
Undo*

▪ Principles, concepts

▪ Undo patterns

▪ Implementation

Undo 1

*Unless stated otherwise, “undo” means “undo/redo” in these slides.

Checkpointing

Undo 3

▪ A manual undo method

- you save the current state so you can rollback later (if needed)

▪ Consider a video game …

- You kill a monster

- You save the game

- You try to kill the next monster

- You die

- You reload the saved game

- You try to kill the next monster

- You kill the monster

- You save the game

checkpoint

checkpoint

“undo”

Undo Design Choices

Undo 4

1. Undoable Actions

2. State restoration

3. Granularity

4. Scope

Undoable Actions

Undo 5

▪ Some actions may be omitted from undo

-

▪ Some actions are destructive and not easily undone

-

▪ Some actions can’t be undone

-

Suggestions for Undoable Actions

Undo 6

1. All changes to "document" should be undoable

- All such changes are in the Model

2. Changes to View (interface state) should be undoable ONLY if

extremely tedious or require significant effort

- Typically View changes are NOT undoable

3. Ask for confirmation before doing a destructive action which

cannot easily be undone

State Restoration

Undo 7

▪ What is the user interface state after an undo or redo?

- e.g. highlight text, delete, undo … is text highlighted?

- e.g. highlight text, delete, scroll, undo … scroll back to text?

▪ User interface state should be meaningful after redo action

-

-

-

Granularity

8

▪ How much should be undone at one time?

▪ A chunk is conceptual change from one state to another

- Interaction can be divided into undoable chunks

- Undo reverses one chunk

▪ What defines one undoable “chunk”?

Undo

Granularity for Drawing Interactions

Undo 9

▪ What is a “chunk” to undo?

Granularity for Text Interactions

Undo 10

▪ What is a good undoable chunk for text?

- Each typed character? (i.e. every keypress event)

- Each syntactical unit? (i.e. a word, a sentence, etc.)

- Between "commands"? (i.e. delimited by delete, bold, etc.)

- Temporal sequence? (i.e. when edits separated by pause)

- What about auto correct and suggestions? Are these chunks?

Granularity for Text Interactions

Undo 11

▪ Type some text, then press undo. What happens?

- VS Code → delimited by whitespace OR command (e.g. delete)

- MS Word → delimited by command (e.g. delete, bold)

- Google Docs → delimited by whitespace, command, AND time

- Chrome search bar → delimited by autofill, whitespace, ...

▪ Try typing sentences, changing formatting, deleting, ignoring or

using suggestions, pausing or typing quickly, etc.

Implementing Undo

Undo 13

Two general approaches:

▪ Forward Undo

- Start from base document, then maintain of list of changes to

compute current document

- Undo by removing last change from list when computing current

document

▪ Reverse Undo

- Apply change to update document, but also save "reverse" change

- Undo by applying reverse change to document

▪ A change record defines a single transformation to the "document"

(i.e. the state of the Model)

Forward Undo

Undo 14

▪ Save baseline document state at some past point:

𝑆∗

▪ Save change records to transform baseline document into

current document state:

𝑆 = (𝑐(𝑏(𝑎(𝑆∗))

▪ To undo last action, don’t apply last change record:

𝑆′ = undo(𝑐(𝑏(𝑎(𝑆∗)) = (𝑏(𝑎(𝑆∗))

Reverse Undo

Undo 15

▪ Save complete current document state:

𝑆

▪ Save reverse change records to return to previous state:

𝑐−1, 𝑏−1, 𝑎−1

▪ To undo last action, apply last reverse change record:

𝑆′ = undo 𝑆 = 𝑐−1 𝑆

Implementation with Stacks

16

▪ Using either of these options requires two stacks

- Undo stack: all change records, saved as you perform actions

- Redo stack: change records that have been "undone"

(needed to reapply them with redo)

Undo

forward

17

▪ A simple counting app with undo/redo

Undo

↑ un do ↑

↑ B A S E ↑ ↑ B A S E ↑ ↑ B A S E ↑ ↑ B A S E ↑ ↑ B A S E ↑

↑ redo ↑

↑ un do ↑

↑ redo ↑

↑ un do ↑

↑ redo ↑

↑ un do ↑

↑ redo ↑

↑ un do ↑

↑ redo ↑

↑ B A S E ↑

↑ un do ↑

↑ redo ↑

↑ B A S E ↑

↑ un do ↑

↑ redo ↑

inc

4x 3x

inc

0 0 0 0 0

inc

inc

inc

inc

inc

undo

inc

inc

redo

inc

inc

inc

inc

inc

inc

inc

inc

3

save

inc

BASE = 0 BASE + inc

+ inc + inc

+ inc = 4

BASE + inc

= 1

BASE + inc

+ inc = 2

BASE + inc

+ inc + inc = 3

BASE = 3

3

inc

BASE + inc = 4

Forward Undo

18

Forward Undo Command

In undo.ts, define interface for forward command:

export interface Command<State> {
 do(state: State): State;
}

In model.ts, create a specific command for each action, e.g.

increment() {
 // add command to undo stack
 this.undoManager.execute({
 do: (state) => state + 1,
 } as Command<number>);
 ...
}

