
Asynchronous

▪ Matching human perception and expectations

▪ Asynchronous execution

▪ Fetch API

▪ Worker thread

Asynchronous 1

Responsive* User Interfaces

Asynchronous 2

▪ A responsive UI feels like it responds in a timely manner

- Examples:

▪ This is accomplished primarily in two ways:

1. Designing for human perception and expectations

2. Using asynchronous execution

Responsiveness is not just system performance

* not related to responsive layouts (the layout term for adapting to different window sizes and/or devices)

Human Perception of Time

Asynchronous 3

▪ Knowing the duration of perceptual and cognitive processes can

inform the design of interactive systems that feel responsive

▪ Can examine results of Mental Chronometry studies

- Minimal time to detect a gap of silence in sound: 4 ms

- Minimal time to be affected by a visual stimulus: 10 ms

- Time that vision is suppressed during a saccade: 100 ms

- Maximum interval between cause-effect events: 140 ms

- Time to comprehend a printed word: 150 ms

- Visual-motor reaction time to an observed event: 1 s

- Time to prepare for conscious cognition task: 10 s

- Duration of unbroken attention to a single task: 6 s to 30 s

(times approximate)

Continuous Latency

Asynchronous 4

Minimal time to be affected by a visual stimulus: 10 ms

→ continuous input latency should be less than 10ms

e.g. dragging a shape, how far behind the cursor is the shape

Input Feedback

Asynchronous 5

Maximum interval between cause-effect events: 140 ms

→ input feedback should appear in less 140ms

e.g. time between pressing a button until the feedback changes

< 140ms < 140ms

"click"

User Perception of Latency & Latency Improvements in Direct and Indirect Touch

- https://youtu.be/1dKlMZrM_sw

Asynchronous 6

https://youtu.be/1dKlMZrM_sw

Graceful Degradation of Feedback

Asynchronous 7

Simplify feedback for high-computation continuous input tasks

▪ Examples

- window manager updates window rendering after drag

- graphics editor only draws object outlines during manipulation

- CAD package reduces render quality when panning or zooming

Busy Indicators

Asynchronous 8

Visual-motor reaction time to an observed event: 1 s

→ Display busy indicators for operations that take 1s to about 3-4s

▪ Busy indicator design

- Use visually cohesive cyclic animations

(not repeating “progress” indicators)

Progress Bars

Asynchronous 9

Visual-motor reaction time to an observed event: 1 s

→ Display progress bars for operations more than 3-4s

▪ Progress bar design

- Show work remaining, not work completed

- Use human precision, not computer precision

(Bad: “243.5 seconds remaining”, Good: “about 4 minutes”)

- Show smooth progress, not erratic bursts

- Show total progress when multiple steps, not only step progress

- Display finished state (e.g. 100%) very briefly at the end

(McInerney and Li, 2002)

Harrison et al. Faster Progress Bars (2010)

- https://www.newscientist.com/article/dn18754-visual-tricks-can-make-downloads-seem-quicker/

Asynchronous 10

https://www.newscientist.com/article/dn18754-visual-tricks-can-make-downloads-seem-quicker/

Progressive Loading

Asynchronous 11

Visual-motor reaction time to an observed event: 1 s

→ Use skeleton placeholders when loading takes more than 1s

▪ Advantages:

- User adjusts to a layout they'll eventually see

- Loading process seems faster because there is an initial results

https://blog.iamsuleiman.com/stop-using-loading-spinner-theres-something-better/
Instagram minimal version skeleton screen

https://blog.iamsuleiman.com/stop-using-loading-spinner-theres-something-better/

Progressive Loading

Asynchronous 12

▪ Provide user with some data while loading rest of data

▪ Examples

- word processor shows first page as soon as document opens

- search function displays some items as soon as it finds them

- webpage displays low resolution images, then higher resolution

Bad

Good

Best

Responsiveness by Predicting Next Operation

Asynchronous 13

▪ Use periods of low load to pre-compute responses to high

probability requests. Speeds up subsequent responses.

