
Reactive

• Virtual DOM Reconciliation

• State with hooks, context, and signals

• Todo example

Reactive 1

Reactivity

Reactive 2

▪ Reactivity can be broadly defined as the “automatic” update of the

UI due to a change in the application's state

▪ As a developer, you can focus on the state of the application and let

the framework reflect that state in the user interface

https://www.builder.io/blog/reactivity-across-frameworks

https://www.builder.io/blog/reactivity-across-frameworks

How Does Reactivity Actually Work?

- https://youtu.be/XB993rQ-5DY

Reactive 3

https://youtu.be/XB993rQ-5DY

Virtual DOM (VDOM) Reconciliation

Reactive 4

▪ The VDOM is a lightweight representation of the UI in memory

▪ The VDOM is synchronized with the "real" DOM as follows:

1. Save copy of current VDOM

2. Components and/or application state updates the VDOM

3. A re-render is triggered by framework

4. Compare VDOM before update with VDOM after update

5. Reconcile the difference by identifying a set of DOM patches

6. Perform patch operations on real DOM

7. Back to step 1

Node Difference Reconciliation Operations

Reactive 5

▪ If the node type changes, the whole subtree is rebuilt

<div><p>Hello</p></div>

 ⇓
<section><p>Hello</p></section>

▪ If node type is the same, attributes are compared and updated

<div class="foo"><p>Hello</p></div>

 ⇓
<div class="foo bar"><p>Hello</p></div>

Sibling Difference Reconciliation Operations

Reactive 6

▪ If a node is inserted into list of same node type siblings, all

children would be updated (if more information isn't provided)

 Apple

 Banana

 ⇓

Pear

Apple

Banana

first must have
changed from Apple
to Pear,

second must
have changed from
Banana to Apple,

etc.

Use keys for Better Child Reconciliation

Reactive 7

▪ When updating children of same node type, use key prop

- each key must be stable and unique

- key should be assigned when data created, not when rendered

 <li key="a">Apple

 <li key="b">Banana

 ⇓

<li key="p">Pear

 <li key="a">Apple

 <li key="b">Banana

https://robinpokorny.medium.com/index-as-a-key-is-an-anti-pattern-e0349aece318

Do not use the iteration
index for key ids when
rendering a list!

no other with key-
"p", so much be
inserting a new child

https://robinpokorny.medium.com/index-as-a-key-is-an-anti-pattern-e0349aece318

React’s diff algorithm (Dec 2013)

- https://calendar.perfplanet.com/2013/diff/

Reactive 8

https://calendar.perfplanet.com/2013/diff/

Approaches to Managing Application State

Reactive 10

1. useState hook for local component state

- pass state to children

2. useContext hook to access state

- without passing as props

3. Signals

Redux is another popular
method, but we won't
cover that in CS 349

count-state

Reactive 11

▪ Manage state with useState hooks

▪ State is stored in root component

- useState hook

▪ Passed to children using props

- Some "prop drilling"

▪ Demo

Hooks

Reactive 12

counter-state (extra demo)

Reactive 15

▪ Duplicate the Left and Right components

▪ Add another count state in “main.ts”

[count2, setCount2] = useState(0);

▪ Now use random hook call order:

let count, setCount, count2, setCount2;
if (Math.random() > 0.5) {
 [count, setCount] = useState(0);
 [count2, setCount2] = useState(0);
} else {
 [count2, setCount2] = useState(0);
 [count, setCount] = useState(0);
}

- Notice what happens ...

