Reactive

Virtual DOM Reconciliation
State with hooks, context, and signals

Todo example

Reactive 1

Reactivity

« Reactivity can be broadly defined as the “automatic” update of the
Ul due to a change in the application's state

= As a developer, you can focus on the state of the application and let
the framework reflect that state in the user interface

https://www.builder.io/blog/reactivity-across-frameworks

= ©
REACTIVITY

How Does Reactivity Actually Work?

Reactive 3

https://youtu.be/XB993rQ-5DY

Virtual DOM (VDOM) Reconciliation

« The VDOM is a lightweight representation of the Ul in memory
« The VDOM is synchronized with the "real" DOM as follows:

N o onw B W N =

Save copy of current VDOM

Components and/or application state updates the VDOM

A re-render is triggered by framework

Compare VDOM before update with VDOM after update
Reconcile the difference by identifying a set of DOM patches
Perform patch operations on real DOM

Back to step 1

Node Difference Reconciliation Operations

« If the node type changes, the whole subtree is rebuilt

<div><p>Hello</p></div>

<section><p>Hello</p></section>

« If node type is the same, attributes are compared and updated

<div class="foo"><p>Hello</p></div>

<div class="foo bar"><p>Hello</p></div>

Sibling Difference Reconciliation Operations

« If a node is inserted into list of same node type siblings, all
children would be updated (if more information isn't provided)

Apple</1i>
Banana</1i> first must have
 changed from Apple
to Pear,
second must
 have changed from
Pear</1i> Banana to Apple,
Apple</1i> otc.
Banana</1li>

Use keys for Better Child Reconciliation

« When updating children of same node type, use key prop
- each key must be stable and unigue
- key should be assigned when data created, not when rendered

<1li key="a">Apple</1li>
<1li key="b">Banana

no other with key-
/\ "p", so much be
 inserting a new child

<1li key="p">Pear
<1li key="a">Apple</1li>

<1li key="b">Banana

https://robinpokorny.medium.com/index-as-a-key-is-an-anti-pattern-e0349aece318

eoe0e)+ (< 0O B

@ calendar.perfplanet.com & lﬁ +

React's diff algorithm

i b le 0K el by Christopher Chedeau

ABOUT THE AUTHOR

Christopher Chedeau (@vjeux)

is a Facebook Software

React is a JavaScript library for building user interfaces developed by Facebook. It has
been designed from the ground up with performance in mind. In this article | will
present how the diff algorithm and rendering work in React so you can optimize your
own apps.

Diff Algorithm

Before we go into the implementation details it is important to get an overview of how
React works.

var MyComponent = React.createClass({ render: function() { if (tl

At any point in time, you describe how you want your Ul to look like. It is important to
understand that the result of render is not an actual DOM node. Those are just
lightweight JavaScript objects. We call them the virtual DOM.

React is going to use this representation to try to find the minimum number of steps to

go from the previous render to the next. For example, if we mount <MyComponent

React’s diff algorithm (Dec 2013)

https://calendar.perfplanet.com/2013/diff/

Approaches to Managing Application State

1. useState hook for local component state
pass state to children

2. useContext hook to access state
- without passing as props

3. Signals

count-state

« Manage state with useState hooks

« State is stored in root component
- useState hook

« Passed to children using props
- Some "prop drilling"

= Demo

@ @ counter-state

Hooks

Behind the scenes, hook functions like setState work by storing datain a
sequence of "slots" associated with each component in the Virtual DOM tree.
Calling a hook function uses up one slot, and increments an internal "slot
number" counter so the next call uses the next slot. Preact resets this counter
before invoking each component, so each hook call gets associated with the

same slot when a component is rendered multiple times.

function User() {
const [name, setName] = useState("Bob") // slot ©

const [age, setAge] = useState(42) // slot 1
const [online, setOnline] = useState(true) // slot 2

This is called call site ordering, and it's the reason why hooks must always be
called in the same order within a component, and cannot be called conditionally

or within loops.

counter-state (extra demo)

« Duplicate the Left and Right components

= Add another count state in “main.ts”
[count2, setCount2] = useState(0);

= Now use random hook call order:

let count, setCount, count2, setCount2;

if (Math.random() > 0.5) {
[count, setCount] = useState(0);
[count2, setCount2] = useState(0);

} else {
[count2, setCount2] = useState(0);
[count, setCount] = useState(0);

- Notice what happens ...