▪ Examples

- text search function looks for next occurrence of the target word

while user looks at the current

- web browser “prerenders” pages that are likely to be visited next

https://developer.chrome.com/docs/web-platform/prerender-pages

https://developer.chrome.com/docs/web-platform/prerender-pages

Progressive Loading

Asynchronous 14

Time to prepare for conscious cognition task: 10 s

→ Display image of document on last save,

while real one loads in less than 10s

Demo of loading screen (first 30s): https://youtu.be/jErqdRE5zpQ

https://youtu.be/jErqdRE5zpQ

Asynchronous Execution

Asynchronous 15

▪ Execute tasks independently from the main program flow

- “Do more than one thing at once”

▪ Two main types of Asynchronous Execution

1. Asynchronous Programming

2. Threading

Asynchronous Programming

Asynchronous 16

▪ A paradigm that allows for execution of tasks in a non-blocking

manner in a single thread

- NOT concurrent execution

▪ Related concepts in JavaScript and other Languages

- Event driven programming

- Promise/Future

- Coroutines

- Non-blocking I/O

JavaScript Visualized - Event Loop, Web APIs, (Micro)task Queue, Lydia Hallie

- https://www.youtube.com/watch?v=eiC58R16hb8

Asynchronous 17

https://www.youtube.com/watch?v=eiC58R16hb8

(Simplified) JavaScript Runtime Environment

Asynchronous 18

Call Stack Web APIs

Task QueueEvent Loop

DOM Events

Timer Functions

Fetch API

…

Call Stack

Asynchronous 19

Call Stack

console.log("start");

function bar() {
 console.log("bar");
}

function foo() {
 bar();
 console.log("foo");
}

foo();

console.log("end");

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Call Stack

at line 12 at line 15

foo()

bar()

console.log("bar")

setTimeout(() => {
 console.log(" ");
}, 2000);

Web APIs, Task Queue, Event Loop

Asynchronous 20

Call Stack Web APIs

Task QueueEvent Loop

console.log("start");

setTimeout(() => {
 console.log(" ");
}, 2000);

function bar() {
 console.log("bar");
}

function foo() {
 bar();
 console.log("foo");
}

foo();

console.log("end");

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

console.log(" ")

Timer

() => console.log(" ")

callback:

timeOut:

2000

() => console.log(" ")

() =>
console.log(" "
)

console.log(" "
)

▪ Walkthrough for runtime environment

▪ Demos

1. What if timer is 0ms?

2. Uncomment long() in main

3. Uncomment long() in button callback

runtime

Asynchronous 21

Callbacks

Asynchronous 22

▪ Input events are asynchronous methods

- We handle them as callbacks bound to a DOM element

button.addEventListener("click", () => {
 console.log(" button");
 // do something

});

Callback Hell
- https://medium.com/@raihan_tazdid/callback-hell-in-javascript-all-you-need-to-know-296f7f5d3c1

Asynchronous 23

https://medium.com/@raihan_tazdid/callback-hell-in-javascript-all-you-need-to-know-296f7f5d3c1

Fetch API

Asynchronous 24

▪ An interface for fetching resources across the network

▪ fetch() function

- starts the process of fetching a resource from the network

▪ Returns a “Promise” object with three states:

- Pending, when fetch process is happening

- Resolved, when the process was successful and there’s a valid

response

- Rejected, when the process failed and there’s an error

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

Jack and Jill Nursery Rhyme Analogy of Promises

- Inspired by https://blog.greenroots.info/javascript-promises-explain-like-i-am-five

Asynchronous 25

https://blog.greenroots.info/javascript-promises-explain-like-i-am-five

fetch

Asynchronous 26

▪ Demos:

- async function

- Network throttling to simulate slow connection

▪ doFetch1() using Promises

- fetch() with chained .then(...)