Hooks in Preact

Reactive 16

▪ Functional methods to compose state and side effects

▪ useState

- to get and set state

▪ useContext

- access state context without prop drilling

▪ useRef

- get a reference to a DOM node inside a functional component

▪ useEffect

- trigger side-effects on state change

▪ useReducer

- for complex state logic similar to Redux

(and several more ...)

https://preactjs.com/guide/v10/hooks/

https://preactjs.com/guide/v10/hooks/

Custom Hooks

Reactive 17

▪ Define a custom counter hook:

function useCounter() {
 const [value, setValue] = useState(0);
 const increment = useCallback(() => {
 setValue(value + 1);
 }, [value]);
 return { value, increment };
}

▪ Use the custom counter hook:

export default function App() {
 const { value, increment } = useCounter();
 return (
 <>
 <Left count={value} handleClick={increment} />
 <Right count={value} colour="pink" />
 </>
);
}

dependency argument

Context

Reactive 18

Pass state and other values to children without "prop drilling"

1. Define context object type

export type MyContextType = { colour: string; };

2. Create shared context object

export const MyContext = createContext({} as MyContextType);

3. Make context Provider node ancestor of components using context

<MyContext.Provider value={{colour: "lightgreen"}}>
 <MyComponent />
</MyContext.Provider>

4. Use context in child components

import { myContext } from "...";

function MyComponent() {
 const { colour } = useContext(MyContext);
 ...

https://preactjs.com/guide/v10/context

initialize the
context object

https://preactjs.com/guide/v10/context

counter-context

Reactive 19

▪ Manage state with useContext hooks

▪ CounterContext.ts

- creates context object

▪ main.ts

- uses context object with state hook

▪ LeftView and RightView components

- no props, everything passed in context

Signals

Reactive 20

▪ State management module introduced by Preact

- can be used with React and other frameworks too

▪ Not included by default, must install:

npm install @preact/signals

https://preactjs.com/blog/introducing-signals/

https://preactjs.com/blog/introducing-signals/

counter-signals

Reactive 21

▪ Manage state with signals

▪ state.ts is like a Model

- export signals with state, like count
- can also export mutations, like increment()

▪ main.tsx

- no state definition needed

▪ LeftView and RightView components

- using State signals

and mutation methods

JavaScript Signals tutorial: implementing a signals library step by step (Medium member access)

- https://medium.com/gft-engineering/implementing-signals-in-javascript-step-by-step-9d0be46fb014

Reactive 23

https://medium.com/gft-engineering/implementing-signals-in-javascript-step-by-step-9d0be46fb014

Suggestions for State with Signals

Reactive 24

▪ Keep your state minimal and well-organized

- each signal focused on a specific part of the state

▪ Use signals only where needed

- too many signals can introduce performance issues

- use signals to share state between different parts of application

- for local app state, use useState() hook

▪ Keep components small and focused

- “all-in-one” components handling several tasks makes state hard

to manage

- break UI down into small focused components that each

manage/use a specific piece of state

https://polcode.com/resources/blog/signals-in-react-what-s-the-fuss-about/

https://polcode.com/resources/blog/signals-in-react-what-s-the-fuss-about/

todo demo using Preact and signals

Reactive 25

todo

Reactive 26

▪ A more complex app with array state

▪ state.ts has signals and mutations for app state

- TS generics for signal typing

- use of computed signal

- mutations must re-assign the list signal value ref (e.g. arrays)

▪ List and TodoItem

- map to create TodoItem children

- TodoItem component uses todo prop (no state)

▪ Form

- element ref with useRef

	Slide 1: Reactive
	Slide 2: Reactivity
	Slide 3
	Slide 4: Virtual DOM (VDOM) Reconciliation
	Slide 5: Node Difference Reconciliation Operations
	Slide 6: Sibling Difference Reconciliation Operations
	Slide 7: Use keys for Better Child Reconciliation
	Slide 8
	Slide 10: Approaches to Managing Application State
	Slide 11: count-state
	Slide 12: Hooks
	Slide 15: counter-state (extra demo)
	Slide 16: Hooks in Preact
	Slide 17: Custom Hooks
	Slide 18: Context
	Slide 19: counter-context
	Slide 20: Signals
	Slide 21: counter-signals
	Slide 23
	Slide 24: Suggestions for State with Signals
	Slide 25
	Slide 26: todo