Hooks in Preact

« Functional methods to compose state and side effects

useState
- to get and set state

useContext
- access state context without prop drilling

useRef
- get a reference to a DOM node inside a functional component

useEffect
- trigger side-effects on state change

useReducer
- for complex state logic similar to Redux

(and several more ...)

https://preactjs.com/guide/v10/hooks/

Custom Hooks

= Define a custom counter hook:

function useCounter() {
const [value, setValue] = useState(0);
const increment = useCallback(() => {
setValue(value + 1);
}, [valuel);
return { value, increment };

}

= Use the custom counter hook;

export default function App() {
const { value, increment } = useCounter();
return (
<>
<Left count={value} handleClick={increment} />
<Right count={value} colour="pink" />
</>
)
}

Context

Pass state and other values to children without "prop drilling"

1. Define context object type
export type MyContextType = { colour: string; };

2. Create shared context object
export const MyContext = createContext({} as MyContextType);

3. Make context Provider node ancestor of components using context
<MyContext.Provider value={{colour: "lightgreen"}}>
<MyComponent />
</MyContext.Provider>

4. Use context in child components

import { myContext } from "...";

function MyComponent() f{
const { colour } = useContext(MyContext);

https://preactjs.com/guide/v10/context

counter-context

« Manage state with useContext hooks

= CounterContext.ts
- Creates context object

= main.ts
- uses context object with state hook

« LeftView and RightView components
- No props, everything passed in context

counter-context

» State management module introduced by Preact
- can be used with React and other frameworks too

= Not included by default, must install:
npm install @preact/signals

https://preactjs.com/blog/introducing-signals/

counter-signals

« Manage state with signals

« state.ts is like a Model
- export signals with state, like count
- can also export mutations, like increment()

= Main.tsx
- no state definition needed

« LeftView and RightView components

- using State signals
and mutation methods

counter-signals

e®e®e [v (@] medium.com © ﬁ] +

..' Medium (QQ Search [# write Signin

Member-only story

JavaScript Signals tutorial:
implementing a signals library step
by step

@ Gonzalo Ruiz de Villa - Follow
: O Published in gft-engineering - 11 minread - Apr12,2023

H2e Q L® O

https://medium.com/gft-engineering/implementing-signals-in-javascript-step-by-step-9d0be46fb014

Suggestions for State with Signals

= Keep your state minimal and well-organized
- each signal focused on a specific part of the state

« Use signals only where needed
- too many signals can introduce performance issues
- use signals to share state between different parts of application
- for local app state, use useState() hook

« Keep components small and focused

- “all-in-one” components handling several tasks makes state hard
to manage

- break Ul down into small focused components that each
manage/use a specific piece of state

https://polcode.com/resources/blog/signals-in-react-what-s-the-fuss-about/

J buy bread (id#1)

exereise{id#2)
[J study for course (id#3) il

3 todos (1 done)

todo demo using Preact and signals

Reactive 25

todo

« A more complex app with array state

= state.ts has signals and mutations for app state
- TS generics for signal typing
- use of computed signal
- mutations must re-assign the list signal value ref (e.g. arrays)

« List and Todoltem
- map to create Todoltem children
- Todoltem component uses todo prop (no state)

= Form
- element ref with useRef

	Slide 1: Reactive
	Slide 2: Reactivity
	Slide 3
	Slide 4: Virtual DOM (VDOM) Reconciliation
	Slide 5: Node Difference Reconciliation Operations
	Slide 6: Sibling Difference Reconciliation Operations
	Slide 7: Use keys for Better Child Reconciliation
	Slide 8
	Slide 10: Approaches to Managing Application State
	Slide 11: count-state
	Slide 12: Hooks
	Slide 15: counter-state (extra demo)
	Slide 16: Hooks in Preact
	Slide 17: Custom Hooks
	Slide 18: Context
	Slide 19: counter-context
	Slide 20: Signals
	Slide 21: counter-signals
	Slide 23
	Slide 24: Suggestions for State with Signals
	Slide 25
	Slide 26: todo