- error handling

▪ doFetch2() with async/await

JavaScript Runtime with Fetch API

Asynchronous 27

Call Stack Web APIs

Task QueueEvent Loop

fetch(url)
 .then((r) => {
 console.log(r);
 })
 .catch((e) => {
 console.error(e);
 });

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

console.log(" ")

Fetch

"pending"

promiseState:

undefined

promiseResult:

promiseReaction:

fetch(url)

.then((r) => {
 console.log(r)
})

(r) => console.log(r)

(r) => console.log(r)

(r) => console.log(r)

console.log(" … ")

Fetch Progress

Asynchronous 28

▪ Surprisingly complex to get progress during fetch

- Use ReadableStream, read in chunks, …

▪ Link below shows an approach

https://dev.to/tqbit/how-to-monitor-the-progress-of-a-javascript-fetch-request-and-cancel-it-on-demand-107f

https://dev.to/tqbit/how-to-monitor-the-progress-of-a-javascript-fetch-request-and-cancel-it-on-demand-107f

fetch (with loader)

Asynchronous 29

▪ A simple CSS class for a loader animation

▪ HTML

<div class="loader"></div>

▪ CSS rule

- Uses CSS variables

- Rounded corners to create circle

- CSS animation

CSS Loaders & Spinners

- https://github.com/vineethtrv/css-loader

Asynchronous 30

https://github.com/vineethtrv/css-loader

Handling (non-Web API) Long Tasks

Asynchronous 31

▪ Goals

- keep UI responsive

- provide progress feedback

- (ideally) allow long task to be paused or canceled

blocking

Asynchronous 32

▪ Shows what happens when long tasks NOT handled asynchronously

- DO NOT DO THIS!

▪ Demo

- prime number generation code (intentionally inefficient)

- dispatch blocked (try typing in textarea)

- Cancel button unusable

- Note even DOM update is blocked

output.textContent = "Starting ...";

Threading

Asynchronous 33

▪ Manage multiple concurrent threads with shared resources, but

executing different instructions

▪ Threads are a way to divide computation, reduce blocking

▪ Concurrency risks: e.g. two threads update a variable

▪ Browsers support worker threads

- dedicated workers

- shared workers

- service workers

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducing_workers

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Introducing_workers

worker

Asynchronous 34

▪ Uses web worker

- create a dedicated worker

- generate.ts has code for thread to execute

▪ Worker.postMessage(...) to send message

▪ Worker.addEventListener(...) to receive messages

▪ Messages from worker to main

- main to thread: start

["generate", 100000]

- thread to main: progress

["progress", 0.5]

- thread to main: done

["done", 100000]

▪ HTML progress bar

	Slide 1: Asynchronous
	Slide 2: Responsive* User Interfaces
	Slide 3: Human Perception of Time
	Slide 4: Continuous Latency
	Slide 5: Input Feedback
	Slide 6
	Slide 7: Graceful Degradation of Feedback
	Slide 8: Busy Indicators
	Slide 9: Progress Bars
	Slide 10
	Slide 11: Progressive Loading
	Slide 12: Progressive Loading
	Slide 13: Responsiveness by Predicting Next Operation
	Slide 14: Progressive Loading
	Slide 15: Asynchronous Execution
	Slide 16: Asynchronous Programming
	Slide 17
	Slide 18: (Simplified) JavaScript Runtime Environment
	Slide 19: Call Stack
	Slide 20: Web APIs, Task Queue, Event Loop
	Slide 21: runtime
	Slide 22: Callbacks
	Slide 23
	Slide 24: Fetch API
	Slide 25
	Slide 26: fetch
	Slide 27: JavaScript Runtime with Fetch API
	Slide 28: Fetch Progress
	Slide 29: fetch (with loader)
	Slide 30
	Slide 31: Handling (non-Web API) Long Tasks
	Slide 32: blocking
	Slide 33: Threading
	Slide 34: worker

