
Text

▪ Character sets

▪ Internationalization

▪ Validation

▪ Masking

1Text

Representing Text

2

▪ Text means a series of characters

- alphabet, digits, whitespace, special characters, etc.

▪ Sets of characters form a writing system in human languages

- e.g. Latin alphabet, Chinese characters, Arabic alphabet,

Devanagari, Bengali, etc.,

▪ Need standardized encodings for characters in binary

https://www.smashingmagazine.com/2012/06/all-about-unicode-utf8-character-sets/ Text

https://www.smashingmagazine.com/2012/06/all-about-unicode-utf8-character-sets/

ASCII

3

▪ American Standard Code for Information Interchange

▪ Originally created in 1960s as a 7-bit encoding for teleprinters

- 52 Latin chars, 10 digits, common symbols, control chars, ...

e.g. A is #65; 0 is #48; @ is #64; "carriage return" is #13

- adopted as American standard in 1968 (i.e. a "world" standard)

▪ In 1970s, computers using 8-bit architectures became popular

- extra bit meant space for another 128 characters

- but initially no agreement for encoding

▪ In 1990s, ISO standardized 15 "code pages" for different encodings

- e.g. the Cyrillic ISO-8859-5 code page encodes Я as #207

▪ Assumes using correct code page to exchange international text

https://www.smashingmagazine.com/2012/06/all-about-unicode-utf8-character-sets/ Text

https://www.smashingmagazine.com/2012/06/all-about-unicode-utf8-character-sets/

4Text

Unicode

5

▪ Unicode is a superset of ASCII

- Capacity is up to 1,114,112 characters

- Version 6.1 actually encodes only 110,000 characters

- Every character in every language has a unique encoding

- Unicode has replaced ASCII in common use

▪ General structure

- #0 to #127 have same meaning as ASCII (e.g. Latin A is #65)

- #128 to #256 are common signs and accented characters

- after #256 many more accented characters

- after #800 Greek alphabet, then Cyrillic, etc.

▪ Unicode character codes written as "U+" then 4-digit hexadecimal

- e.g. H is U+0048 in Unicode (instead of decimal 72 in ASCII)

▪ Unicode encoding needs more than 1 byte

- the implementation of Unicode is not defined by Unicode

https://www.w3.org/International/articles/definitions-characters/index Text

https://www.w3.org/International/articles/definitions-characters/index

charset

Text 6

▪ Displays first 10,000 Unicode characters

▪ Uses String.fromCharCode(i)

UTF-8

Text 7

▪ Universal Character Set Transformation Format 8 bit

▪ Internally, web browsers use 4-byte "wide characters"

- in C/C++ it’s the wchart_t type

▪ The problem is sending, receiving, and storing text

- some existing software sends/receives in 1-byte units

- using 4 bytes for each Latin character would bloat storage

▪ UTF-8 uses a multi-byte variable width encoding:

https://en.wikipedia.org/wiki/UTF-8#Examples

0 127

128 2047

2048 65535

65536

how many bytes to expect (e.g. 4) identifies this as a "continuation" byte

https://en.wikipedia.org/wiki/UTF-8

charset

Text 8

▪ Uncomment <h1> to display Unicode characters

▪ Change charset from "UTF-8" to "ascii"

Internationalization and Localization

9

▪ Internationalization (i18n) is designing and developing software

so it can be adapted to different cultures and languages

- use i18n features like Unicode characters, bidirectional text, etc.

- support locale formats for numbers, currency, date, time, etc.

- plan for regional differences in storing information

- separate localization elements from source code and content

▪ Localization (l10n) is the act of implementing i18n

- locale means the region and language, e.g. en_CA or fr_CA

https://phrase.com/blog/posts/step-step-guide-javascript-localization/ Text

https://phrase.com/blog/posts/step-step-guide-javascript-localization/

Implementing Localization

Text 10

Steps for localization in the browser:

1. Use HTML data attribute to identify i18n text elements

<label data-i18n="label-name" ...

2. Create JSON translation data structures

en: { label-name: "Name" ...

fr: { label-name: "Nom" ...

3. Use preferred browser locale

navigator.language

4. Add a locale switcher (recommended)

i18n

Text 11

▪ TypeScript types for translation table

▪ structure of translation table

▪ setting translations to all i18n elements

▪ using default browser locale

▪ locale switcher

- select input widget

- "change" event

Form Validation

12

▪ Interfaces often need to validate text input typed by the user

▪ For example:

- a required field (e.g. credit card number)

- a certain format (e.g. numeric, postal code, phone number)

- within a certain range (e.g. number between 0 and 100)

- unique (e.g. choose a username to one else has used)

https://dribbble.com/shots/1026972 Text

https://dribbble.com/shots/1026972

Why Form Validation

13

1. The system needs the right data, in the right format

- The model expects certain kinds of data, or logic won't work

2. To guide users

- e.g. force them to use secure passwords

3. Protect the system

- attacks mounted through unprotected text submission

https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation Text

https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation

▪ SQL Injection: when user input is passed directly to SQL statement

Unprotected Text Submission Attack

14https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Website_security

bird2002Username

sql = `SELECT * FROM users WHERE name = '${userName}';`

If a real username is entered everything is fine

SELECT * FROM users WHERE name = 'a';DROP TABLE users; SELECT *
FROM userinfo WHERE 't' = 't';

sql = `SELECT * FROM users WHERE name = '${userName}';`

Username a';DROP TABLE users; SELECT * FROM userinfo WHERE 't' = 't

.... but a malicious user could enter:

