▪ Advice: don’t worry about efficiency until you have to:

just update the entire interface

MVC



todo
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▪ Add a simple optimization to only recreate list of TodoViews when a 

todo was added or deleted.



MVC Variants

▪ Model-View-Adaptor

▪ Model-View-Presenter

▪ Model-Model-ViewModel

23MVC



View

Model-View-Controller (MVC)
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Model:  manages application data and logic

View:  manages interface to present data

Controller:  manages interaction to modify data

- common approach is to integrate Controller in the View

MVC
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Model-View-Adaptor (MVA)
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Model:  manages application data and logic.

View:  manages interface to present and interact with data.

Adaptor:  translates or "adapts" the Model into a form that the View 

can use. 

- An Adaptor can support multiple Views

MVC

ModelView Adaptor
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Model-View-Presenter (MVP)
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Model:  manages application data and its modification.

View:  manages interface to present data.

Presenter: middle layer to retrieve data from Model and format it 

for the View, handles user input and updates Model

- Presenter and View are tightly coupled

MVC
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Model-View-ViewModel (MVVM)
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Model:  manages application data and its modification

View:  manages interface to present data.

ViewModel: mediator that exposes data from the Model in a way 

that's directly usable by the View using data-binding

- Data-binding means changes to View automatically trigger 

changes to Model (and vice-versa)

MVC
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