19

Defining a generic type

Creating specific instance of generic type

Learn TypeScript Generics In 13 Minutes

- https://youtu.be/EcCTIExsqmI

Undo 20

https://youtu.be/EcCTIExsqmI

forward

21

▪ Command interface

- has single "do" command with a Generic Type

▪ UndoManager class

- two stacks: undo, redo

- execute to add command to "undo" stack

- computeState called by Model

- undo moves command from undo to redo stack

- redo moves command from redo to undo stack

▪ Model class

- set count, increment, decrement, reset all create "do" command and

send it to UndoManager

- get count asks UndoManager
to computeState

- save resets the baseState

Undo

Reverse Undo Command Pattern

Undo 22

▪ User issues a command

- execute command to create new current document state

- push reverse command onto undo stack

- clear redo stack

▪ Undo

- pop reverse command from undo stack and execute it to create

new document state (which will be the previous state)

- push command onto redo stack

▪ Redo

- pop command off redo stack and execute it to create new

document state

- push reverse command on undo stack

↑ un do ↑

↑ redo ↑

↑ un do ↑

↑ redo ↑

↑ un do ↑

↑ redo ↑

↑ un do ↑

↑ redo ↑

↑ un do ↑

↑ redo ↑

inc

4x 3x

inc-1

inc-1

inc-1

inc

inc

inc-1

undo

inc-1

inc

redo

inc-1

inc

inc

inc

inc-1

inc-1

inc-1

inc-1

0 0 ↑ inc ↑ inc

↑ inc ↑ inc = 4

4 ↑ inc-1 ↑ inc-1

↑ inc-1 = 1

1 ↑ inc = 2 2 ↑ inc = 3

Reverse Undo

23

Command in "undo.ts"

24

Command interface

export interface Command {
 do(): void;
 undo(): void;
}

Example Command for increment

{
 do: () => {
 this._count++;
 },
 undo: () => {
 this._count--;
 },
} as Command

Undo

reverse

25

▪ UndoManager is simpler than forward undo

- redo executes the command (do)

- undo executes the reverse command (undo)

▪ Model

- each mutation method creates a do/undo command

- undo and redo methods notify observers

▪ Demo

- example of poor granularity using "input" event (instead of "change”)

Undo

Reverse (undo-chunking.ts)

26

▪ Switch undo to undo-chunking in Model

- Undo now uses timeout to chunk consecutive actions

- Stores sequence of commands in a chunk

- Undo and redo work on chunks, not individual commands

▪ Demo

- Use “input” event for range to show how it works

- Set the timeout to 1000ms to more easily see it working

- Numeric up/down also good example

Undo

Example Text Editor Commands and Reverse
Commands

Undo 27

▪ Available Commands:

insert(string, start)

delete(start, end)

bold(start, end)

normal(start, end)

Quick brown

Quick brown

Quick brown fox

Quick brown

Quick brown

Quick brown

Quick brown dog

insert(“Quick brown”, 0)

bold(6, 10)

insert(“ fox”, 11)

delete(11, 14)

normal(6, 10)

bold(6, 10)

insert(“ dog”, 11)

<cmd>

<cmd>

<cmd>

<reverse cmd>

<reverse cmd>

<cmd>

<cmd>

execute

execute

execute

undo

undo

redo

execute

Undo 30

Todo demo from HTML CSS lecture with undo

todo

Undo 31

only the Model changed to support undo/redo

▪ Added a View with Undo and Redo buttons, but all other Views

remained exactly the same as the HTML CSS demo

▪ UndoManager and standard undo methods added to Model

- undo, redo, canUndo, canRedo (just like prev demos)

▪ do and undo commands added to Model methods that mutate data

Reverse Change Record Implementation Options

Undo 32

▪ Option 1: Command pattern

- save command and "reverse command" to change state

▪ Option 2: Memento pattern

- save snapshots of each document state

- could be complete state or difference from “last” state

memento

33

▪ Simple example of undo using "mementos"

▪ Executing undo moves top memento to redo stack, then uses new top

of undo stack to set the Model state

▪ Needs a base memento (set in constructor)

- When undo stack is empty, base memento is used

▪ Implementation uses TypeScript generics

- UndoManager and Memento work with any type of Model state

interface Memento<State> { state: State; }

- Demo uses:

Memento<number>

Undo

generic type

Reverse Command Undo Problems

Undo 34

▪ Consider a bitmap paint application

stroke(points, thickness, colour)

erase(points, thickness)

<start>

<command>

<undo>

stroke(points, 10, black)

erase(points, 10, black)

Solutions for “Destructive” Commands

Undo 35

▪ Option 1: Use forward command undo …

▪ Option 2: Use reverse command undo, but un-execute command

stores previous state for “destructive” commands

- that’s a Memento!

- might require a lot of memory

- why some applications limit the size of undo stack

	Slide 1: Undo*
	Slide 3: Checkpointing
	Slide 4: Undo Design Choices
	Slide 5: Undoable Actions
	Slide 6: Suggestions for Undoable Actions
	Slide 7: State Restoration
	Slide 8: Granularity
	Slide 9: Granularity for Drawing Interactions
	Slide 10: Granularity for Text Interactions
	Slide 11: Granularity for Text Interactions
	Slide 13: Implementing Undo
	Slide 14: Forward Undo
	Slide 15: Reverse Undo
	Slide 16: Implementation with Stacks
	Slide 17: forward
	Slide 18: Forward Undo
	Slide 19: Forward Undo Command
	Slide 20
	Slide 21: forward
	Slide 22: Reverse Undo Command Pattern
	Slide 23: Reverse Undo
	Slide 24: Command in "undo.ts"
	Slide 25: reverse
	Slide 26: Reverse (undo-chunking.ts)
	Slide 27: Example Text Editor Commands and Reverse Commands
	Slide 30
	Slide 31: todo
	Slide 32: Reverse Change Record Implementation Options
	Slide 33: memento
	Slide 34: Reverse Command Undo Problems
	Slide 35: Solutions for “Destructive” Commands