Text

In practice, input
sanitization is also
done on the server

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Website_security

Guidelines for Form Validation

15

▪ Place error messages near fields

▪ Use colour to differentiate errors from normal field states

▪ When possible, accept data formatted in different ways

▪ When possible, filter invalid characters from being entered

▪ When possible, validate a field before input is complete

https://www.nngroup.com/articles/errors-forms-design-guidelines/ Text

https://www.nngroup.com/articles/errors-forms-design-guidelines/

HTML Form Basics

16

▪ <form> to group different input widgets together

▪ <label> to associate text with an input field

- association by element id

<label for="name">Name</label>
<input type="text" id="name" />

▪ <input> placeholder text

- placeholder to display an example value (or as a compact label)

<input type="text" placeholder="Name" id="name" />

Text

Built-in HTML Validation

Text 17

▪ Modern HTML5 widgets can validate many kinds of input

▪ Use specific type of input

type="number"

type="email"

▪ Use attributes to configure validation

required

minlength, maxlength

min, max

pattern

▪ Use CSS pseudo-class selectors to provide validation feedback

:required

:invalid

Regular Expressions ("regex", "re")

18

A sequence of characters that specifies a search pattern in text

- from language theory and theoretical computer science

- a regex pattern describes a deterministic finite automaton (DFA)

Used in form validation to “test” if string is in correct format:

Postal Code (upper case only with optional space in between)

[A-Z]\d[A-Z]\s*\d[A-Z]\d

Number (decimals allowed, positive only, optional leading 0)

\d*\.?\d*

Phone Number (10 digit North American with formatting options)

\(?\d{3}\)?[\s.\-]?\d{3}[\s.\-]?\d{4}

Regex Tutorial

https://regexone.com

Regex Testing, Explanation, Reference

https://regex101.com

Text

https://regexone.com/
https://regex101.com/

validation1

Text 19

▪ Attributes

required

pattern=" ... "

type="number", type="email", etc.

▪ CSS pseudo-classes

:invalid

:valid

:required

▪ Using div containers for form elements

▪ Advanced CSS to add * after <div>

:has()

::after

Custom Validation with Constraint Validation API

Text 20

▪ Only available on some widgets

- button, input, select, ...

▪ form novalidate to turn off standard validation messages

▪ API properties and methods

validity: ValidityState

checkValidity(): boolean

https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation#the_constraint_validation_api

https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation

validation2

Text 21

▪ novalidate attribute for form

- to turn off built-in HTML validation messages

▪ Error message in p tag

<p id="pcode-error" class="error">Error message</p>

▪ CSS uses active class to show error message in p tag, e.g.

classList.add("active");

▪ main.ts sets up two listeners

- form "submit" event when form button is pressed

- postal code field "input" event when user changes text

▪ Constraint API usage

- validity.valid
- validity.valueMissing
- validity.patternMismatch

▪ onSubmitOnly flag

https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation#the_constraint_validation_api

https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation

Custom Validation without Built-in API

Text 22

▪ For custom input widgets, you must write a custom validator

- create classes for invalid, etc.

- listen to input event for custom widget

- test against conditions (usually a regex)

https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation#validating_forms_without_a_built-in_api

https://developer.mozilla.org/en-US/docs/Learn/Forms/Form_validation

Input Formatting and Masking

23

▪ When form text is formatted as it's typed

▪ Input formatting updates the string in textfield as user types

- "input" event listener re-writes textfield with standard formatting

▪ Input masking provides a graphical representation of the final

format and fills it in as the user types

- Input handler re-writes textfield with formatted placeholders

- More elaborate formatting possible with custom element

Text

+1 (519) 555-5519 5555User types: Textfield displays:

+1 (519) 555-5 5195555User types: Textfield displays: _ ___ ___ ____

masking

Text 24

▪ Uses monospace font with letter-spacing

▪ Filter non-numbers

▪ Max 10 numbers

▪ Build string of numbers and blanks

▪ Set cursor position

- Doesn’t handle many edge cases

https://codepen.io/CSWApps/pen/EZxwMY

Text 25

https://codepen.io/CSWApps/pen/EZxwMY

	Slide 1: Text
	Slide 2: Representing Text
	Slide 3: ASCII
	Slide 4
	Slide 5: Unicode
	Slide 6: charset
	Slide 7: UTF-8
	Slide 8: charset
	Slide 9: Internationalization and Localization
	Slide 10: Implementing Localization
	Slide 11: i18n
	Slide 12: Form Validation
	Slide 13: Why Form Validation
	Slide 14: Unprotected Text Submission Attack
	Slide 15: Guidelines for Form Validation
	Slide 16: HTML Form Basics
	Slide 17: Built-in HTML Validation
	Slide 18: Regular Expressions ("regex", "re")
	Slide 19: validation1
	Slide 20: Custom Validation with Constraint Validation API
	Slide 21: validation2
	Slide 22: Custom Validation without Built-in API
	Slide 23: Input Formatting and Masking
	Slide 24: masking
	Slide 25

